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Abstract
It has been found that gamma oscillations and the oscillation frequencies are regulated by the properties of external stimuli

in many biology experimental researches. To unveil the underlying mechanism, firstly, we reproduced the experimental

observations in an excitatory/inhibitory (E/I) neuronal network that the oscillation became stronger and moved to a higher

frequency band (gamma band) with the increasing of the input difference between E/I neurons. Secondly, we found that

gamma oscillation was induced by the unbalance between positive and negative synaptic currents, which was caused by the

input difference between E/I neurons. When this input difference became greater, there would be a stronger gamma

oscillation (i.e., a higher peak power in the power spectrum of the population activity of neurons). Further investigation

revealed that the frequency dependency of gamma oscillation on the input difference between E/I neurons could be

explained by the well-known mechanisms of inter-neuron-gamma (ING) and pyramidal-interneuron-gamma (PING).

Finally, we derived mathematical analysis to verify the mechanism of frequency regulations and the results were consistent

with the simulation results. The results of this paper provide a possible mechanism for the external stimuli-regulated

gamma oscillations.

Keywords Gamma oscillation � Excitatory/inhibitory neuronal network � Inter-neuron-gamma � Pyramidal-interneuron-

gamma � Input difference

Introduction

Gamma oscillations (30–90 Hz) are involved in many

perceptions and cognitive activities in the brain, the prop-

erties of which can be used to monitor the state of neurons

and to obtain the important clues about neuronal dynamics

of the brain (Hipp et al. 2011; Burns et al. 2011; Orekhova

et al. 2015). Different experimental observations show that

gamma oscillations and the oscillation frequencies are

regulated by the properties of external stimuli (inputs) (Jadi

and Sejnowski 2014a). It is found that the frequency of

gamma oscillations in V1 cortex of awaking macaques

increases monotonically with the increase of stimulus

contrast (Ray and Maunsell 2010). It is also found that the

increase of the stimulus size promotes the strong gamma

oscillations in the primary visual cortex of awake monkeys

(Ray and Maunsell 2011). It is further observed that the

frequency and the strength of gamma oscillations grow

linearly with the increase of either illumination contrast

(Perry et al. 2015) or the light intensity (Saleem et al. 2017)

in the visual cortex. However, the underlying mechanism

of why gamma oscillations depend on the properties of

external stimuli (inputs) is still under investigation.

In order to explain the above experimental observations,

mathematical modeling could be a possible way. Over

recent years, modelling methods that explain gamma

oscillations and their different possible mechanisms, due to

its significance and challenges, remains a hot topic among

researchers. The first mechanism is based on neural firing

synchronization (Kim and Lim 2018, 2020; Vida et al.

2006; Tiesinga and Sejnowski 2009; Bartos et al. 2007;

Brunel and Wang 2003), i.e., gamma oscillations can be

explained by the ‘‘spike-to-spike synchrony’’ (Tiesinga and
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Sejnowski 2009; Bartos et al. 2007): the network rhythm is

caused by spike synchronization among neurons, which

behaves as periodic oscillator. Gamma oscillations can be

explained by another mechanism, firing-rate synchrony

(Brunel and Wang 2003). Specifically, interconnected

neurons in the network are regarded as self-feedback filters,

which filter out other frequency components of the signal

and leave the frequency components within high frequency

band. The high-frequency oscillation formed by filtering

has the similar shape to sine waves. Discharge of each

neuron tends to be no periodic and its firing rate is much

lower than the oscillation frequency. Some studies showed

that gamma oscillations were induced mainly by inhibitory

neurons (fast-spiking interneurons), which was known as

the inter-neuron-gamma mechanism (ING) (Bartos et al.

2007). More studies suggested that gamma oscillations

were induced mainly by the interaction of excitatory neu-

rons and inhibitory neurons, which was known as the

pyramidal-interneuron-gamma mechanism (PING) (Tie-

singa and Sejnowski 2009). However, there are few mod-

eling studies explaining that how gamma oscillations are

regulated by the properties of the external inputs.

As discussed above, E/I network is usually used for the

modeling of neural circuits and exploring the mechanism

of gamma oscillations (Jadi and Sejnowski 2014a; Tiesinga

and Sejnowski 2009; Brunel and Wang 2003; Malagarriga

et al. 2019; Araki et al. 2020; Wallace et al. 2011). To

explore the mechanism of gamma oscillations depending

on the properties of external inputs, we need to map out the

properties of external stimuli to the inputs of E/I neurons.

Here is a simple mapping method (Jadi and Sejnowski

2014a) pointing out that the degree of change in the inputs

to excitatory neurons is different from that in the inputs to

inhibitory neurons, when the contrast of visual stimulus in

the receptive fields of neurons (the center stimulus) or the

contrast of visual stimulus outside the receptive fields (the

surround stimulus) changes. Specifically, the increasing of

the contrast of the center stimulus leads to the increment in

the inputs to excitatory neurons but the inputs to inhibitory

neurons are almost remains unchanged; the increasing of

the contrast of the surround stimulus leads to an increment

of the inputs to inhibitory neurons but the inputs to exci-

tatory neurons are almost unchanged. Therefore, in this

paper we constructed an E/I neural network model that

composed of integrate-and-fire (IAF) neurons to reproduce

the external stimuli-regulated gamma oscillations. Further

we investigated the underlying mechanism of gamma

oscillations regulated by the external inputs in two cases

following the contrast-inputs mapping method discussed

above. We have found that the larger difference between

the external inputs to excitatory and inhibitory neurons, the

higher frequency (note that frequency band of gamma

oscillations occupies higher end of the frequency spectrum

of neural activities) and the stronger oscillations (i.e., the

higher peak power in the power spectrum of the population

activity of neurons), which is consistent with the experi-

mental observations.

This paper is organized as follows. In ‘‘Description of

the neuronal network model’’ section, a local excitatory/

inhibitory (E/I) neuronal network composing of integrate-

and-fire (IAF) neurons with different external inputs to

excitatory neurons (E-neurons) and inhibitory neurons (I-

neurons) is established. ‘‘Enhancement of gamma oscilla-

tions with enlargement of input difference between E/I

neurons’’ section proposes the simulation methods and

shows the simulation results. The biology experimental

observations, that the increase in frequency and the

strength of gamma oscillations with the increase of the

input difference between E-neurons and I-neurons, are

reproduced with the network model by simulation in

‘‘Enhancement of gamma oscillations with enlargement of

input difference between E/I neurons’’ section. The

underlying mechanism is further revealed by simulation

results and its mathematical analysis is discussed in

‘‘Dependency analysis of frequency on enlargement of

input difference’’ and ‘‘Dependency analysis of gamma

oscillation strength on input difference from the perspec-

tive of synaptic current’’ sections. ‘‘Discussion and con-

clusion’’ section gives discussions and conclusions.

Description of the neuronal network model

A neuronal network model consists of excitatory and

inhibitory neurons (Wallace et al. 2011; Neymotin et al.

2011), where all neurons are connected with each other.

Since integrate-and-fire (IAF) neuronal model (Sacerdote

and Giraudo 2013) and conductance-based synapse model

(Dayan and Abbott 2001) are simple but accurate enough

in most situations to describe the kinetic characteristics of

real biological neurons and synapses, respectively. There-

fore, we use them in our E/I neuronal network model,

which can be described as follows:

s
dVi

dt
¼ � Vi � VLð Þ þ R

XN

j¼1;j 6¼i

Isynij þ RIext þ RIbak

Isynij ¼ gmaxsij Vi � Esyn

� �

8
><

>:
ð1Þ

where Vi, s are the membrane potential and the membrane

time constant of neuron i, respectively, VL is the equilib-

rium potential of leakage ions, R is the membrane resis-

tance, Isynij denotes the synaptic current transmitted from

neuron j to neuron i, N is the number of neurons in the

network, Iext is the external stimulus of neuron i, gmax is the

maximum conductance of synapse (the synaptic weight),

Esyn is the reverse potential of synapse, sij is the synaptic
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conductance coefficient which denoting the opening level

of the synaptic ion channel gate of neuron j connecting to

neuron i, Ibak represents the background input of neuron i,

which differs from neuron to neuron. The value Ibaki for

neuron i is drawn randomly and uniformly from the

interval of � 0:5; 0:5½ �.
The conductance coefficient sij can be described by

Wang and Buzsáki (1996):

dsij tð Þ
dt

¼ ad t � tj � d
� �

1� sij
� �

� bsij ð2Þ

where a is the gate enhancement factor and b is the gate

decay factor, d is the synaptic time delay, tj is the spiking

time of neuron j. If t � tj � d ¼ 0, d t � tj � d
� �

¼ 1,

otherwise d t � tj � d
� �

¼ 0.

The kinetic characteristics of E- and I-neurons in the

network model are both described by Eq. (1), but their

parameters are different in the following simulations (see

Table 1 for details). In Table 1, Vth is the spiking threshold

potential and Vreset is the resting membrane potential. If the

membrane potential Vi of neuron i exceeds Vth, the neuron i

would emit an action potential and then reset to the resting

membrane potential Vreset.

gmax in Table 1 represents the strength of the synaptic

weight, which is a constant value. The values of the

synaptic weights (gmax) in Table 1 for E- and I-neurons

should be set appropriately, which can be determined

according to (Neymotin et al. 2011; Wang and Buzsáki

1996).

Enhancement of gamma oscillations
with enlargement of input difference
between E/I neurons

Simulation methods

We simulate the E/I network to reproduce the biology

observations that gamma oscillations depend on the input

difference between E/I Neurons. We supposed that the

values S1 and S2 to be the external inputs to excitatory and

inhibitory neurons respectively, mapped from the gray

values of pixels of a visual stimulus (image) within their

receptive fields (i.e., IextE ¼ S1 for E-neurons, IextI ¼ S2 for

I-neurons). Since excitatory neurons and inhibitory neurons

have different receptive fields (Jadi and Sejnowski 2014b),

S1 and S2 have saliently different values if the distribution

of the pixels in a visual stimulus (image) is evidently

inhomogeneous (for example, if the image has large illu-

mination contrast). Here DSj j is defined as the difference

between the external inputs to E- and I-neurons, which is

described by Eq. (3):

DS ¼ S1� S2 ð3Þ

Researchers have observed the variation on gamma

oscillations by changing the contrast of a visual stimulus in

many biology experiments (Ray and Maunsell 2010;

Adjamian et al. 2008; Henrie and Shapley 2005). For

example, they used the grating stimulus with light strips

and dark strips as the external stimulus. When the gray

value of black stripes is greater than that of light stripes or

the gray value of light stripes is greater than that of black

stripe, the distribution of the pixels in the image is inho-

mogeneous and illumination contrast exists in the image. In

order to mimic the contrast changes of the grating stimulus,

firstly, we considered a balance network where

DS ¼ 0 S1 ¼ S2ð Þ, then we consider to regulate our E/I

network by increasing the input difference DSj j in the

following two cases according to the discussion in the

Introduction section: (1) DS\0 where we increase S2

gradually but keep S1 unchanged; (2) DS[ 0 where we

increase S1 gradually but keep S2 unchanged. The larger

the value of DSj j is, the larger the input difference between
E- and I-neurons is.

The network model is simulated in MATLAB 2012a

environment with a clock-driven algorithm according to

the parameters listed in Table 1 and the time step of the

simulation time is set as 0.01 ms. Firstly, we simulate the

network when there are the same inputs to E- and I-neurons

(S1 ¼ S2 ¼ 2:5), i.e., no input difference between the

external inputs (DS ¼ 0), and find the stochastic and

irregular spiking activities emerging in the network as

shown in Fig. 1a. Figure 1b is the average population

activity calculated from Fig. 1a, which can be described by

Table 1 Neuronal parameters in our model

Parameters Type of neurons

E neurons I neurons

N 400 100

Vth (mV) - 45 - 45

Vreset (mV) - 65 - 65

Esyn (mV) 0 - 75

s (ms) 5 1

R (mV) 10 10

VL (mV) - 65 - 65

gmax 0.00048 0.012

a 0.9 0.9

b 0.003 0.003

d (ms) 3 3
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P tð Þ ¼
P50

k¼�50

M t � kð Þ � G t � kð Þ, where t ¼ 0; 1; 2. . .;

1000 ms. M is the number of spikes of all neurons in the

time interval of t � k; t � k þ 1½ �. G is the Gaussian filter

described by G t � kð Þ ¼ 1ffiffiffiffi
2p

p
r
e�

t�kð Þ2

2r2 , where r is the stan-

dard deviation. r is set as 3 ms similar to that given in (Jadi

and Sejnowski 2014a). When the width of the Gaussian

window is greater than the standard deviation, the width of

the Gaussian window has little effect on the frequency

power distribution. In this paper, the width of the Gaussian

window is set as 100 ms. The relative power spectrum can

then be obtained by FFT transformation on P tð Þ, so the

frequency corresponding to the peak power in the relative

power spectrum is the oscillation frequency. The relative

power spectrum is shown in Fig. 1c is calculated from the

population activity in Fig. 1b. The relative power is the

ratio of the power of each frequency component to the sum

of the powers of all frequency components in the relative

power spectrum. For convenience, we use the power to

represent the relative power hereinafter. As observed in

Fig. 1c, many local power peaks are implying that there is

no dominating frequency residing in the population activity

(note that a frequency with large power in Fig. 1c means

that the corresponding frequency component in the popu-

lation activity of the network in Fig. 1b is strong). Namely,

the network cannot generate gamma oscillations or net-

work synchronization with the same external inputs to E-

and I-neurons.

We next simulated the network in the first regulation

case that DS\0 where we increase S2 gradually from 2.6

to 3.5 but keep S1 being 2.5. Figure 1d–f show the gamma

oscillation of the E/I network caused by the typical input of

S1 ¼ 2:5 and S2 ¼ 3:1, i.e., the difference between the

external inputs DSj j is 0.6. There is an evidently domi-

nating frequency in Fig. 1f with the peak power being

about 0.017. The appearance of the dominant frequency

implies that the population activity oscillates around that

frequency, and thereby the oscillation of the population

activity is denoted by the dominant frequency. The domi-

nant frequency (the peak frequency) in Fig. 1f is the one

corresponding to the peak power, which is about 52 Hz

(the frequency is within the gamma band). Therefore, we

can conclude that gamma oscillation occurs in the network

along with the input difference and the frequency of the

gamma oscillation is 52 Hz. These results imply that

gamma oscillation can be caused by the large difference

between the external inputs to E-neurons and I-neurons.

The regulation of gamma oscillation in the second case that

DS[ 0 where we increase S1 gradually from 2.6 to 3.5 but

keep S2 being 2.5, e.g., S1 ¼ 3:0 and S2 ¼ 2:5

( DSj j ¼ 0:5), can also cause gamma oscillation. The sim-

ulation results of the second regulation case are similar to

those of the first case.

Enhancement of gamma oscillations
with enlargement of input difference between E/
I neurons

To explore the mechanism that how gamma oscillations are

regulated by the difference between the external inputs, we

have carried out extensive simulations and summarized the

regulations of the peak frequency and peak power (re-

flecting the enhancement of gamma oscillations) by the

input difference in Fig. 2. Figure 2 shows that the peak

frequency and peak power increase with the enlargement of

the input difference between E- and I-neurons. Specifically,

when S2 is kept constant (is kept to be 2.5) and S1 (the

external input to E neurons) is increased gradually from 2.6

to 3.5, i.e., the difference between the external inputs is

increased from 0.1 to 1.0, the peak frequency of gamma

oscillations increases (the blue curve in Fig. 2a) and the

peak power become stronger (the blue curve in Fig. 2b) as

well. Similarly, the oscillations become faster (the red

curve in Fig. 2a) when S2 (the external input to I-neurons)

is increased gradually from 2.6 to 3.5, i.e., the difference

between the inputs to E- and I-neurons is also increased

from 0.1 to 1.0, and the power also gets stronger (the red

curve in Fig. 2b). The increases in the peak power in the

two regulation cases imply the enhancement of gamma

oscillations. Nevertheless, Fig. 2 shows that both the fre-

quency and power of gamma oscillations do not increase

monotonically with the increasing of the input difference.

For example, the frequency does not increase when the

input difference increases from 0.2 to 0.3 (the blue curve in

Fig. 2a); the power does not increase when the input dif-

ference increases from 0.6 to 0.7 (the blue curve in

Fig. 2b). These may be caused by the random factors in

each run of the simulation. During each run of the simu-

lation, the background input Ibaki is generated randomly.

Therefore, the firing rate of each neuron differs in each

simulation. We have shown the standard deviation for each

data point in Fig. 2 (10 runs for each data point). The more

bFig. 1 Network simulation results (50–450 ms in a 1 s simulation).

Neurons indexed 1–100 are inhibitory neurons and neurons indexed

101–500 represent excitatory neurons. a Raster plots of the spiking

times of neurons without input difference. b Average population

activity without input difference. c The power spectrum of the

average population activity without input difference. d Raster plots of

the spiking times of neurons with the typical input that S2 is 3.1 and

S1 is 2.5 (DS\0; DSj j ¼ 0:6). e Average population activity with the

typical input that S2 is 3.1 and S1 is 2.5 (DS\0; DSj j ¼ 0:6). f The
power spectrum of the average population activity with the typical

input that S2 is 3.1 and S1 is 2.5 (DS\0; DSj j ¼ 0:6)
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upward curve for the case of the increase of S2 implies that

the network’s gamma oscillation is more sensitive to the

changes of the external inputs to I-neurons.

In conclusion, the simulation results demonstrate that

both the frequency and the strength of gamma oscillations

increase with the increasing of the difference between the

external inputs to excitatory and inhibitory neurons, which

are consistent well with the existing biology experimental

observations.

Dependency analysis of frequency
on enlargement of input difference

In this section, we will analyze our simulation results that

the frequency of input-regulated gamma oscillations

increases with the increasing of the input difference

between E- and I-neurons and then carry out the mathe-

matical analysis to further verify the simulation results.

Analysis of the simulation results

We have two ways to enlarge the input difference DSj j. The
first way is to increase S2 while keeping S1 invariant. The

second way is to increase S1 while keeping S2 invariant.

For the first case, when the input to I-neurons (S2) is

increased from 2.6 to 3.5 but the input to E-neurons (S1) is

kept 2.5 (i.e., the difference between the external inputs

DSj j is increased from 0.1 to 1.0), the firing rate of I-neu-

rons in the network will increase (see the curve with the

squares in Fig. 3a). This firing rate increase is intuitive

because the firing rate of IAF model neurons increases

monotonically with their inputs. The activity of inhibitory

population also increases (an obvious activity enhancement

can be observed in Fig. 4a when S2 is set as 2.6 and 3.1,

respectively), thereby inhibiting the discharge activities of

E-neurons and resulting in the decreases both in the firing

rate of E-neurons (the curve with stars in Fig. 3a) and in

the activity of excitatory population (Fig. 4b). However,

the peak oscillation frequency of the network still increases

because the peak oscillation frequency of the E/I network is

mainly determined by the oscillation frequency of inhibi-

tory neurons according to ING mechanism (ING mecha-

nism suggests that the oscillation frequency is determined

by the time duration for the recovery of the inhibitory
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Fig. 2 The relationship between the gamma oscillations and the input

difference. a The peak frequency of the gamma oscillations versus the

input difference. b The peak power of the gamma oscillations versus

the input difference. (Color figure online)
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Fig. 3 The average firing rates in the E/I network. a The change of

the average firing rates of E- and I-populations with different external

inputs to I-neurons. b The change of the average firing rates of E- and

I-populations with different external inputs to E-neurons
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neurons) (Bartos et al. 2007). Specifically, when S2

increases but S1 keeps unchanged, the activities of the

inhibitory neurons dominate the E/I network, thereby the

network behaves like an inhibitory network, leading to the

gamma oscillation governed by ING mechanism (Tiesinga

and Sejnowski 2009). According to ING mechanism, the

oscillation frequency (peak frequency) of the network is

determined by the firing rate of inhibitory neurons, thus the

frequency of the E/I network increases with the increasing

of the external input to inhibitory neurons.

For the second case when the input to E-neurons (S1) is

increased from 2.6 to 3.5 but the input to I-neurons (S2) is

kept 2.5 (i.e., the difference between the external inputs

DSj j is increased from 0.1 to 1.0), the average firing rate of

E-neurons are enhanced (the curve with triangles in

Fig. 3b) and the activity of excitatory population is also

increased (see Fig. 5b). This leads to increasing excitatory

synaptic inputs to inhibitory neurons and causes them to

fire more frequently (see the curve with circles in Fig. 3b)

or to show higher activities (see Fig. 5a). Since the activ-

ities of excitatory neurons dominate the network in this

case, the network oscillation frequency does not follow

ING mechanism but follow PING mechanism (PING

mechanism suggests that the oscillation frequency is

determined by the time duration for the recovery of the

excitatory neurons from inhibition) (Tiesinga and Sej-

nowski 2009). Therefore, the oscillation frequency of the

E/I network also increases in this case due to the increasing

of average firing rate of E-neurons.

Mathematical analysis

For a biological neuronal network discussed in the previous

sections, it is very difficult to analyze the oscillation

dependency on the input properties using mathematical

theory. However, we can consider an ideal scenario where

all E-neurons and all I-neurons fire synchronously,

respectively. We analyze the oscillation frequency depen-

dency on the input properties in such a scenario since the

frequency is not sensitive to the level of synchronization of

E- and I-neurons. For such a scenario, we can also view E-

neuron group as one E-neuron and I-neuron group as one I-

neuron since E- and I-neuron groups are synchronized.

Therefore, we simplify our E/I network proposed above to

a simplest model with only two neurons connected with

each other (one excitatory neuron and one inhibitory neu-

ron) to carry out the mathematical analysis. For example,

according to the simulation of the first regulation case

proposed in ‘‘Simulation methods’’ section where IextI is

increased gradually but IextE is kept unchanged (the firing of

E-neurons lags from I-neurons by small time interval DT),
the structure of the simplified network and the firing pattern

of the synchronized E- and I-neurons are shown in Fig. 6.

In Fig. 6a, the external input to I-neuron IextI is increased

from 2.6 to 3.5 and the external input to E-neuron IextE

remains unchanged at 2.5 (i.e., the input difference DS is

increased from 0.1 to 1.0). The dots in Fig. 6b indicate the

spikes of E- and I-neurons where I-neuron firstly emits a

spike at time 0 and then the first spike of E-neuron is at

time DT which is a little later than that of I-neuron. T is a

discharge period of E- or I-neuron.

Fig. 4 E/I population activities in the E/I network with different

external inputs to I-neurons (S2). a The activities of the inhibitory

population when the external inputs to I-neurons (S2) are 2.6 (blue)

and 3.1 (red), respectively. b The activities of the excitatory

population when the external inputs to I-neurons (S2) are 2.6 (blue)

and 3.1 (red), respectively. (Color figure online)
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We derived the relationship between a discharge period

T of I-neuron and the external input IextI in the following

‘‘The mathematical derivation for a discharge period of I

neuron’’ section and derive the relationship between a

discharge period T of E-neuron and the external input IextE

in the following ‘‘The mathematical derivation for a dis-

charge period of E-neuron’’ section respectively.

Combining the analytical results of ‘‘The mathematical

derivation for a discharge period of I neuron’’ and ‘‘The

mathematical derivation for a discharge period of E-neu-

ron’’ sections, we can find out the relationship between the

input difference DSj j and the discharge period T, i.e., the

relationship between the input difference DSj j and the fir-

ing frequency (f ¼ 1=T) as shown in Table 2 of ‘‘The

results of the mathematical derivations’’’’ section which

further verify the simulation results shown in ‘‘Enhance-

ment of gamma oscillations with enlargement of input

difference between E/I neurons’’ section that the network

frequency increases with the increasing of the input dif-

ference. The result of the mathematical analysis according

to the simulation of the second regulation case proposed in

‘‘Simulation methods’’ section where IextE is increased

gradually but IextI is kept unchanged (the firing of I-neurons

lags from E-neurons by small time interval DT) is similar

to that of the first regulation case, which is not displayed

here.

The mathematical derivation for a discharge period of I
neuron

In this section, we derive the relationship between a dis-

charge period T of I-neuron and the external input IextI

according to the firing process of I-neuron described in

Fig. 7. We have assumed that I-neuron firstly emits a spike

at time t ¼ 0 and the following spike of E-neuron is at time

DT . Then the synaptic current Isyn caused by the first spike

of E-neuron is transmitted to I-neuron after the synaptic

time delay d, which cause the second spike of I-neuron at

Fig. 5 E/I population activities in the E/I network with different

external inputs to E-neurons (S1). a The activities of the inhibitory

population when the external inputs to E-neurons (S1) are 2.6 (blue)

and 3.1 (red), respectively. b The activities of the excitatory

population when the external inputs to E-neurons (S1) are 2.6 (blue)

and 3.1 (red), respectively. (Color figure online)

(a)

E
I

an excitatory neuron

an inhibitory neuron

E I

I E

IIextIEext inhibitory synapse

excitatory synapse

(b)

I 

E 

0

T

T t

T

T

T

Fig. 6 A simplified E/I network model. a The structure of the

simplified E/I network consisting of one excitatory neuron and one

inhibitory neuron connected with each other. b The firing of the

synchronized E- and I-neurons in the simplified network. t is the

spiking time of neurons
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time t ¼ T . This is a discharge period T of I-neuron as

shown in Fig. 7b.

As shown in Fig. 7b, I-neuron will decay after its first

spike and the second spike will be emitted at time T after

receiving the excitatory synaptic current Isyn from E-neu-

ron. So the conductance coefficient s will decay to the

initial conductance coefficient s0 with the decay factor b at

time T and s0 can be described by the following equation:

s0 ¼ s0e
�bT þ a 1� s0e

�b DTþdð Þ
� �

e�b T�DT�dð Þ ð4Þ

Therefore, the conductance coefficient s at time t can be

described as follows:

s ¼ s0e
�bt þ a 1� s0e

�b DTþdð Þ
� �

e�b t�DT�dð Þ ð5Þ

Thus, the analytical solution of s0 can be given by

Eq. (4):

s0 ¼ � ae�b T�DT�dð Þ

e�bT � ae�b DTþdð Þe�b T�DT�dð Þ�1
ð6Þ

Substituting Eq. (6) into (5), the analytical solution of s

can be obtained:

s ¼� ae�b T�DT�dð Þe�bt

e�bT � ae�b DTþdð Þe�b T�DT�dð Þ � 1

þ a 1þ ae�b T�DT�dð Þe�b DTþdð Þ

e�bT � ae�b DTþdð Þe�b T�DT�dð Þ � 1

� �
e�b t�DT�dð Þ

ð7Þ

According to Eq. (1), the simplified network with only

two neurons can also be described as follows:

s
dVI

dt
¼ � VI � VLð Þ þ RIextI þ RIsyn tð Þ

Isyn tð Þ ¼ gmaxs tð Þ VI � Esyn

� �

8
<

: ð8Þ

Since IAF neurons can be considered as a linear system

before the membrane potential of neurons reaches the

spiking threshold potential, the membrane potential can be

calculated by the accumulation of the individual compo-

nents which are determined by the input or initial compo-

nents. For example, Vreset is the initial component and VL,

IextI , and Isyn are the input components. So, we can first

calculate each component separately as follows:

V1
I ¼ Vresete

� 1=sð Þt;

V2
I ¼ VL 1� e� 1=sð Þt

� �
;

V3
I ¼ RIextI 1� e� 1=sð Þt

� �
;

V4
I ¼ RIsyne� 1=sð Þ t�DT�dð Þ

ð9Þ

Then, the membrane potential VI of I-neuron at time t

can be accumulated as follows:

VI tð Þ ¼ Vresete
� 1=sð Þt þ VL þ RIextI

� �
1� e� 1=sð Þt

� �

þ RIsyne� 1=sð Þ t�DT�dð Þ ð10Þ

However, here the synaptic current Isyn in Eq. (10) are

assumed as a constant determined by the dynamic at the

moment DT þ dð Þ when the spike by E-neuron arrives at

the synapse. Since it is too complicated to obtain its ana-

lytical solution, Isyn at time DT þ dð Þ can be calculated by

Eq. (11):

Table 2 The discharge period

and the corresponding

frequency with the increasing of

the input difference

DSj j 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T (ms) 64.4 40.9 30.2 23.9 19.7 16.7 14.5 12.7 11.3 10.2

f (Hz) 15.5 24.4 33.2 41.9 50.8 59.9 69.2 78.6 88.3 98.1

(a)

spike
transmit

E I
Isyn s

IIext

d

an excitatory neuron

excitatory aynapses

an inhibitory neuron

IEext

t

I IE

second
spike

first 
spike

T0 T

(b) 

Fig. 7 The firing process of I-neuron. a The spike transmission from

E-neuron to I-neuron. b Two spikes of I-neuron in a discharge period

T. The membrane potential of I-neuron is - 65 mV when t is 0 and

the membrane potential of I-neuron is - 45 mV when t is T. s0
represents the initial conductance coefficient. s represents the synaptic
conductance coefficient at time t
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Isyn DT þ dð Þ ¼ gmaxs DT þ dð Þ VI DT þ dð Þ � Esyn

� �

s DT þ dð Þ ¼ s0e
�b DTþdð Þ þ a 1� s0e

�b DTþdð Þ� �

VI DT þ dð Þ ¼ Vresete
� 1=sð Þt þ VL þ RIextI

� �
1� e� 1=sð Þt

� �

8
><

>:

ð11Þ

Finally, the analytical solution of VI can be obtained by

substituting the expression of Isyn solved from Eq. (11) into

(10):

VI ¼Vresete
�s=t þ VL þ RIextI

� �
þ Rgmax

� ae�b T�DT�dð Þe�b DTþdð Þ

e�bT � ae�b DTþdð Þe�b T�DT�dð Þ � 1

�

þ a 1þ ae�b T�DT�dð Þe�b DTþdð Þ

e�bT � ae�b DTþdð Þe�b T�DT�dð Þ � 1

� ��

Vresete
� DTþdð Þ=s þ VL þ RIextI

� �
1� e� DTþdð Þ=s

� �
� Esyn

� �

e� t�DT�dð Þ=s

ð12Þ

where a ¼ 0:02, b ¼ 0:0001, d ¼ 0:03, R ¼ 50,

VL ¼ �45 mV, Esyn ¼ 0, s ¼ 50, Vreset ¼ �65 mV and

gmax ¼ 0:9. It is worthy of noting that the parameters here

are a little different from those of the simulations above

due to the change of the network structure. According to

the firing process of I-neuron as shown in Fig. 7, I-neuron

emits the second spike, i.e., VI ¼ �45 mV when t ¼ T .

Namely, Eq. (12) can be rewritten as the following math-

ematical equation including the variables T and DT , i.e.,
the relationship between a discharge period T of I-neuron

and the external input IextI is:

45� 65e�
T
50 þ �45þ 50IextI

� �
1� e�

T
50

� �

þ 45 � 0:0196e�0:0001Tþ0:0001DTþ0:000003e�0:0001DT�0:000003

e�0:0001T � 0:02e�0:0001DT�0:000003e�0:0001Tþ0:0001DTþ0:000003 � 1
þ 0:02

� �

�65e�
DT
50
�0:0006 þ �45þ 50IextI

� �
1� e�

DT
50
�0:0006

� �� �
e�

T
50
þDT

50
þ0:0006 ¼ 0

ð13Þ

The mathematical derivation for a discharge period of E-
neuron

In this section, we derive the relationship between a dis-

charge period T of E-neuron and the external input IextE

according to the firing process of E-neuron described in

Fig. 8. We assume that I-neuron firstly emits a spike at

time t ¼ 0 and the following spike of E-neuron is at time

DT . Then the synaptic current Isyn from I-neuron is trans-

mitted to the E-neuron after the synaptic delay d, which

causes the second spike of E-neuron at time T. This is a

discharge period T of E-neuron, as shown in Fig. 8b.

As shown in Fig. 8b, the initial conductance coefficient

s0 at time t can be described as:

s0 ¼
s0e

�bt � a 1� s0e
�bd

� �
e�b t�dð Þ; t� d

s0e
�bt; t\d

	
ð14Þ

Here we only consider the case of t� d in Eq. (14), so

the analytical solution of s0 can be obtained by the fol-

lowing equation:

s0 ¼ s0e
�bT � a 1� s0e

�bd
� �

e�b T�dð Þ ð15Þ

Namely,

s0 ¼
ae�b T�dð Þ

e�bT þ ae�bde�b T�dð Þ � 1
ð16Þ

Therefore, s at time t can be described by Eq. (17):

s ¼ s0e
�bt þ a 1� s0e

�b DTþdð Þ
� �

e�b t�DT�dð Þ ð17Þ

Substituting Eq. (16) into (17), the analytical solution of

s can be obtained:

s ¼ ae�b T�dð Þe�bt

e�bT þ ae�bde�b T�dð Þ � 1

� a 1� ae�b T�dð Þe�bd

e�bT � ae�bde�b T�dð Þ � 1

� �
e�b t�dð Þ ð18Þ

Similar to the calculation of VI in ‘‘The mathematical

derivation for a discharge period of I neuron’’ section, the

membrane potential of E-neuron VE can be calculated by

the accumulation of the individual components which are

E
Isyn s

d

(a) 

I
an excitatory neuron

inhibitory synapse

an inhibitory neuron

excitatory synapse

spike
transmit

IEextIIext

t

I EE

second
spike

first 
spike

T0 T

(b) 

Fig. 8 The firing process of E-neuron. a The spike transmission from

I-neuron to E-neuron. b Two spikes of E-neuron in a discharge period

T. The membrane potential of E-neuron is - 65 mV when t is DT ,
and the membrane potential of E-neuron is - 45 mV when t is

T þ DTð Þ
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determined by the input or initial components. For exam-

ple, Vreset is the initial component and VL, I
ext
E , and Isyn are

the input components. So, we can first calculate each

component separately as follows:

V1
E ¼ Vresete

� 1=sð Þ t�DTð Þ;

V2
E ¼ VL 1� e� 1=sð Þ t�DTð Þ

� �
;

V3
E ¼ RIextE 1� e� 1=sð Þ t�DTð Þ

� �
;

V4
E ¼ RIsyne� 1=sð Þ t�dð Þ

ð19Þ

Then, the membrane potential VE of E-neuron at time t

can be accumulated as follows:

VE tð Þ ¼Vresete
� 1=sð Þ t�DTð Þ þ VL þ RIextE

� �

1� e� 1=sð Þ t�DTð Þ
� �

þ RIsyne� 1=sð Þ t�dð Þ ð20Þ

We also assume Isyn here as a constant determined by

the dynamic at the moment d when the spike by I-neuron

arrives at the synapse. So, Isyn at time d can be calculated

by Eq. (21):

Isyn dð Þ ¼ gmaxs dð Þ VE dð Þ � Esyn

� �

s dð Þ ¼ s0e
�bd þ a 1� s0e

�bd
� �

VE dð Þ ¼ Vresete
� 1=sð Þ d�DTð Þ þ VL þ RIextE

� �
1� e� 1=sð Þðd�DT

� �

8
><

>:

ð21Þ

Finally, we can obtain the analytical solution of VE by

substituting the solution of Isyn solved from Eq. (21) into

(20):

VE ¼Vresete
� s

t�DT þ ðVL þ RIextE Þ 1� e�
s

t�DT
� �

þ Rgmax � ae�b T�dð Þe�bd

e�bT � ae�bde�b T�dð Þ � 1
� a 1� ae�b T�dð Þe�bd

e�bT þ ae�bde�b T�dð Þ � 1

� �� �

Vresete
� d�DTð Þ

s þ VL þ RIextE

� �
1� e�

d�DTð Þ
s

� �
� Esyn

� �
e�

t�dð Þ
s

ð22Þ

where a ¼ 0:02, b ¼ 0:0001, d ¼ 0:03, R ¼ 50,

VL ¼ �45 mV, Esyn ¼ �75 mV, s ¼ 50, Vreset ¼ �65 mV

and gmax ¼ 0:9. It is worthy of noting that the parameters

here are a little different from those of the simulations

above due to the change of the network structure.

According to the firing process of E-neuron as shown in

Fig. 8, E-neuron emits the second spike, i.e., VE ¼
�45 mV when t ¼ T þ DTð Þ. That is to say, Eq. (22) can

be rewritten as the following mathematical equation

including the variables T and DT , i.e., the relationship

between a discharge period T of E-neuron and the external

input IextE is:

45� 65e�
T
50 þ �45þ 50IextE

� �
1� e�

T
50

� �

þ 45 � 0:0204e�0:0001Tþ0:000003

e�0:0001T � 0:02e�0:0001DTþ0:000003 � 1
� 0:02

� �

�65e�0:0006þDT
50 þ �45þ 50IextE

� �
1� e

DT
50
�0:0006

� �
þ 75

� �
e�

T
50
�DT

50
þ0:0006 ¼ 0

ð23Þ

The results of the mathematical derivations

Combining Eqs. (13) and (23), the mathematical analysis

for the relationship between the discharge period T (i.e., the

frequency f) and the external inputs (i.e., the input differ-

ence DSj j is from 0.1 to 1.0, because IextI is increased from

2.6 to 3.5 and IextE is kept unchanged at 2.5) can be sum-

marized as a system of equations including two invariables

T and DT:

0 ¼ 45 � 65e�
T
50 þ �45þ 50IextI

� �
1� e�

T
50

� �

þ 45 � 0:0196e�0:0001Tþ0:0001DTþ0:000003e�0:0001DT�0:000003

e�0:0001T � 0:02e�0:0001DT�0:000003e�0:0001Tþ0:0001DTþ0:000003 � 1
þ 0:02

� �

�65e�
DT
50
�0:0006 þ �45þ 50IextI

� �
1� e�

DT
50
�0:0006

� �� �
e�

T
50
þDT

50
þ0:0006

0 ¼ 45 � 65e�
T
50 þ �45þ 50IextE

� �
1� e�

T
50

� �

þ 45 � 0:0204e�0:0001Tþ0:000003

e�0:0001T � 0:02e�0:0001DTþ0:000003 � 1
� 0:02

� �

�65e�0:0006þDT
50 þ �45þ 50IextE

� �
1� e

DT
50
�0:0006

� �
þ 75

� �
e�

T
50
�DT

50
þ0:0006

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð24Þ

By the calculation of Eq. (24) in Matlab, we can obtain

the different values of the variables T and DT and obtain

the corresponding frequencies (f ¼ 1=T) of the simple

network, when the external inputs IextI are assigned the

different values from 2.6 to 3.5 and IextE is kept at 2.5 (i.e.,

the input difference DSj j increases from 0.1 to 1.0), as

shown in Table 2. From Table 2, we can find that the

discharge period T of neurons decreases as the input dif-

ference DSj j increases from 0.1 to 1.0, which indicates that

the network frequency increases. In ‘‘Analysis of the sim-

ulation results’’ section, our simulation results have shown

that the frequency of gamma oscillation increases with the

increasing of the input difference. Therefore, the result of

the mathematical analysis is consistent with the result of

modeling simulations.

Dependency analysis of gamma oscillation
strength on input difference
from the perspective of synaptic current

We next discuss the mechanism for the dependency of

strength of input-regulated gamma oscillations on the

enlargement of input difference. We believe that the

mechanism may be relevant to the unbalanced state (sy-

naptic currents) of the E/I network. When the network is in

balance of the synaptic currents, i.e., the excitatory and
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inhibitory synaptic currents will be canceled with each

other and the total synaptic current received by any neuron

is near zero, the neurons in the network can be viewed as

isolated neurons with no synaptic connections and fire

spikes independently with each other. Such nearly isolated

neurons cannot induce gamma oscillations and network

synchronization, as shown in Fig. 1a–c. On the other hand,

if the inputs to E- and I-neurons are different, for the first

case when DS\0, for example when the input to E-neurons

is 2.5 and the input to I-neurons is 3.5, the network will

become unbalanced. Since the inhibitory neurons receive

large inputs whereas excitatory neurons receive small

inputs, the firing rates of inhibitory neurons are higher than

those of excitatory neurons (see Fig. 3a), resulting in

unbalanced synaptic currents between inhibition and exci-

tation. Figure 9a shows that the summation of the negative

synaptic currents from all inhibitory neurons (see blue

curve and Eq. 25) is much stronger than the summation of

the positive currents from all excitatory neurons (see black

curve and Eq. 25) for a typical neuron randomly taken

from the network, which leads to a negative aggregate

current (the aggregate current is the total synaptic current

which is defined by Eq. 25) fluctuating around - 0.56 lA
(red curve). This negative aggregate synaptic current

makes the network behave like an inhibitory network that

is apt to fall in synchronization. The larger the input dif-

ference, the stronger the negative aggregate synaptic cur-

rent, thereby the stronger the average aggregate synaptic

current (the average aggregate synaptic current is obtained

by averaging aggregate synaptic currents over time),

resulting in the higher peak power (see Fig. 10a).

The aggregate synaptic current discussed in the previous

paragraph is defined by:

Iaggregatei ¼ Iinhibitoryi þ Iexcitatoryi

Iinhibitoryi ¼
P

Iij; j 2 inhibitory neuronsf g
Iexcitatoryi ¼

P
Iij; j 2 excitatory neuronsf g

8
<

: ð25Þ

where Iaggregatei is the aggregate synaptic current received

by any given neuron i, Iinhibtoryi is the sum of the synaptic

currents received by neuron i from all inhibitory neurons,

Iexcitatoryi is the sum of the synaptic currents received by

neuron i from all excitatory neurons.

For the other case DS[ 0 (e.g., the input to E-neurons is

3.5 and the input to I-neurons is 2.5), the summation of the

positive currents from all excitatory neurons (see black

curve in Fig. 9b and Eq. 25) is stronger than that of the

negative synaptic currents from all inhibitory neurons (see

blue curve in Fig. 9b and Eq. 25), leading to a positive

aggregate synaptic current fluctuating around 0.46 lA (see

red curve in Fig. 9b). This positive aggregate synaptic

current makes the network behave like an excitatory net-

work. Since an excitatory network could fall in

synchronization in case of short synaptic delay and gamma

oscillation is usually generated in local neural circuit where

synaptic delay is short, the larger input difference will

cause the larger positive aggregate synaptic current,

thereby the stronger the average aggregate synaptic current,

resulting in the higher peak power (see Fig. 10b).

Combining the two regulation cases discussed above, we

can find that the greater the input difference between E/I

neurons, the stronger the aggregate inhibitory or excitatory

synaptic current, which leads to the better synchronization

and stronger gamma oscillation of the network exhibiting

the higher peak power of the power spectrum.

Discussion and conclusion

Gamma oscillations exist in many regions of real neural

systems. Modeling works for the mechanisms of gamma

oscillations have been carried out extensively. Some

researches suggested that gamma oscillations were gener-

ated by spike-to-spike synchrony (Tiesinga and Sejnowski

2009; Bartos et al. 2007), while other researches believed

that gamma oscillations were caused by firing-rate syn-

chrony (Brunel and Wang 2003). As for the contributions

of E-neurons and I-neurons to gamma oscillations, some

researches proposed the inter-neuron-gamma (ING)

mechanism (Bartos et al. 2007), while others proposed the

pyramidal-interneuron-gamma (PING) mechanism (Tie-

singa and Sejnowski 2009). Moreover, previous researches

on gamma oscillations mainly investigated the mechanism

of gamma oscillations with fixed frequency.

However, biology experiments have shown that gamma

oscillations and the oscillation frequencies are regulated by

the change of external stimuli (inputs). Jadi and Sejnowski

(2014a) constructed a network with simplified stochastic

neuron model to explain this external stimuli-regulated

gamma oscillation. Jadi and Sejnowski (2014b) also

explored and discussed this external stimuli-regulated

gamma oscillation by modeling research but their model

was a simplified firing rate model. However, it is unclear

whether gamma oscillations can be regulated by external

stimuli in a relatively complex network model such as a

model composed of integrate-and-fire (IAF) neurons.

Therefore, we constructed an E/I neural network model

composed of IAF neurons and conductance-based synapses

to deeply investigate the mechanism of the external stim-

uli-regulated gamma oscillation. Since the properties of

external stimuli can be mapped to the inputs of neurons in

the E/I network according to Jadi and Sejnowski (2014a),

we changed inputs to E- and I-neuron populations respec-

tively, and studied the dependency of the oscillation

strength and frequency on the input difference. In addition,

mathematical analysis was carried out in our work, which

512 Cognitive Neurodynamics (2021) 15:501–515

123



lacks in existing modeling researches (Jadi and Sejnowski

2014a, b), to obtain the equation describing the clear

relationship between the frequency and the input differ-

ence. Our work can be summarized as follows.

Our simulation results show that the larger the input

difference between E- and I-neurons, the higher the fre-

quency and the stronger gamma oscillations respectively,

which are consistent well with the biology experimental

observations. We have further found the underlying

mechanisms of these numerical or biology experimental

observations. Further investigation shows that gamma

oscillation is caused by the unbalance between positive and

negative synaptic currents. If the inputs to inhibitory neu-

rons are larger than those to excitatory neurons, the

aggregate synaptic current to each neuron in the network

will be negative, which makes the behavior of the network

Fig. 9 The aggregate synaptic current of a typical neuron taken

randomly from the network received from other neurons in the

unbalanced E/I network. a The case of the input to E-neurons is 2.5

and the input to I-neurons is 3.5. b The case of the input to E-neurons

is 3.5 and the input to I-neurons is 2.5. (Color figure online)
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to be governed by ING mechanism. Thus, the larger is the

input difference between E/I neurons, the higher will be the

average firing rate of I-neurons and the stronger will be the

negative aggregate synaptic current, that leads to higher

frequency and stronger gamma oscillations. On the other

hand, if the inputs to excitatory neurons are larger than

those to inhibitory neurons, the aggregate synaptic current

to each neuron in the network will be positive, which

makes the behavior of the network to be governed by PING

mechanism. Thus, the larger the input difference between

E/I neurons, the higher will be the average firing rate of

E-neurons and the stronger will be the excitatory aggregate

synaptic current, that leads to higher frequency and stron-

ger gamma oscillations.

Furthermore, we carried out the mathematical analysis

with a simplified network with one excitatory neuron and

one inhibitory neuron. It is obtained that the discharge

period of neurons decreases with the increasing of the input

difference, indicating that the frequency increases with the

increasing of the input difference. The results of the

mathematical analysis are consistent with our simulation

results well, which provides a better way to understand the

mechanism of external stimuli-regulated gamma

oscillations.
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