Skip to main content
. 2021 May 18;11:10478. doi: 10.1038/s41598-021-90032-w

Table 5.

Summary of tuning for each model.

Model MachineShop
Model constructor
Parameters tuned Size of tuning grid
Linear LMModel N/A
Logistic GLMModel N/A
Ridge

GLMNetModel

Alpha = 0

Lambda 5
Elastic Net GLMNetModel

Alpha,

Lambda

25
LASSO

GLMNetModel

Alpha = 1

Lambda 5
Neural Network NNetModel

Size,

Decay

25
SVM Poly SVMPolyModel

C,

Degree,

Scale

125
SVM Radial SVMRadialModel

C,

Sigma

25
MLP N/A

Size,

Maxit,

learnFuncParams

27
Random Forest RandomForestModel Mtry 5
GBRM GBMModel

n.trees,

interaction.depth

25

LASSO: (least absolute shrinkage and selection operator); SVM Poly: support vector machine with a polynomial kernel; SVM Radial; MLP: multi-layer perceptron; LMModel: linear model; GLMModel: generalized linear model; GLMNetModel: generalized linear model with penalized maximum likelihood; NNetModel: feed-forward neural networks; GBMModel: generalized boosted regression; Lambda: regularization parameter; Alpha: elastic net mixing parameter; Size: number of units in the hidden layer(s); Decay: parameter for weight decay; C: cost of constraints violation, regularization term in the Lagrange formulation; Degree: degree of the polynomial kernel function; Scale: scaling parameter of the polynomial kernel; Sigma: inverse kernel width; Maxit: maximum iterations to learn; learnFuncParams: parameters of the learning function; Mtry: number of variables randomly sampled as candidates at each split; n.trees: total number of trees to fit; interaction.depth: maximum depth of variable interactions.