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Abstract
Chromium (Cr) causes toxic effects in plants by generating reactive oxygen species (ROS) which create oxidative environ-
ment. Azotobacter vinelandii helps in growth and development of many crops; however, its role in Cr stress tolerance in 
rice has not been explored. Here, we report the new function of Azotobacter vinelandii strain SRI Az3 (Accession number 
JQ796077) in providing Cr stress tolerance in Oryza sativa (var. IR64). The efficiency of the strain was checked under dif-
ferent concentrations (50, 100, 150, 200 and 250 µM) of Cr stress and it was observed that it provides stress tolerance to rice 
plant up to 200 µM concentration. Different agronomic growth parameters were found to be better in this strain of Azotobacter 
vinelandii-inoculated rice plants as compared to un-inoculated one. The agronomic growth and photosynthetic characteristics 
such as net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci) were also found to be significantly 
increased with increasing concentration of Azotobacter vinelandii inoculation. The activities of antioxidant enzymes were 
significantly higher (35%) in rice plants inoculated with Azotobacter vinelandii as compared with un-inoculated rice plant. 
All these positive effects of Azotobacter vinelandii help rice to survive from the toxic effect of Cr.
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Introduction

Crop plants are constantly exposed to various environmen-
tal stresses including toxic heavy metals which negatively 
affect the growth and development resulting in significant 
reduction of their productivity (Sahoo et al. 2014; Foucault 
et al. 2013; Saifullah et al. 2015; Sabir et al. 2015; Rai et al. 
2019). Among heavy metals, Cr is one of the most toxic 
heavy metal affecting soil, water and plants, it has not any 
essential metabolic function in plants (Jun et al. 2009; Sha-
hid et al. 2017; Zaheer et al. 2020). Toxic effects of Cr on 
crops are due to its induction of ROS which caused oxidative 
stress (Sharma et al. 2020). Recently, it has been reported 

that Cr-induced ROS are responsible for causing cytotoxic, 
genotoxic and photosynthetic changes in plants (Wakeel 
et al. 2020). The negative impact of Cr is mainly depend-
ent on its valence state. Hexavalent chromium [Cr(VI)] is 
conceived as the most toxic form, highly soluble in water, 
which usually occurs amalgamated with oxygen as chromate 
(CrO4

2−) or dichromate (Cr2O7
2−) oxyanion. Cr(III) is less 

toxic, less mobile, and is mainly found coalesced to organic 
matter in soil and aquatic environment (Becquer et al. 2003; 
Bakshi and Panigrahi 2018). Some microorganisms show 
resistance to this heavy metal, despite the toxicity of Cr(VI), 
showing the ability to reduce Cr(VI) to Cr(III), as was first 
documented for Pseudomonas spp., and a characterization 
of bacteria capable of reducing Cr(VI) was successively 
reported in 1979 (Romanenko and Korenkov 1977). Numer-
ous bacteria have then been reported to reduce Cr(VI) to 
Cr(III) as a mechanism of resistance to Cr(VI) (Camargo 
et al. 2003; He et al. 2011). Since Cr(III) and Cr(VI) may 
interconvert in the soil, therefore, it is difficult to valuate 
separately the consequence of the two types of Cr on plants. 
Consequently, it might be appropriate to use the term Cr 
toxicity in plants rather than toxicity of Cr(III) or Cr(VI) 
(Arun et al. 2005; Chowdhury et al. 2018). Since plants lack 
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a specific transport system for Cr, it is transported by carri-
ers of essential ions such as sulfate or iron. Toxic effects of 
Cr on plant growth and development include alterations in 
the germination process as well as in the growth of roots, 
stems and leaves, which may affect total dry matter produc-
tion and yield. Chromium also causes deleterious effects on 
physiological processes of plants such as photosynthesis, 
water relations and mineral nutrition (Shanker et al. 2005; 
Sharma et al. 2020). Dixit et al. (2002) studied the effect of 
Cr(VI) on the electron transport system of pea (Pisum sati-
vum L.cv. Azad) and found that at 200 µM concentration, 
Cr ion inactivates electron transport and enhances super-
oxide generation. The effect of different concentration (50, 
100, 200, 300 and 400 µM) of Cr(VI) on citrullus plants 
was tested and it has been reported that the Cr(VI) levels 
greater than 200 µM concentration reduces growth with 
chlorosis and loss of turgor of middle leaves (Dube et al. 
2003). The effects of Cr(VI) on the growth and development 
of Arabidopsis thaliana, were studied, and concentrations 
of Cr(VI) greater than 200 µM were reported to be toxic to 
plants which inhibit the growth of roots and shoots and the 
development of chlorosis in leaves (Castro et al. 2007). In 
this concentration, the growth of primary root was totally 
inhibited but the plants continued their growth by alliterat-
ing the development of root (Castro et al. 2007). Cr(VI) at 
concentration 250 and 500 μM caused interveinal chlorosis 
in both young and middle leaves of Lolium perenne after 30 
and 15 days of exposure, respectively (Vernay et al. 2007). 
The fall of older leaves and wilting of younger leaves of 
Datura innoxia was observed after exposure of plants to 
200 and 500 μM Cr(VI) (Vernay et al. 2008). The Cr stress 
severely affects the growth of rice plant (Ahmad et al. 2011). 
The growth of total leaf area, shoot weight, root weight, dry 
weight and the yield of the paddy gradually decreased with 
increasing Cr concentration (Sundaramoorthy et al. 2010; 
Zhang et al. 2010; Nagarajan and Ganesh 2015).

Phytoremediation is now accepted as an effective tech-
nique for plants to clean up hazardous contaminants from 
contaminated areas (Yu and Gu 2007). The use of hyperac-
cumulator plants has also been regarded as environmentally 
friendly to extract Cr(VI) from polluted spheres (Salt et al. 
1998). By adding chelate compounds in a process called 
induced phytoextraction, the phytoextraction capability of a 
plant other than hyperaccumulator species can be enhanced 
(Salt et al. 1998). Chelating agents, such as EDTA, DTPA, 
and CA, are often used to increase the bioavailability and 
absorption of heavy metals by plants.

Present upsurge in Cr(VI) reduction-potential recovery 
of novel PGPRs has led to the reduction of Cr toxicity and 
increase of plant biomass in Cr-stressed soils (Maqbool et al 
2015; Soni et al. 2014). Several PGPB-reducing Cr(VI) 
bacterial genera have been isolated from soils, such as 
Ochrobactrum (Faisal and Hasnain 2005), Delftia (Morel 

et al. 2011), Pseudomonas (Rajkumar et al. 2005), Bacillus 
(Karupiaah and Rajaram 2011), Cellulosimicrobium (Chat-
terjee et al. 2009), Mesorhizobium (Wani et al. 2008), and 
Rhodococcus (Trivedi et al. 2007). As toxic Cr derivatives 
are converted into environmentally less harmful products 
by processes of Cr(VI) reduction, the bacterial feature of 
reductive immobilization of Cr has a special significance. 
As these beneficial bacteria induce changes in plant metabo-
lism (e.g., extensive proliferation in roots for better nutrient 
absorption, increased bacterial siderophore-mediated iron 
uptake, and upregulation of genes involved in stress mitiga-
tion, etc.), plants inoculated with PGPB exhibiting Cr(VI) 
reducing property have shown better adaptation while grow-
ing in Cr-stressed soils.

Rice is a staple food on which half of the world popula-
tion is dependent. Due to the toxic effects of Cr in soil, the 
growth and development of rice plants are affected (Solanki 
and Dhankhar 2011). Therefore, improvement of rice toler-
ance against Cr toxicity is essential. Many soil microbes 
(plant growth-promoting rhizobacteria, PGPRs) play impor-
tant role in promoting plant growth and development under 
normal and adverse conditions, and therefore, help in sus-
taining agricultural productivity (Das et al. 2013). Azoto-
bacter vinelandii participates in diverse metabolic functions 
owing to its capacity to produce vitamins and hormones and 
promotes plant growth and development in adverse condi-
tions (Wani et al. 2013). We previously reported that Azo-
tobacter vinelandii, a Gram-negative diazotroph, is a free-
living N2 fixer found in soil, and it plays an important role 
during salinity stress tolerance and improves the productiv-
ity of rice crop under salinity stress (Sahoo et al. 2014).

The role of Azotobacter vinelandii on the Cr(VI) stress 
tolerance in rice has not been explored yet. Most of the ear-
lier reports on toxicity of Cr(VI) mentioned above, state that 
the concentration of Cr(VI) greater than 200 µM is toxic 
which inhibits agronomic growth of the plant. Therefore, 
we decided to evaluate the role of Azotobacter vinelandii in 
providing tolerance to rice plants against the Cr(VI) stress 
(200 µM) in pot culture experiments.

Materials and methods

Preparation of seedlings, pots and treatments

The seeds of rice genotype IR64 were obtained from Inter-
national Centre for Genetic Engineering and Biotechnology 
(ICGEB), New Delhi, India. The rice seeds (Oryza sativa 
L. var IR64) were placed in hydroponics system for 21 days 
in the green house of ICGEB, New Delhi, India. The tem-
perature inside green house was 28±2 °C and 16 h light and 
8 h dark was maintained for growth of seedlings. Azotobac-
ter vinelandii strain SRIAz3 were used in this study. The 
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Azotobacter vinelandii strain SRI Az3 was isolated by us 
from System of Rice Intensification (SRI) field of Odisha 
University of Agriculture and Technology, Bhubaneswar, 
Odisha, India. The accession number of the strain is cata-
loged as JQ796077. Different concentrations (10%, 15% 
and 20%) of LB (Luria–Bertani) culture (109 cfu/mL) were 
used. The bacterial strain (Azotobacter vinelandii SRIAz3) 
was allowed to grow in LB broth medium for 48 h at 30 °C. 
Then, the optical density at 600 nm of bacterial culture was 
measured. When the O.D reached in between 0.8 and 1.0, 
then the bacterial culture was used for further study. The 
21-day-old healthy rice (Oryza sativa L. var IR64) seedling 
were dipped separately in bacterial suspensions (10%, 15% 
and 20% v/v, i.e., 2 × 109 cfu/mL) for 2 h as recommended 
for commercial formulations by Bureau of Indian Standards 
(BIS) and transplanted in different pots with three replica-
tions each under defined treatments (T) viz., T1, inoculation 
with 10% concentration of Azotobacter vinelandii; T2, with 
15% inoculation; T3, with 20% inoculation and plants with-
out any inoculation taken as control (C).

Relative expression of antioxidant genes in different 
concentration of chromium

Chromium stress-tolerance level for three treatments along 
with control were checked by measuring the fold change for 
antioxidant genes, i.e., ascorbate peroxidase (APX), catalase 
(CAT), and glutathione reductase (GR). The relative expres-
sion of these genes were estimated under different concentra-
tions (50, 100, 150, 200 and 250 μm) of Cr (VI) (K2Cr2O7) 
stress condition, with respect to OsActin1 gene as internal 
control. Leaf samples of all the 3 treatments and control 
(T1, T2, T3 and C) were analyzed to study the expression 
of antioxidant genes, the data were collected from three 
independent technical repeats. The following gene-specific 
primers were used in this experiment. For CAT gene, For-
ward 5´-GAA​GCC​AAG​CAT​GTG​AAG​AAAC-3´; Reverse 
5´-GCC​CAA​CGA​CAA​CAG​AAG​A-3´ primers were used. 
For APX gene, primers were Forward 5´- GCC​CGT​GGT​
ACT​CTT​GTT​T-3´; Reverse 5´-CAA​CGT​ACT​GAG​GAT​
GCC​ATAG-3´ and for GR gene, Forward 5´-CTA​TCA​GTA​
GTG​GGC​TTG​AGTG-3´; and Reverse 5´-TCT​CCT​GCC​
GTT​TGG​ATA​TG-3´ primers were used in this study.

Chromium stress‑tolerance assays

Rice plants after 6 weeks DAS were subjected to Cr(VI) 
stress. Cr (VI) stress was induced by incubating plants in ½ 
strength Hoagland’s nutrient solution containing Cr (VI) at 
concentration of 200 µM. All the pots (T1, T2, T3 and C) 
were kept in one big tank filled with Hoagland’s nutrient 
solution containing Cr (VI) at concentration of 200 µM. The 
plants were grown in the green house and the white light 

was provided (16 h photo period) by white fluorescent tubes 
(36 W Philips TLD) with a photon flux density of 52 μ/m2 s 
(PAR). Harvesting was done after maturity (90 DAS)

Observations of agronomic growth parameters

Growth parameters such as plant height (cm), root length 
(cm), root dry weight (g), and leaf area (cm2) were stud-
ied and recorded according to the method described earlier 
(Sahoo et al. 2014).

Extraction and estimation of total protein

To extract total proteins, rice plants were crushed in liq-
uid nitrogen with the help of mortar and pestle. 1 g of the 
powdered tissues was taken and 1 ml of extraction buffer 
containing 0.1% sodium lauryl sarcosine, 0.1% Triton 
X-100, 0.01 M ethylenediaminetetraacetic (EDTA), 0.05 
M Na2HPO4 and 0.01 M β-mercaptoethanol was added to 
it. The homogenate was transferred to microcentrifuge tube 
and centrifuged at 13,000 rpm for 10 min. Supernatant were 
stored at − 80 °C for further experiment. The concentrations 
of protein in the supernatants were measured by Bradford 
method (Bradford 1976). Bradford’s reagent containing 50 
mL of 95% ethanol with Coomassie brilliant blue G-250, 
100 mL 85% phosphoric acid. The solution was prepared 
with constant stirring. Distilled water was used to adjust the 
final volume. Protein concentration was measured at 595 
nm, using Shimadzu UV-160A spectrophotometer. BSA was 
used as standard for plotting a standard curve.

Estimation of total chlorophyll

Leaf samples from each treatment were cut into pieces. 100 
mg leaf of each treatment was taken. The samples were 
immersed in 15 mL of 80% acetone in a 50 mL conical flask 
and kept in darkness for extraction of chlorophyll. Thereaf-
ter, the chlorophyll extracts were decanted off and optical 
density (O.D) of the chlorophyll extract was measured at 645 
nm and 663 nm under a colorimeter. The amount of chloro-
phyll a, chlorophyll b and total chlorophyll were calculated 
in mg/g (Arnon 1949).

Measurement of photosynthetic characteristics

An infra-red gas analyzer (IRGA, LiCor, Lincoln, NE, USA) 
was used on a sunny day between 10:00 and 12:00 h to esti-
mate net photosynthetic rate (Pn), stomatal conductance (gs) 
and intercellular CO2 concentration (Ci) on the fourth and 
fifth fully expanded leaves of treated and the control plants. 
The atmospheric conditions during the measurement were 
photosynthetically active radiation (PAR), 1050 ± 7l mol/
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m2/s, relative humidity 66 ± 4%, atmospheric temperature 
24 ± 2 °C and atmospheric CO2, 350 µM mol-1.

Measurement of soluble sugar

Glucose and fructose content in leaves of three Azotobacter 
treated plants as well as WT were measured after Cr(VI) 
stress for 24 h using the method described by Karkacier et al. 
(2003).

Estimation of endogenous ion content

Endogenous ion such as nitrogen, phosphorus, and potas-
sium was estimated from each plant tissue. The samples 
were kept at 80 ± 5 °C for 48 h and the dry weight of each 
sample was recorded. Total nitrogen content in plant mate-
rial was determined according to Micro Kjeldahl method 
(Jackson 1973). The phosphorus content of plant samples 
was calculated in percentage using spectrophotometer 
described earlier (Gupta 2004). Potassium was estimated 
through the flame photometer (Champman and Pratt 1982) 
following standard protocol.

Estimation of IAA, GA3 and zeatin from plant tissues

The extraction of endogenous plant hormones was carried 
out according to Chen et al. (1996). About 0.5–1.0 g of fresh 
plant samples was weighed and ground to powder and 5 
mL of 80% methyl alcohol solution was added to a ratio of 
1:10–20 (w:v). The extract was kept at 4 °C for 12 h, then 
centrifuged for 30 min at 2000 rpm. The leached solution 
was removed, and 3 mL (80%) cold methyl alcohol solution 
was added and shaken for several hours, then centrifuged for 
20 min. The supernatant solution was dried with Nitrogen in 
a water bath until half solution evaporated. Petroleum ether 
and distill liquid (supernatant solution) at ratio of 1:1 were 
shaken until the distinct differences were observed. The solu-
tion was left to settle and the petrol ether was removed and 
the methyl alcohol solution was kept. The methyl alcohol 
extract was dried with nitrogen on the water bath at pH 2.0 
and extracted three times with equal volume of glacial acetic 
acid and shaken on a mechanical shaker. All the methanol 
organic phase was combined and adjusted the water phase 
to pH 2.8. Two milliliters of glacial acetic acid and ethyl 
acetate were added to it and shaken. Extraction was carried 
out three times with 2 mL of ethyl acetate. The entire ethyl 
acetate phase combined and dried with nitrogen on water 
bath at 40 °C and extracted three times with 2 mL butanol, 
and dried with nitrogen on water bath until it reduced to 
1 mL. The filtrate passed through 0.45 µm membrane and 
0.1 µL samples were analyzed by HPLC to separate and 
determine the concentration of indole-3-acetic acid, gibber-
ellic acid and zeatin endogenous hormones concentration in 

samples with mobile phase mixture of acetonitrile and water 
(volume ratio 4:6) at flow rate of 1 mL per min with an injec-
tion volume of 0.1 µL detector wavelength set at 254 nm.

Assay of antioxidant enzymes of rice plants 
with different treatments

Activities of different antioxidant enzymes including ascor-
bate peroxidase (APX), catalase (CAT), glutathione reduc-
tase (GR), guaiacol peroxidise (GPX) and proline content 
were estimated using standard methods described earlier 
(Garg et al. 2012). Estimation of ion leakage, relative water 
content (RWC) was measured by the method described ear-
lier (Tuteja et al. 2013).

Ascorbate peroxidase

For ascorbate peroxidase (APX) activity, the homogenized 
plant tissues were mixed with buffer solution containing 100 
mM phosphate buffer (pH 7.0), 0.1 mM EDTA, 1.0 mM 
ascorbate and 1 mM DTT. APX activity was determined by 
calculating the rate of hydrogen peroxide dependent oxida-
tion of ascorbic acid in buffer containing 50 mM phosphate 
buffer (pH 7.0), 0.5 mM ascorbate and enzyme extract, in a 
total volume of 1 mL (Chen and Asada 1999). The rate of 
ascorbic acid oxidation was initiated by adding 10 μL of 10 
% (v/v) H2O2 and the decrease in absorbance was monitored 
at 290 nm (ε0 2.8/mM/cm) for 2 min. One unit of enzyme 
activity was defined as amount of enzyme required to oxi-
dize 1 μM of ascorbate per min.

Catalase

For catalase activity, plant samples were homogenized in 50 
mM phosphate buffer (pH 7.0) and 1 mM DTT (dithiothrei-
tol). CAT activity was measured using assay solution con-
taining 50 mM phosphate buffer (pH 7.0), 33.5 mM H2O2 
and 0.1 mL enzyme extract. Decrease in absorbance of H2O2 
(ε039.4/mM/cm) was recorded within 2 min at 240 nm (Aebi 
1984). One unit of CAT activity was defined as the amount 
of enzyme required to oxidize 1 μmol of H2O2 per minute.

Glutathione reductase

The homogenized tissues were mixed in extraction buffer 
containing 100 mM phosphate buffer (pH 7.5) and 0.5 
mM EDTA, 0.75 mM DTNB, 0.1 mM NADPH. The reac-
tion was initiated by adding 1.0 mM oxidized glutathione 
(GSSG) when 5,5-dithiobis (2 nitrobenzoic acid) (DTNB) 
was reduced by glutathione (GSH) to form TNB (Smith et al. 
1988). Glutathione reductase was assayed by monitoring the 
increase in absorbance at 412 nm (ε06.22/mM/cm). One unit 
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of enzyme was defined by amount of enzyme required to 
form 1 μ mol of GS-TNB min−1 by the reduction of DTNB.

Guaiacol peroxidase

The leaf tissues were homogenized thoroughly (1.0 g) in 
liquid nitrogen with 0.1 M potassium phosphate buffer 
(pH 7.0) under cold condition. The homogenate was cen-
trifuged at 15,000×g, at 4 °C for 15 min. The supernatant 
was concentrated using 80 % ammonium sulfate (NH4)2SO4 
precipitation followed by dialysis and lyophilization (Sam-
brook and Russell 2001). The concentrated protein samples 
were incubated in a mixture of 0.1 M phosphate buffer, pH 
6.5; 1.5 mM O-dianisidine; 0.2 M H2O2; 50 μg of protein at 
37 °C. The absorbance was recorded at 430 nm. The enzyme 
activity was determined as amount of enzyme required to 
change the absorbance by 0.1 per unit time (Heu et al. 2009).

Proline estimation

Proline content in plant tissue was determined as described 
by Bates et al. (1973). 500 mg of homogenized plant sam-
ples was mixed in 10 ml of 3% sulfosalicyclic acid (w/v) with 
pestle and mortar in ice cold bath. Then, it was centrifuged 
at 10,000g for 15 min followed by filtration. 2 mL of filtrate 
was taken and then mixed with 2 mL of acid ninhydrin and 
glacial acetic acid. The mixture was kept at 100 °C for 1 h 
until the development of colored complex. Then, the mixture 
was kept in ice for cooling. Twice the amount of toluene was 
added to it and vortexed for 15–20 s. Optical density at 520 

nm was documented. The proline content was determined 
using standard curve of l-Proline.

Statistical analysis

The means of three separate experiments under the same 
environmental conditions are all the experimental data col-
lected, and the results are expressed as mean with standard 
deviation (mean ± SD). To test significance between mean 
values of control and stressed plants, one-way variance anal-
ysis (ANOVA) was used and comparison between means 
was performed using Tukey–Kramer multiple comparison 
tests with the aid of Graph Pad InStat software (version 3.0). 
Cultivars were found to be statistically relevant at P < 0.05, 
P < 0.01 and P < 0.001.

Results

Establishment of chromium stress‑tolerance level 
for plants

The relative expression of antioxidant genes such as CAT, 
APX and GR in the presence of different concentrations of 
Cr showed the up regulation at 200 µM. But the down regu-
lation of these genes was observed at 250 µM Cr(VI) stress. 
It was an indication of the Cr(VI) stress-tolerance level for 
different treatments (Fig. 1a–c)

Fig. 1   Relative gene expres-
sion of antioxidant genes under 
different concentration of chro-
mium stress. a Relative gene 
expression of catalase (CAT​), b 
ascorbate peroxidise (APX), and 
c glutathione reductase (GR) 
genes in T1, T2, T3 and C under 
50, 100, 150, 200 and 250 µM 
chromium stress for 24 h. 
The catalase expression was 
increasing from 2-fold (50 μM) 
to 4.5-fold (200 μM) in all 
treatments except control. Then, 
at 250 μM, the fold change was 
dropped down to 3.5-fold. Simi-
larly, in case of APX and GR, 
the same trend was observed
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Agronomic performance of rice plants 
under chromium stress conditions

The agronomic characteristics of rice plants in all the 3 
treatments and control (T1, T2, T3 and C) were recorded 
(Fig. 2a). There was a significant difference in agronomic 
parameters of rice plants after 3 different treatments (T1, 

T2 and T3) when compared with the control plants. Better 
agronomic characteristics were observed in all the treat-
ments under 200 µm Cr(VI) stress except control (Table 1). 
The control rice plants of C pot died due to toxic stress of 
Cr(VI). But the treated plants (T1, T2 and T3) survived 
up to maturity.

Fig. 2   Chromium stress-toler-
ance assay. a Azotobacter vine-
landii treated (T1, T2 and T3) 
and non-treated (C) rice plants 
under 200 µM chromium stress 
for 15 days. T1, inoculation 
with 10% concentration of A. 
vinelandii; T2, with 15% inocu-
lation; T3, with 20% (v/v, i.e., 
2 × 109 cfu/ml) inoculation and 
plants without any inoculation 
taken as control (C). b Endog-
enous IAA content in all plants. 
c Endogenous content of GA3. 
d Endogenous content of IAA 
in all plants. Higher endogenous 
hormone content was found in 
all treatments when compared 
with control
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Table 1   Growth (plant height, root length, root dry weight, and leaf 
area), photosynthesis (total chlorophyll content; net photosynthetic 
rate, stomatal conductance, and internal CO2 concentration, and total 

protein); nutrients (nitrogen, phosphorus, potassium, and sodium) of 
rice plants at different treatments (T1, T2, T3) and control (C) after 
15-day chromium stress

The superscript letters a, b and c indicate significant differences at P > 0.05 level as determined by Duncan’s multiple range test (DMRT)

Attributes T1 (10% A. vinelandii) T2 (15% A. vinelandii) T3 (20% A. vinelandii) C (Control, 0% 
A. vinelandii)

Plant height (cm) 75±3.2a 79±3.1a        81±3.1b     63±3.0c

Root length (cm) 31±0.8a 32±1.2a        32±1.1a     22±1.1b

Root dry weight (g) 2.5±0.12a 2.7±0.1a        2.8±0.1a     2.1±0.12b

Leaf area (cm2/plant) 92±2.4a 92±1.6a        98±1.5b     49±1.0c

Total chlorophyll (mg/g f wt) 9.05±0.22a 9.15±0.3a        9.15±0.4a 4.65±0.5b

Total protein (mg/g f wt) 1.75±0.53a 1.74±0.82a       1.78±0.55a   1.63±0.91b

Net photosynthetic rate (PN, µ mol CO2 m-2s-1) 9.25±0.5a 9.11±0.2a        9.05±0.3a    8.01±0.4b

Stomatal conductance (gs, m mol m−2 s−1) 246±11.4a 248±10.9a         255±10.2b      213±11.5c

Intracellular CO2 (Ci, µ mol mol−1) 222±11.2a 224±11.4a         225±10.4a      214±10.5b

Nitrogen (%) 0.285±0.011a 0.286±0.012a    0.312±0.011b   0.275±0.011c

Phosphorus (%) 0.243±0.011a 0.242±0.011a    0.247±0.011a   0.222±0.011b

Potassium (%) 0.165±0.003a 0.168±0.002a    0.163±0.001a 0.128±0.001b

Sodium (%) 0.042±0.001a 0.046±0.001a    0.045±0.001a   0.047±0.001a
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Higher photosynthetic characteristics 
and endogenous ion contents in Azotobacter 
vinelandii‑inoculated rice plants

The photosynthetic characteristics of rice plants were 
recorded after 15 days of Cr(VI) stress. The photosynthetic 
rate declined by 37% in control plants as compared to T1, 
T2 and T3 rice plants. There are no significant differences 
among T1, T2 and T3 plants during Cr(VI) stress. The net 
photosynthetic rate, stomatal conductance, and intracellular 
CO2 were also higher in plants of T1, T2 and T3 pots as 
compared to the control plants (Table 1). The photosynthetic 
characteristics of T3 plants were found to be higher among 
inoculated treatments, i.e., T1 and T2. Rice plants of T1, T2 
and T3 pots possess higher endogenous hormone content 
when compared with control plants (Fig. 2b–d). IAA, zeatin 
and GA3 contents in T2 plants were higher among all the 
plants.

Scavenging capacity of ROS in rice plants

We determined the relative expression of some of the 
antioxidant marker genes such as catalase (CAT), ascor-
bate peroxidase (APX) and glutathione reductase (GR) in 
plants of all the 4 treatments under Cr(VI) stress (200 μM) 
conditions (Fig. 3a–c). The catalase expression increased 

from 2-fold (50 μM) to 4.5-fold (200 μM) in all treat-
ments except control. Then, at 250 μM, the fold change 
dropped down to 3.5-fold. Similarly, in case of APX and 
GR, the same trend was observed. The reduced expres-
sion of antioxidant marker genes were found in control 
plants, whereas higher expression was found in other treat-
ments (T1, T2 and T3). In addition, enzymatic activities 
of the CAT, APX, and GR were significantly higher in all 
the 3 treatments (T1, T2 and T3) when compared to the 
control plants under stress condition (Fig. 3d–f). Simi-
larly, the guaiacol peroxidase (GPX), proline and relative 
water content (RWC) were significantly higher in plants 
of Azotobacter vinelandii-inoculated pots (T1, T2 and T3) 
when compared to the plants of un-inoculated control pot 
C under Cr(VI) stress (Fig. 4a–c). In addition, reduction 
in MDA content, H2O2 production, and ion leakage were 
observed in the plants of 3 treatments (T1, T2 and T3) 
when compared with control plants of pot C (Fig. 4d–f).

The higher soluble sugar content 
in Azotobacter‑inoculated plants

The rice plants of 3 treatments (T1, T2 and T3) possessed 
higher soluble sugar content, i.e., glucose and fructose 
than control plants under Cr(VI) stress conditions (Fig. 4g, 
h).
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Fig. 3   Relative gene expression and antioxidant enzyme content of 
rice plants after 200 µM chromium stress. a Relative gene expression 
of catalase (CAT​), b ascorbate peroxidise (APX), and c glutathione 
reductase (GR) genes in T1, T2, T3 and C rice plants after 15 days 
chromium stress. Similarly, activity of d catalase (CAT), (e) ascor-

bate peroxidase (APX) and (f) glutathione reductase (GR) enzymes 
in rice lines. The experiments were independently repeated three 
times with minimum three technical replicates. Graphs show mean 
values ± standard error. Values with different letters are significantly 
different at P < 0.05 (estimated using one-way ANOVA)
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Population of Azotobacter vinelandii in different 
pots

The population dynamics of Azotobacter vinelandii in all 
the pots (T1, T2 and T3) were found to be varying and there 
was no significant reduction in their population even after 15 
days of Cr(VI) stress. The population of Azotobacter vine-
landii was 0.70× 106 cfu/g, 0.68× 106 cfu/g and 0.92× 106 
cfu/g in T1, T2 and T3 pots, respectively.

Discussion

Chromium (Cr) is a toxic element for plants, which causes 
oxidative damages to DNA, RNA, proteins, and pigments 
(Yadav et al. 2010; Sharma et al. 2011; Dhali et al. 2020). 
Plants contain unique setup of antioxidant enzymes against 
such oxidative stress (Choudhary et al. 2012). Azotobacter 
vinelandii has very important role during environmental 
stresses. It helps plants to survive during stress conditions 
(Sahoo et al. 2014). The stress-tolerance level of different 
treatments (T1, T2, and T3) at different Cr(VI) concentra-
tions (50, 100, 150, 200 and 250 µM) were checked and 
the higher antioxidant gene expression levels were found at 
200 µm Cr(VI) stress conditions for all the treatments. The 
relative gene expression level was found lower at 250 µm 
Cr(VI) stress conditions. On the basis of the expression level 
of antioxidant genes, we performed all our studies at 200 

µM Cr(VI) stress. Here, rice plants inoculated with different 
concentrations (10%, 15% and 20%) of Azotobacter vine-
landii revealed better growth under 200 µM Cr(VI) stresses 
for 15 days. In contrast, the rice plants without Azotobacter 
vinelandii inoculation could not survive under Cr(VI) stress. 
The higher expression of antioxidant enzymes such as CAT, 
APX and GR and the relative expression of these antioxi-
dant genes (CAT, APX and GR) were found to be higher in 
Azotobacter vinelandii-inoculated rice plants (T1, T2 and 
T3) whereas less expression was observed in un-inoculated 
control plants (C). This observation provides strong evi-
dence that Azotobacter vinelandii helps plants to survive 
and withstand in continuous Cr(VI) stress. Proline has been 
identified as a molecule which performs a variety of func-
tions, accumulating in elevated level in response to diverse 
stresses (Liang et al. 2013). Proline homeostasis is essential 
for meristematic cells owing to its function to retain sus-
tainability of plant growth under prolong stress and proline 
could have a protective function (Kavi-Kishor and Sreeniva-
sulu 2014). The parallel evidence involving increased pro-
line content in Azotobacter vinelandii-inoculated rice plants 
suggests that Azotobacter vinelandii also has role in stimu-
lation of proline during Cr(VI) stress. Lipid peroxidation 
has been reported to be increased after prolonged exposure 
to stress (Soliman et al. 2011). Here, we observed higher 
MDA content and H2O2 production in control rice plants as 
compared to treated plants (T1, T2 and T3) under Cr(VI) 
stress. This result provides further evidence that Azotobacter 
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vinelandii contributes a strong support for tolerance against 
prolonged Cr(VI) stress. Plant hormones such as IAA, GA3 
and zeatin play an important role in plant growth and devel-
opment and also in adaptation to different stresses (Peleg 
et al. 2011). In the present study, we found higher IAA, GA3 
and zeatin content in T1, T2 and T3 rice plants as compared 
to un-inoculated control rice plants. Therefore, these data 
support the role of Azotobacter vinelandii in growth and 
development of rice plant under Cr(VI) stress. According to 
previous report, the biomass of plant was increased in the 
presence of growth-promoting microorganisms under Cr(VI) 
stress (Fan et al. 2011). In our study, the same trend was 
observed. Here, better biomass of plants in T1, T2 and T3 as 
compared to control is evidence that Azotobacter vinelandii 
promotes better growth during 200 µm Cr stress condition. 
Significant improvement of rice plants after Cr stress was 
reported by increasing macronutrients indicating change in 
nutrient status in plants that is correlated with improved tol-
erance to Cr(VI) stress (Panda and Choudhury 2005). Here, 
we observed an improved macronutrients profile in T1, T2 
and T3 rice plants under Cr(VI) stress with respect to that 
of un-inoculated control plants.

Sugars may play key roles in stress defense mechanisms, 
including membrane stability, via interaction with phos-
pholipid head groups and ROS detoxification (Bohnert and 
Jensen 1996; Bentsink et al. 2000; Roy et al. 2005; Tuteja 
et al. 2014). In this study, we found that glucose and fruc-
tose content were higher in T1, T2 and T3 rice plants than 
control plants. The findings of present investigation suggest 
that A. vinelandii potentially contributes to rice plants to 
maintain higher level of compatible solute, plant hormones 
and macronutrients, leading to better growth of root and 
shoots and thereby improved tolerance to Cr(VI) stress. We 
observed that the 20% Azotobacter vinelandii-inoculated 
rice plants (T3) have more potency to tolerate the toxicity 
of prolonged 200 µM Cr(VI) stress. Our findings suggest that 
the increased population of Azotobacter vinelandii synthe-
sizes more growth-promoting hormones, stimulates more 
detoxification of ROS and more stabilization of antioxidant 
machinery during stress. These findings are in agreement 
with earlier reports (Bhardwaj et al. 2014).

It can be concluded from the current study that Azoto-
bacter vinelandii due to their enhanced activity of several 
plant growth-promoting mechanisms has the potential to 
boost phytoextraction of heavy metals from contaminated 
soil. Moreover, combining stress alleviator alleviates the 
Cr(VI) inducing oxidative stress by activating antioxidant 
defense system, as evidenced by the decreased accumula-
tion of MDA, reduced H2O2 and less electrolytic leakage. 
In addition, Azotobacter vinelandii inoculation maintains 
the cellular redox homeostasis, thus enabling the growing 
rice plants to cope with better Cr(VI) stress. Furthermore, 
these studies indicate that effectiveness of metal tolerant for 

metal detoxification from soil and improved plant growth in 
metal stress condition could further be enhanced by combin-
ing these bacteria with suitable stress alleviator. Overall this 
study suggests the novel role of Azotobacter vinelandii in 
Cr(VI) stress combating that also increases its importance 
in improving other crops of interest.
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