TABLE 1.
Function | References | Software/Platform/Algorithm | AI/ML method | Disease(s) | Classification |
Annotates and prioritizes non-coding regulatory variants | Fu et al., 2014 | FunSeq2 http://funseq2.gersteinlab.org/ | Scoring scheme, using conservation, regulatory, and other measures | Medulloblastoma | Supervised/Unsupervised |
Discover variants associated to specific Mendelian disorders | Smedley et al., 2016 | Genomiser https://hpo.jax.org/app/tools/genomiser | ReMM framework/RF classifier | Beckwith-Wiedemann syndrome (ORPHA:116), beta thalassemia (ORPHA:848), Marie Unna hereditary hypotrichosis (ORPHA:444) | Supervised |
Causal variant analysis and identification | Farh et al., 2015 | PICS | Bayesian approaches | Immune disorders | Supervised |
Predict the effect of regulatory variation | Vuckovic et al., 2020 | Delta SVM http://www.beerlab.org/deltasvm/ | SVM classifier | Blood cell traits | Supervised |
Genes and gene sets prediction | Hou et al., 2017 | GeneMANIA https://genemania.org/ | Fast heuristic algorithm derived from ridge regression | RVF | Supervised/Unsupervised |
miRNA target prediction and functional annotation | miRDB | MirTarget | |||
Detect statistically significant interaction events in Capture HiC data | McMaster et al., 2018 | CHiCAGO (http://regulatorygenomicsgroup.org/chicago) | Convolution background model | Waldenstrom macroglobulinemia | Supervised |
Identifies the precise location of active TREs | Chu et al., 2018 | dREG.HDhttps://github.com/Danko-Lab/dREG.HD | Epsilon SVR with a Gaussian kernel | Human glioblastoma | Supervised |
Genotype/phenotype data analysis | Luzón-Toro, 2015; Glubb et al., 2017; Vijayakrishnan et al., 2017; Moreno-Moral et al., 2018; Cochran et al., 2020 | PLINK (https://zzz.bwh.harvard.edu/plink/) | Linear regression model | EOC, sMTC and PTC, leukemia | Supervised |
miRNA-disease associations | Liu et al., 2019 | NBMDA | Gaussian interaction profile kernel similarity/KNN | Esophageal, breast, and colon neoplasms | Supervised |
Learning and characterization of chromatin states | Bien et al., 2017 | ChromHMM http://compbio.mit.edu/ChromHMM/ | HMM | CRC | Supervised |
Analysis of high-throughput sequencing data (ChIP-seq, RNA-seq, MNase-seq) | Han et al., 2016 | DeepTools https://deeptools.readthedocs.io/en/develop/ | k-means clustering | AML | Unsupervised |
AML, acute myeloid leukemia; CRC, colorectal cancer; eQTL, expression quantitative trait loci; EOC, epithelial ovarian cancer; HMM, Hidden Markov Model; NB, negative binomial; KNN, k-nearest neighborhood, PICS, Probabilistic identification of causal SNPs; PTC, papillary thyroid carcinoma; RF, Random forest; ReMM, Regulatory Mendelian mutation; RVF, Rift valley fever; sMTC, sporadic medullar thyroid carcinoma; SVM, support-vector machine; SVR, support-vector regression.