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Abstract
Electroencephalogram (EEG) signals acquired from brain can provide an effective representation of the human’s physi-

ological and pathological states. Up to now, much work has been conducted to study and analyze the EEG signals, aiming

at spying the current states or the evolution characteristics of the complex brain system. Considering the complex

interactions between different structural and functional brain regions, brain network has received a lot of attention and has

made great progress in brain mechanism research. In addition, characterized by autonomous, multi-layer and diversified

feature extraction, deep learning has provided an effective and feasible solution for solving complex classification prob-

lems in many fields, including brain state research. Both of them show strong ability in EEG signal analysis, but the

combination of these two theories to solve the difficult classification problems based on EEG signals is still in its infancy.

We here review the application of these two theories in EEG signal research, mainly involving brain–computer interface,

neurological disorders and cognitive analysis. Furthermore, we also develop a framework combining recurrence plots and

convolutional neural network to achieve fatigue driving recognition. The results demonstrate that complex networks and

deep learning can effectively implement functional complementarity for better feature extraction and classification,

especially in EEG signal analysis.
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Introduction

Real-world systems evolve over time and present complex

system dynamics. Observing complex systems from dif-

ferent aspects can acquire diverse time-based measure-

ments, namely, time series. Via learning the system

dynamics from these acquired time series, one can better

understand the external system behaviors and then predict

the system accurately. After a long-term development,

observing and characterizing complex systems from the

observed time series has become a major filed of complex

system sciences. Common methods applied into time series

analysis mainly contain complexity theory (Aboy et al.

2006), symbolic theory (Keogh et al. 2003), chaos theory

(Sugihara and May 1990), correlation theory (Podobnik

and Stanley 2008), etc. Each of them specializes in a

specific aspect of the time series and can capture the

exclusive features. However, time series from real-world

systems show obvious transient, nonlinear and non-steady

features. Analysis based on one single point of view is no

longer able to meet demands. To make matters worse, the

complexity of the real-world systems continues to escalate.

Time series analysis methods face enormous burden to

effectively explore complex systems in such a context.

Human brain is recognized as an extremely complex and

fascinating system. Human neocortex of brain contains up

to 1010 neurons, which connect with each other and with

cells in other parts of the brain via about 1012 synapses

(Mountcastle 1997). All of these constitute a huge inter-

connected network, which is closely related to the human
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behaviors and emotions. Many kinds of brain signals have

been obtained and utilized to understand the brain, such as

functional magnetic resonance imaging (fMRI), functional

near-infrared spectroscopy (fNIR), near-infrared spec-

troscopy (NIRS), electroencephalogram (EEG), etc.

Among them, noninvasive EEG is widely used because it is

easy to access, of low cost and has a high temporal reso-

lution (Shih et al. 2012; Kozma et al. 2008; Goshvarpour

and Goshvarpour 2019). EEG records the scalp electrical

signals and can effectively reflect the state of the brain. So

far, a lot of progress related to EEG has been achieved in

the fields of brain–computer interface (BCI), disease

diagnosis, and cognitive analysis. For example, Subasi and

Gursoy (2010) used PCA, ICA, LDA and support vector

machines to predict epileptic seizure from EEG. Sharma

and Pachori (2015) employed phase space representation of

intrinsic mode functions to classify epileptic seizure and

seizure-free EEG. Hassan and Bhuiyan (2016) proposed a

single-channel EEG based method for sleep staging via

complete ensemble empirical mode decomposition. Edel-

man et al. (2016) applied EEG source imaging to separate

the multiple motor imagery tasks of the same hand, which

helped the development of BCI systems with naturalistic

and intuitive motor imaginations. Zhang et al. (2016)

introduced a sparse Bayesian method by exploiting Laplace

priors for EEG-based BCI classification.

Complex network theory has undergone an explosive

growth in recent years (Newman 2003; Wang and Chen

2003; Jalili and Perc 2017; Boers et al. 2019; Donner et al.

2011; Li et al. 2019). Complex system with many inter-

related components can be mapped into a complex net-

work, where nodes represent the components and

meanwhile the edges exactly illustrate the interactions

among components. Plenty of achievements coming from

diverse fields have demonstrated that complex network can

efficiently cope with structural and dynamical problems of

complex systems (Reijneveld et al. 2007; Agarwal et al.

2019; Diykh et al. 2017; Kurths and Agarwal 2019; Ekh-

tiari and Agarwal 2019; Rubinov and Sporns 2010; Gao

et al. 2017, 2018; Li et al. 2018). Ref. Gosak et al. (2018)

reviewed the study of complex biological systems based on

methods of network science. In particular, complex net-

work analysis of time series has been well developed

(Zhang and Small 2006; Gao et al. 2017; Scarsoglio et al.

2017; Gao et al. 2017; Pasten et al. 2018; Gao et al. 2017;

Weng et al. 2017; Nakamura et al. 2016; Rheinwalt et al.

2016). Via mapping the observed time series into a network

framework, one can effectively understand the related

complex system from network science. Obtained network

topology, including the network edge distribution and

community features, exactly mirrors the system charac-

teristics implied in the observed time series. Viewing from

the number of variables, complex network time series

analysis can be divided into two categories. The first class

of methods is the univariate time series complex network

analysis. These methods allow to map one univariate time

series into a complex network. The node can be defined via

the time point (e.g. visibility graph) (Lacasa et al. 2008;

Luque et al. 2009; Gao et al. 2016), or the motif from

specific window (e.g. transition network) (Li et al. 2008;

McCullough et al. 2015, 2017; Zhang et al. 2017), or the

phase space vector (e.g. recurrence network) (Marwan

et al. 2007; Zou et al. 2012; Donner et al. 2010; Riedl

et al. 2015; Ngamga et al. 2016), etc. The other class is the

multivariate time series complex network analysis (Gao

et al. 2017, 2016). Multivariate time series present more

rich information of the observed complex system from

different viewing angles. By comprehensively studying the

correlation between different channels of time series, one

complex network can be built. Functional brain network is

a typical example, where brain electrodes are set as nodes

and edges can be determined via diverse correlation mea-

sures between electrodes. Many other types of complex

network construction and analysis solutions have also been

proposed, and have achieved good results in their respec-

tive research areas. A review of complex network analysis

of time series can be seen in Gao et al. (2016). In addition

to these single-layer network construction and analysis

frameworks, multilayer network analysis has also received

a lot of attention. This is because that real-world systems

show obvious multiple characteristics, namely, the com-

ponents of one complex system often present different

associations from different perspectives. For example, in

the transportation system, cities are connected via the road

traffic and railway traffic with different characteristics. And

in social networks, telephone networks and email networks

within the group also present their own characteristics.

Multilayer network, possessing different or same nodes in

different layers with different types of edges, allows pro-

viding a more intuitive and accurate characterization of

complex systems. Multilayer networks come in different

forms (Gao et al. 2017, 2018; Boccaletti et al. 2014; Wang

et al. 2014; Majhi et al. 2017). The operation of brain is

inseparable from a large number of neurons, which connect

into a large network. Therefore, studying the brain from a

network view represents an effective direction. Actually,

the application of network theory in brain research, i.e.

brain network, has gained a lot of attention and made a lot

of progress. In Ref. Betzel and Bassett (2017), the authors

reviewed the multi-scale analysis of brain network. They

discussed the content related to multi-scale topological

structure, multi-scale temporal structure, and multi-scale

spatial structure.

Machine learning (ML) is a branch of artificial intelli-

gence, which shows great learning efficiency without the

programming needs for specific tasks (Talebi et al. 2018).
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In recent years, as a particular subset of ML methods, deep

learning (Lin and Runger 2018; Bengio et al. 2013; Dang

et al. 2019) has achieved lots of state-of-the-art results in

diverse fields like object detection, speech recognition, and

natural language processing. As the fundamental unit of

deep learning, artificial neurons apply nonlinear transfor-

mation to the linear combination of its inputs, obtaining the

high-level features. Stacking these neurons in different

ways, variety of deep learning frameworks are built to

implement effective feature extraction. Typically, deep

belief network (DBN), convolutional neural network

(CNN), and recurrent neural network (RNN) are three main

frameworks in deep learning methods. DBN consists of a

series of restricted Boltzmann machines (RBM), where the

visible units and hidden units are held. Each RBM learns

the compressed representation by maintaining the input and

output the same as much as possible. In 2006, Hinton et al.

(2006) proposed a layer-by-layer training scheme to handle

the problem of vanishing gradient on DBN, which renewed

the research focusing on deep neural network. Further,

some functional modules, including sparse connections

(Chen et al. 2016) and denoising structures (Vincent et al.

2010), was introduced into DBN. The DBN with these

functional modules can guide the model to receive better

representations of inputs. CNNs have achieved great pro-

gress in various tasks due to their unique structures.

Improved from multilayer perceptron, CNN could extract

local features through the convolution kernels while

lightening the model by the shared parameters. Pooling

layers can summarize the outputs of neighboring groups of

neurons. Adopting these improvements, Krizhevsky et al.

(2017) significantly improved the image recognition

accuracy on ImageNet, showing the powerful abilities of

learning effective features from the large amount of ima-

ges. Further, the networks Inception (Szegedy et al.

2015, 2016) utilized deeper layers and detailed convolu-

tion, reaching excellent performance on the same dataset.

He et al. (2016) proposed the residual learning framework,

where extra paths were provided between some specific

layers, enhancing the information transfer efficiency.

Moreover, the densely connected convolutional blocks

(Huang et al. 2017), connecting all layers with each other,

promotes the interactions between these layers. As for the

analysis of time series, RNN (Hochreiter and Schmidhuber

1997; Raghu et al. 2017) models have attracted great

attentions due to its characteristic of extracting temporal

dependencies. It consists of neurons that analyze both

current input and previous state, which is possible for RNN

to well explore the long dependencies along the temporal

dimension on complex tasks. When solving the problems

of vanishing or exploding gradients by selective adoption

of the previous state, the new structures, long short-term

memory (Hochreiter and Schmidhuber 1997) (LSTM) and

gated recurrent units (Chung et al. 2015) (GRU), perform

better than traditional RNN. Considering the information

from both front and rear units, the bidirectional connection

of RNN (Schuster and Paliwal 1997) ensures more com-

prehensive information fusion. The attention mechanism of

RNN (Du et al. 2017) gives greater weights to the inter-

ested parts, enhancing the performance of RNN.

With the powerful analysis capabilities of complex

networks and deep learning, effective characterization of

brain system from EEG signals can be achieved. However,

it should be mentioned that the advantages of these two

theories are significantly different. Via setting nodes and

defining edges, complex network can map complex rela-

tionships between different brain regions into network

topology. Such mapping is purposeful and interpretable,

allowing to understand and explore the complex dynamics

and behavior of the brain. While deep learning enables to

freely extract and combine diverse classification features,

providing a good direction for the accurate identification of

different brain states. Next, we will discuss the application

of complex networks and deep learning in EEG analysis.

And a framework combining complex network and deep

learning is proposed to achieve driving fatigue recognition.

High performance brain–computer interface
construction

Brain–computer interface (BCI) (Aggarwal and Chugh

2019; Lotte et al. 2007) utilizes the physiological signals

from brain to control the external devices, where the

physiological signals are intentionally induced by the

specific activities of the subject. Widely accepted, BCI is

an effective human–computer interaction technique, with-

out relying on peripheral nerve pathways and muscle tis-

sues. It is of great significance for studying and building

BCI systems, especially for patients with severe dyskinesia

disease. Among the various physiological signals, non-in-

vasive EEG signals have attracted a lot of attention in BCI

system research, mainly due to the fact that EEG signals

have high resolution, are easy to access and inexpensive.

So far, plenty of achievements related to EEG-based BCI

system have been made, especially based on the steady-

state visual evoked potential (SSVEP) (Zhang et al. 2013;

Gao et al. 2018), event-related potential (ERP) (Wang

et al. 2016; Gao et al. 2018), motor imagery (MI), etc.

Typical analysis process of EEG signals in BCI system

mainly contains three parts, namely, preprocessing, feature

extraction and classification. The latter two points are

highly valued in the existing researches. During the feature

extraction, various time domain and frequency domain

methods have been applied, such as fast Fourier transform
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(FFT), autoregressive (AR) model, common spatial pattern

(CSP), etc.

However, multi-channel EEG signals from BCI systems

always present obvious channel coupling and rhythm

dependence. In response to this characteristic, complex

network theory with well complex relationship depicting

ability has been introduced and utilized for EEG signal

analysis. For example, BCI systems show obvious subject

specificity, namely, when using the same BCI system, the

performances of different subjects are obviously different.

For some subjects, individual variations in brain structure

would lead to lower classification accuracy of EEG signals.

Zhang et al. (2013) carried out the SSVEP experiments and

inferred the functional brain networks from the resting-

state EEG signals. The coherence was used to determine

the functional electrode connections. In the SSVEP-based

BCI system, stimulus frequency plays the role of organiz-

ing the rhythms in the brain. They pointed out that resting-

state EEG functional network topological properties were

correlated with the SSVEP responses. Specifically, smaller

clustering coefficient and larger characteristic path length

would correspond to a larger SSVEP classification accu-

racy. This suggested that a less efficient brain state would

facilitate SSVEP generation, providing a quantitative

explanation for the inter-individual differences of SSVEP

responses and BCI performances. Gao et al. (2018) built an

SSVEP-based BCI system to achieve multi-directional

motion control of robots. Figure 1 shows the visual stim-

ulator of the experiments. For the fatigue phenomenon

existing in the operation of BCI, they carried out system-

atic SSVEP experiments to conduct research. In detail, they

utilized a complex network method and found that com-

pared with the fatigue state, SSVEP-related brain network

exhibited more obvious small-world properties under nor-

mal conditions. Quantitatively, for 10 studied subjects, the

area under curve (AUC) of small-world-ness in the normal

states was higher than that in the fatigue states. The results

of two subjects are displayed in Fig. 2, as an illustration. In

addition, different from SSVEP, steady-state motion VEP

(SSMVEP) (Xie et al. 2012) utilizes the motion perception

capabilities of the human visual system. Recently, Gao

et al. (2019) combined limited penetrable visibility graph

(LPVG) and broad learning system (BLS) to classify the

SSMVEP-related EEG signals. The results were signifi-

cantly better than the traditional methods.

P300 is evoked between 300� 800ms from the stimuli

onset, which belongs to endogenous positive ERP and is

widely used to build BCI system. Wang et al. (2016)

designed a multi-channel P300-based BCI system of lying

detection. Figure 3 presented the schematic illustration of

the system and steps involved in this analysis. Focusing on

visual and auditory stimuli, multi-channel EEG signals

corresponding to the guilty group and the innocent group

were firstly acquired, respectively. They set the electrodes

as the nodes, and employed nonlinear statistical interde-

pendency to construct the functional brain network. By

calculating cluster coefficient and characteristic path

length, they found that the guilty group showed more

obvious small-world characteristics. Moreover, by feeding

calculated network measures into SVM, it is found that

brain network analysis can effectively improve the classi-

fication accuracy of the P300-based BCI system, regardless

of visual stimuli or auditory stimuli. Gao et al. (2018)

derived wavelet multiresolution complex network for

decoding brain fatigued behavior during the P300 appli-

cation. They observed the enhancement of the small-

worldness during the cognitive task in fatigue states.

Kabbara et al. (2016) employed phase locking value (PLV)

to infer brain functional connections in a P300 speller and

revealed a clear difference between the case of target and

non-targets visual stimuli.

During actual movement or mental rehearsal of move-

ment (i.e. MI), the intensity of activity in the sensorimotor

areas changes. In a MI-based BCI system, EEG signals can

Fig. 1 The visual stimulator of

the experiment. a The user

interface shown to the subjects.

b Detailed diagram of the user

interface, including the

description of the size,

frequency, and location of the

image. This figure is from Ref.

Gao et al. (2018)
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be collected when subject imagines specific movement,

without the need of actual movement of the limb. Existing

studies have shown that MI-based BCI systems can help

improve cortical reorganization and functional recovery for

disabled patients. For example, Wu (2020) used MI to

assist the rehabilitation of subacute stroke patients. The

results demonstrated that MI can improve the coordination

between the multi-sensory and motor-related cortex and the

extrapyramidal system. Carino-Escobar (2019) conducted

the trend analysis of stroke patients’ cortical activity during

a BCI intervention aimed for hand rehabilitation. They

found that the EEG trends in beta showed a higher asso-

ciation with time since stroke onset, compared to alpha,

and a strong association with upper limb motor recovery.

Moreover, plenty of studies have employed this mechanism

to set up the EEG-based BCI system. For instance,

Pichiorri et al. (2011) built an MI-based BCI system and

introduced functional brain network to explore how the

BCI system affects the brain plasticity. 61 channel scalp

EEG signals were firstly obtained. Then imaginary coher-

ence method was applied to infer the functional brain

network. Global efficiency was calculated to quantitatively

characterize the changes of brain network. They found that

the global efficiency presented a significant decrease dur-

ing the last session of BCI training for part subjects, which

performed goal-directed like grasping. That is, the brain

network configuration tends to organize itself by avoiding

excessively long-distance connections in such a situation.

Demuru et al. (2013) employed phase lag index (PLI) to

infer functional brain networks and studied the brain state

changes between imagery hand movements (both right and

left) and resting state conditions. Particularly, functional

connectivity analysis and minimum spanning tree param-

eters were both used to conduct the quantitative analysis.

Fig. 2 The area under curve

(AUC) of small-world-ness for

2 subjects at five different

flicker frequencies. This

figure is from Ref. Gao et al.

(2018)

Fig. 3 Schematic illustration of

the system and steps involved in

the analysis. This figure is from

Ref. Wang et al. (2016)
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They found that left hemisphere of the brain played a more

relevant role for distinguishing imaginary hand move-

ments. Daly et al. (2012) utilized empirical mode decom-

position phase locking (EMDPL) to construct functional

brain networks at all time-frequency locations. The sig-

nificant differences between tap and no tap trials (or

between left tap and right tap trials) can be characterized

via the mean clustering coefficients. Through introducing

the hidden Markov models (HMMs), they found that the

network based approach achieved higher BCI accuracies

for both executed and imagined taps compared with tra-

ditional band power based features. Stefano et al. (2018)

constructed and analyzed the functional brain networks to

classify MI-based EEG signals. Specifically, they set the

electrodes as nodes and motifs synchronization method was

utilized to infer the edges between nodes. Then five net-

work measures, including strength, clustering coefficient,

characteristic path length, betweenness centrality and

eigenvector centrality, were extracted for MI analysis.

The development of deep learning has received a lot of

attention in diverse fields. So far, many deep learning

frameworks have been proposed and employed for feature

extraction and classification in BCI systems. For instance,

Zhu et al. (2019) combined common space pattern (CSP)

and convolutional neural network (CNN) to extract the

common features of different subjects for building the

training free MI-based BCI systems. Figure 4 shows the

workflow and the pipeline of the analysis model. They first

transformed the original EEG signal into a fixed CSP

space. Then, a separated channel convolutional network

was proposed to capture information from CSP space.

Finally, a recognition block was set to conduct classifica-

tion. The results showed that this model achieved higher

accuracies than classical methods under the training free

condition (or transferring subjects learning). Wang et al.

(2018) utilized long short-term memory (LSTM) to con-

struct classification framework for MI-based BCI system.

One dimension-aggregate approximation (1d-AX) and

channel weighting technique were developed to concisely

represent the EEG signals, which then eased the training of

LSTM network. When applied on the public BCI compe-

tition dataset, they found that the proposed framework can

achieve superior results. Figure 5 showed the prediction

accuracies using EEG data of tow subjects, where the green

column represented the proposed framework. Lawhern

et al. (2018) proposed a compact convolutional neural

network, named EEGNet, for EEG-based BCI system

research. The architecture of EEGNet is displayed in

Fig. 6. Depthwise and separable convolutions were used in

this model. After comparing with some state-of-the-art

approaches, they found that EEGNet generalized across

paradigms better than, and achieved comparably high

performance to, the reference algorithms when only limited

training data was available across all tested paradigms.

Tabar and Halici (2016) developed a novel deep learning

approach to classify the MI signals. Convolutional neural

networks (CNN) and stacked autoencoders (SAE) were

both been considered and utilized. In particular, based on

the short time Fourier transform (STFT), a new form of

input combining the time, frequency and location infor-

mation was set and fed into CNN part. Then, deep SAE

network were built to distinguish the features extracted via

CNN. The related results showed that this method can yield

obvious improvement over the existing algorithms on BCI

competition IV dataset 2b. Zhang et al. (2019) proposed

two neural networks-convolutional neural network and

wavelet neural network-to train the weights and classify

two classes of MI-based EEG signals, where the wavelet

neural network was designed via using wavelets to replace

the convolutional layers. In a recent paper (Sakhavi et al.

2018), by using the filter-bank common spatial patterns

methods, EEG signals were turned into new 250 temporal

representations and a CNN framework was introduced for

motor imagery EEG signal classification. The framework

outperformed the existing results on the BCI competition

IV-2a dataset. Moreover, Zhao et al. (2019) developed a

deep convolutional network (ConvNet) to learn joint space-

time-frequency features of EEG signals for BCI research.

Li et al. (2019) developed a channel-projection mixed-

scale CNN for decoding MI signals. Lee and Choi (2019)

combined wavelet analysis and CNN to classify MI signals,

and achieved some good results on two public BCI data-

sets. More related work can be found in Refs. Uktveris and

Jusas (2017), Lu et al. (2017), Tang et al. (2017), Amin

et al. (2019), Tayeb et al. (2019).

Based on the above information, we can find that

complex network can specifically study the characteristics

of EEG signals under different tasks during BCI, while

deep learning mainly leverages multilayer framework to

extract comparable features. They both provide effective

classification schemes for the construction of BCI systems.

Fig. 4 The workflow and the pipeline of proposed model. This

figure is from Ref. Zhu et al. (2019)
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Brain neurological disorder analysis

Neurological disorders are related to the brain, spine and

the nerves that connect them. They all involve malfunction

or damage to the nervous system. A variety of neurological

disorders severely affect the lives of patients, from infants

to the elderly. So far, many existing work has been con-

ducted from physiological signals to achieve detection and

research of neurological disorders. Easy to access and

harmless EEG signals have received widespread attention

from researchers. Particularly, brain network derived from

multi-channel EEG signals allows providing a data-driven

methodology for understanding the neurological disorders

from the lens of network science.

Epilepsy is a brain disorder corresponding to a patient’s

condition with frequent and spontaneous seizures. When

severe epilepsy seizures, excessively synchronized neural

activity can be detected in the cerebral cortex. Statistics

show that people with epilepsy account for about 1–2% of

the world’s population, and the incidence and prevalence of

epilepsy increases sharply in the elderly population.

Research on epilepsy has important scientific and social

value (Hejazi and Motie Nasrabadi 2019). Diykh et al.

(2017) calculated statistical features to construct feature

vectors and inferred distance-based brain network to clas-

sify epileptic EEG signals. They found that the network

connectivity was significantly stronger in epileptic signals

than in non-epileptic signals. Specifically, modularity,

clustering coefficients, average degree and closeness cen-

trality were all introduced and studied to quantify the brain

network topologies. Eight pairs of combinations of EEG

signals were classified by the proposed method. Figure 7

shows the performance of the proposed method across all

the EEG groups based on the network attributes. The

results demonstrated that brain network-based method can

effectively detect epileptic seizures in EEG signals. Gao

et al. (2017) proposed an adaptive optimal kernel time-

frequency representation-based visibility graph (AOK-VG)

to classify the epileptiform EEG. They firstly calculated the

adaptive optimal kernel time-frequency representation and

then extracted the energy time series from the joint time-

frequency plane. Subsequently, visibility graph and some

network measures were introduced to conduct the classi-

fication. The publicly available datasets provided by

Andrzejak et al. (2001) were analyzed in this work. The

datasets totally have five sub-datasets, corresponding to

Fig. 5 Prediction accuracies

using EEG data of two subjects.

a Subject 1. b Subject 2. This

figure is from Ref. Wang et al.

(2018)

Fig. 6 Overall visualization of

the EEGNet architecture. This

figure is from Ref. Lawhern

et al. (2018)
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normal (A, B), interictal (C, D) and ictal (E) states. The

results showed that AOK-VG method can identify and

classify healthy and epileptic seizure EEG signals (sets A

and E; sets A, B and E) with an accuracy of 100%, and can

classify seizure free interval and seizure EEG signals (sets

C, D and set E) with classification accuracy exceeding

98%. Figure 8 presented the related results. Additionally,

Kinney-Lang et al. (2019) constructed functional brain

network in terms of cross-spectrum based method and

effectively identified the candidate biomarkers of cognitive

impairment in children with early-onset epilepsy. Supriya

et al. (2016) presented a weighted visibility graph for

automatic epilepsy detection.

Alzheimer’s disease (AD), the most common form of

dementia, is a disabling neurodegenerative disorder. In the

early stages, AD mainly presents as a memory problem. As

the disease advances, patients would have symptoms in

terms of language, direction, behavior, etc. In more serious

cases, AD may lead to death (La Foresta et al. 2019).

Franciotti et al. (2019) utilized Granger causality (GC) to

determine the strength and the direction of information

transfer between electrode pairs, namely to infer the brain

network. Based on the quantitative analysis from brain

network view, they found that degree, indegree and out-

degree values were lower in AD-MCI (mild cognitive

impairment due to AD) and ADD (AD patients with mild

dementia) than the control group for non-hubs and hubs

vertices. Clustering coefficient was lower in ADD com-

pared with AD-MCI in the right occipital electrode. Local

and global efficiency values were lower in patients than

control groups. The results denoted that topology of the

brain network is altered in AD patients also in its prodro-

mal stage. de Haan et al. (2009) studied the topological

changes in large-scale functional brain networks of AD

patients via resting-state EEG signals. Figure 9 presented

the analysis framework. 20 patients with mild to moderate

AD and 23 non-demented individuals were investigated.

Synchronization likelihood was employed as a basis to

determine the brain network connections. Some common

network measures were calculated and analyzed, such as

clustering coefficient, characteristic path length and degree

correlation. They found that the large-scale functional

brain network organization in AD deviated from the opti-

mal ‘small-world’ network structure towards a more ‘ran-

dom’ type. Moreover, Fallani et al. (2009) utilized spectral

coherence to quantify the level of the synchronicity

between multi-channel EEG signals and studied the func-

tional brain networks of patients following stroke damage.

Zeng et al. (2015) employed phase lag index (PLI) to

assess the pair-wise synchronization of EEG signals in

different frequency bands for amnestic mild cognitive

impairment patients. Morabito et al. (2015) inferred func-

tional brain network via mutual information to characterize

the progression of AD in individual patients.

In addition to brain network analysis, deep learning has

also been applied to the studies of neurological disorders.

For example, Chen et al. (2019) proposed a CNN-based

deep learning framework to study the attention-deficit/hy-

peractivity disorder (ADHD). The proposed framework can

achieve a good performance with accuracy of 94.7% on the

test data. Particularly, authors also calculated the correla-

tion between the deep features and 13 hand-crafted net-

work measures, aiming at validating what was learned by

the CNN model. The results demonstrated that the CNN

model can effectively capture global and some additional

patterns from the EEG signals of ADHD children. In Phang

et al. (2020), based on the EEG signals, a multi-domain

connectome CNN was proposed for the study of

schizophrenia. The authors adopted a parallel ensemble of

1D and 2D CNNs to integrate the features from various

domains and dimensions using different fusion strategies.

In Acharya et al. (2018), a 13-layer convolutional neural

network was developed for seizure detection, which

achieved a mean accuracy of 88.67%. In an interesting

paper (Golmohammadi et al. 2017), two types of recurrent

units, including long short-term memory (LSTM) and

gated recurrent units (GRU) were compared on the seizure

detection task. The results showed that convolutional

Fig. 7 Classification accuracy

based on network

characteristics. This figure is

from Ref. Diykh et al. (2017)
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LSTM architecture can achieve significantly better per-

formance on the TUH EEG dataset. Its architecture is

shown in Fig. 10. In Ref. Lesmantas and Alzbutas (2020), a

CNN was developed to classify seizures based on a

heterogeneous clinical EEG dataset. In Ref. Gao et al.

(2020), a deep learning-based classification methodology,

namely epileptic EEG signal classification (EESC), was

proposed. The methodology first transformed epileptic

EEG signals to power spectrum density energy diagrams

(PSDEDs), then applied deep CNNs and transfer learning

to automatically extract features from the PSDED, and

finally classified four categories of epileptic states (inter-

ictal, preictal duration to 30 min, preictal duration to 10

min, and seizure). In Truong (2018), a generalized retro-

spective and patient-specific seizure prediction method was

proposed. Three different intracranial and scalp EEG

Fig. 8 a Adaptive optimal kernel time-frequency representations; b Visibility graph; c–e Joint distributions of clustering coefficient entropy and

energy deviation for different sub-datasets. These figures are from Ref. Gao et al. (2017)
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Fig. 9 From EEG recording to

unweighted graph. Multi-step

procedure to obtain normalized

network-derived variables. This

figure is from Ref. de Haan

et al. (2009)

Fig. 10 A deep recurrent convolutional architecture from EEG signal decoding that integrates CNNs and LSTM networks in Ref.

Golmohammadi et al. (2017)

Fig. 11 Convolutional neural

network architecture. This

figure is from Ref. Truong

(2018)
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datasets were used to evaluate the method performance.

Figure 11 shows the CNN architecture applied in this

work. In detail, short-time Fourier transform (STFT) was

first used to translate raw EEG signals into a two-dimen-

sional matrix containing both frequency and time domain

information. Then three convolution blocks and two fully

connected layers were appended to classify preictal and

interictal segments. The results showed that such method

can achieves sensitivity of 81.4%, 81.2%, and 75% on the

Freiburg Hospital intracranial EEG dataset, the Boston

Children’s Hospital-MIT scalp EEG dataset, and the

American Epilepsy Society Seizure Prediction Challenge

dataset, respectively. Oh et al. (2019) developed a CNN-

based detection system for the diagnosis of Schizophrenia

(SZ). Considering that there were significant differences

between the different subjects, they designed two models

for non-subject based testing and subject based testing,

respectively. The results showed that the model generated

classification accuracies of 98.07% and 81.26% for above

two testing, respectively. Golmohammadi et al. (2018)

utilized the TUH EEG Seizure Corpus to evaluate some

hybrid deep learning structures, including convolutional

neural networks and long short-term memory networks.

They demonstrated that the deep learning architectures

integrating the spatial and temporal contexts can deliver

state-of-the-art performances on EEG analysis. More

related work can be found in Refs. Li et al. (2017), Kim

and Jo (2020), Hassan et al. (2019), Salama et al. (2018).

In summary, it can be found that network-based methods

and deep learning frameworks can both achieve good

performance for neurological disorders researches. It is

worth noting that network-based methods tend to quanti-

tatively interpret the topological changes of the brain net-

works from the perspective of network measure analysis,

which then allows to explore the changes of brain with

neurological disorders. While deep learning frameworks

utilize a variety of deep structures to extract some com-

binations of features, which are finally used for classifica-

tion and prediction of neurological disorders.

Brain cognitive analysis

Cognitive processes use existing knowledge to generate

new knowledge. Cognitive analysis is essential for human

beings to understand themselves. Emotion is a cognitive

process. And human beings express different emotions

when facing different scenes. The reflection of emotions in

the brain is a very important research topic at present. So

far, based on the EEG signals, much work has been con-

ducted to understand and further recognize the emotions.

Existing studies showed that listening to music involves

various psychological processes and can specially induce a

variety of emotions (Koelsch 2010). Shahabi and Moghimi

(2016) constructed and studied the effective brain networks

associated with joyful, melancholic, and neutral music.

Directed transfer function (DTF) technique was introduced

to characterize the causal interactions between multi-

channel EEG signals and further inferred the brain net-

work. They studied the correlation of brain network con-

nectivity patterns with the self-reported evaluations of the

musical selections, and found that the perceived valence

was positively correlated with the frontal inter-hemispheric

flow, but negatively correlated with the parietal bilateral

connectivity. In addition, Rotem-Kohavi et al. (2017)

denoted that an infant’s ability to perceive emotional facial

expressions was critical for developing social skills. They

inferred brain network from EEG signals to study the

functional organization of the brain that supports the pro-

cessing of emotional faces in infants. In detail, three net-

work measures, including density, modularity and

clustering coefficient, were calculated. Figure 12 displayed

the group average functional connectivity graphs of the

infant group (top), and the adult group (bottom). Through

analyzing from the global and the regional views, they

found that while the global organization for the emotion

perception was still immature in infancy, the basic func-

tional network organization at the regional level is already

in place early.

In addition, long-term monotonous work, such as driv-

ing, can easily cause mental fatigue (Chen et al. 2018).

This may leads to extremely serious traffic accidents.

Research on brain state during driving fatigue helps to

provide a better physiological basis for solving this prob-

lem. Chen et al. (2018) studied the driver drowsiness using

Fig. 12 Group average functional connectivity graphs of the infant

group (top), and the adult group (bottom), in an axial view, for the

observation of happy and sad facial expressions. This figure is from

Ref. Rotem-Kohavi et al. (2017)
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EEG signals from the view of functional brain network.

General block diagram of the proposed methodology was

shown in Fig. 13. They first utilized wavelet packet

transform (WPT) to decompose the EEG signals into

multiple bands. Then synchronization likelihood (SL) and

minimum spanning tree (MST) were employed to infer and

analyze the functional brain network. Based on the network

features, they found that the difference between alert state

and drowsy state were significant. Four classifiers were

considered for classification of alert state and drowsiness

state. The highest average classification accuracy was

98.6%, obtained by k-nearest neighbors. Dang et al. (2018)

mapped the multi-channel EEG signals to a time-frequency

multilayer network for driving fatigue analysis. The sche-

matic diagram of the method is shown in Fig. 14. Specif-

ically, they first performed continuous wavelet transform

on each electrode of EEG signals. Then mutual information

was employed to infer single-layer brain networks in dif-

ferent frequency bands, which ultimately constituted a

time-frequency multilayer network. Analysis results sug-

gested that a greater synchronization of neural assemblies

was achieved as the brain state changed from alert to

mental fatigue. Zhao et al. (Shih et al. 2012) studied the

changes of brain network topology modulated by mental

fatigue. EEG signals were first acquired from systematic

simulated driving experiments. Then coherence was

introduced to infer functional brain networks in different

EEG bands. In the brain network topology analysis, they

found that clustering coefficient increased in beta, alpha,

and delta bands and characteristic path length increased in

all bands. These suggested that functional network topol-

ogy can shift the network topology structure toward a more

economic but less efficient configuration during mental

fatigue states. Moreover, some other researchers (Dimi-

trakopoulos et al. 2018; Fonseca et al. 2018; Kong et al.

2017; Wang et al. 2018) used diverse methods to construct

functional brain network, aiming at exploring the brain

state during fatigue driving.

Additionally, researchers have also tried to use deep

learning frameworks for cognitive analysis. A hierarchical

convolutional neural network was trained in Li et al.

(2018) with 2D maps generated from differential entropy

features, which was found efficient in emotion recognition

tasks. EEG sequences were converted into 2D graph

matrixes with spectral filtering and then fed into dynamical

graph CNNs, which showed excellent performances for

EEG emotion recognition (Song et al. 2018). Deep belief

networks were introduced with differential entropy features

to construct EEG-based emotion recognition model for

three emotions, whose average accuracy was 86.08% on

the SEED dataset (Zheng and Lu 2015). Note that, The

publicly available SJTU Emotion EEG Dataset (SEED)

dataset, contributed by Duan et al. (2013), focuses on

EEG-based emotion recognition tasks. SEED dataset col-

lects EEG signals from 15 subjects (7 males and 8

females), and contains 3 categories of emotions (positive,

neutral and negative). In a recent paper (Zhang et al. 2019),

a spatial–temporal recurrent neural network (STRNN) was

proposed to integrate the information along the spatial–

temporal dimensions from EEG signals. The final accuracy

for emotion recognition reached 89.5%. This model

employed a quad-directional spatial RNN layer to scan

each temporal slice from different angles, and then stacked

a bi-directional temporal RNN layer on the former layer to

capture long-term temporal dependencies, whose archi-

tecture was shown in Fig. 15. In a more recent paper (Yang

et al. 2018), combining with recurrence quantification

analysis on EEG signals of different frequency bands, a

novel channel-frequency convolutional neural network was

developed to recognize different emotional states, which

provided a high emotion recognition accuracy of 92.24%

with an excellent stability (Kappa value 0.884). Its archi-

tecture is shown in Fig. 16. These studies have proved

the deep learning methods can learn robust representations

from the extracted features of EEG signals on emotion

recognition tasks. In the paper (Gao et al. 2019), a novel

spatial–temporal convolutional neural network (ESTCNN)

was developed to detect driver fatigue through EEG sig-

nals. Firstly, core block was introduced to deal with the

temporal information. The core block consisted of three

convolutional blocks and a pooling layer. Each convolu-

tional block orderly consisted of a 193 convolution, a

rectified linear activation, and a batch normalization. Sec-

ondly, dense layer was employed to extract spatial infor-

mation among the brain electrodes. The model fulfilled a

better classification accuracy of 97.37% than the eight

competitive methods, whose structure is shown in

Fig. 17. Moreover, a detailed survey was presented in Ref.

Schirrmeister et al. (2017), which reviewed how to design
Fig. 13 General block diagram of the proposed methodology. This

figure is from Ref. Chen et al. (2018)
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and train CNNs without handcrafted features for EEG-

based brain mapping. Similar to the previous section of

neurological disorder research, network-based methods and

deep learning frameworks both can use their own

characteristics to achieve EEG-based cognitive analysis,

whether it is to analyze the internal brain mechanism or

improve the accuracy of identification.

Fig. 14 A schematic diagram of

MTFM network analysis

framework for exploring the

system dynamics from

multivariate time series. This

figure is from Ref. Dang et al.

(2018)

Fig. 15 The proposed STRNN framework in Ref. Zhang et al. (2019). The spatial and temporal RNNs are jointly learned to capture vital

information from EEG signals

Fig. 16 The architecture of

channel-frequency

convolutional neural network in

Ref. Yang et al. (2018)

Fig. 17 The structure of

ESTCNN model in Ref. Gao

et al. (2019)
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Conclusion

EEG signals with multiple channels contain a wealth of

information, which directly reflect the state of the brain.

Aiming to effectively study the EEG signals and then

characterize the corresponding brain state, complex net-

works and deep learning have both been developed, with a

variety of forms and variants. In this work, we review the

application of complex networks and deep learning in EEG

signal analysis. According to the existing work, it can be

said that complex network theory can analyze the EEG

signals in a targeted manner. The design of the network

scheme is always specific to the specific research problem.

The connection between the theory and the obtained results

can also be explained. Namely, the analysis process shows

a certain degree of interpretability. For example, in a brain

network, brain electrodes are usually defined as nodes.

However, the ways to determine the edges are varied, and

allow to infer diverse network topologies. When combined

with appropriate network measures (e.g., clustering coef-

ficient, degree, characteristic path length, etc.), one can

effectively reveal the brain mechanisms from various

angles. Interestingly, deep learning uses a layer-by-layer

learning framework to continuously extract feature infor-

mation, which can be then used to distinguish different

states in EEG signals. The feature extraction process is

driven by lots of data. Note that, these features are different

from the network measures mentioned above. They are

often some abstract information, no specific meaning, but

can achieve better classification. In particular, the size of

the data set has a relatively large impact on the effect of

deep learning. Large data sets can often train better models.

With all these in mind, combining complex network

with deep learning may be a valuable research theme. The

combination of targeted and interpretable features (from

brain network) with data driven (i.e. deep learning) would

help to take advantage of both, and then open up new

venues for analysis of EEG signals. In one latest work

(Dang et al. 2020), based on the multi-channel EEG sig-

nals, a frequency-dependent multilayer brain (FDMB)

network, combined with deep convolutional neural net-

work (CNN), was developed to detect the major depressive

disorder (MDD), with state-of-the-art accuracy of 97.27%.

The model architecture is shown in Fig. 18. FDMB net-

work was set as the input of the deep learning part. The

experimental results confirmed that such design can help

deep learning to effectively learn the rich network topology

characteristics hidden in the brain network.

Here an example combining recurrence plots and deep

learning for driving fatigue recognition is also presented.

Figure 19 displays the detailed architecture, named RP-

based spatial-frequency CNN (SFCNN).

For a M-channel EEG signals xk;j
� �L

i¼1
; k ¼ 1; 2; . . .;M

with length L, we firstly divide the raw signals into a

number of epochs with a sliding window without overlap.

And then we filter the signal into four specific frequency

bands (delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta:

14–30 Hz). Next, we reconstruct the phase space from the

signals in each frequency band as following:

xiðtÞ ¼ ðxi;t; xi;tþs; xi;tþðm�1ÞsÞ; t ¼ 1; 2; . . .;N ð1Þ

where m, s represent the dimension and time delay,

respectively. And then we obtain the RP from the phase

space trajectory xi through the following equation:

Ri;j ¼ Hð�� xi � xj
�� ��Þ; i; j ¼ 1; 2; . . .;N ð2Þ

where Hð�Þ is the Heaviside function, � is the threshold

predefined, �k k represents the Euclidean norm, and N is the

number of data points of phase space trajectory. Generally,

� is selected by:

� ¼ 0:15 � r ð3Þ

where r represents the standard deviation of the data. For

quantitatively characterizing the obtained RPs, we conduct

channel-wise RQA on each epoch and calculate the

recurrence rate (RR) (Webber and Zbilut 1994). The

recurrence rate is proposed for quantifying the density of

recurrence points in each RP and can be defined by:

RR ¼ 1

N2

XN

i;j¼1

Ri;j ð4Þ

Finally, for each epoch, we obtain a feature matrix based

on recurrence rate with size 30 � 4 (number of channels �
number of frequency bands), respectively.

Fig. 18 The architecture of the FDMB network and the multilayer

deep CNN, in Ref. Dang et al. 2020
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In the following step, the obtained feature matrices are

fed into the SFCNN, which is constructed to recognize the

category of these feature matrices and is implemented by

the deep-learning library Keras. Generally, CNN is a multi-

layer architecture that consists one or more groups of

convolutional and pooling layers, followed by several

continuous dense layers. Its deep architecture allows to

extract a set of significant features at multiple levels. As

can be seen that the SFCNN consists of four convolutional

layers, one dense layer and one softmax layer, where the

number of filters in the convolutional layers are 16, 32, 64

and 64, respectively. In our model, the first three convo-

lutional layers only move forward in channel dimension for

fusing the spatial information, where the kernel sizes are

set as 3 � 1 with default stride 1. And the last convolu-

tional layer is designed to fuse different frequency features

with the kernel size 1 � 4. All the convolutional layers are

followed by an activation block, which consists of a batch

normalization layer and a rectified linear activation.

Additionally, except for the first activation block, each

activation block is connected to a dropout layer. In the next

level, a flatten operation is conducted to transform the

feature maps into a one-dimensional vector. Then two fully

connected layers with size of 128 and 2, respectively, are

connected to the model following the flatten operation. In

the meanwhile, a softmax layer equipped with the cross-

entropy objective function is applied to produce the prob-

ability for each category. The predicted label is set as the

category corresponding to the maximum probability. Dur-

ing the model training process, the model optimization

process is realized by the Adam optimizer with the learning

rate of 0.001, decay of 10�3, and momentum of 0.8.

Besides, the number of learning iterations is 64 and the

batch size is set as 128.

For testing the performance of above framework, we

conduct our analysis on the dataset from fatigue driving

experiments. The simulation experiments are conducted in

the Laboratory of Complex Networks and Intelligent Sys-

tems at Tianjin University. The experimental system is

consist of a Neuroscan data acquisition device, a driving

simulator, a computer, and a screen. Eight right-handed

volunteers (5 males and 3 females) were recruited to con-

duct the experiments. We define the first 10 min during the

driving task as alert state, and define the last 10 min during

the driving task as fatigue state. EEG signals is recorded at

sampling rate of 1000 Hz. In this work, we apply a one-

second sliding window to divide the raw signal into a

number of epochs. In particular, we downsample the epoch

data to 200 Hz for the sake of computational simplicity

before conducting RQA. Finally, 600 epochs for each

category were obtained from single subject. During the

training, we use 5-fold cross validation method to assess

the performance of our model. For each subject, we select

randomly 80% of all samples as the training set and the

remaining 20% as the testing set. The accuracies from the

RP-based SFCNN model of all subjects are shown in

Fig. 20. As can be seen, the classification accuracies of all

subjects over than 95%. Particularly, Subject.1 and Sub-

ject.6 obtain the accuracies exceeding 99%. On the aver-

age, the accuracy of all subjects is about 97.87%. All the

results indicate that the combination of complex network

and deep learning has a powerful capability to recognize

the driving fatigue. At the same time, this also illustrates

that such combination may be an effective direction for

studying EEG signals. We look forward to more research in

the future to complement complex networks and deep

learning for EEG signal analysis.
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