Skip to main content
. 2021 May 5;8:648012. doi: 10.3389/fmolb.2021.648012

TABLE 1.

List of available AI and ML-based tools used for epigenetic studies in RDs.

Function References Software/Platform/Algorithm AI/ML method Disease(s) Classification
Annotates and prioritizes non-coding regulatory variants Fu et al., 2014 FunSeq2 http://funseq2.gersteinlab.org/ Scoring scheme, using conservation, regulatory, and other measures Medulloblastoma Supervised/Unsupervised
Discover variants associated to specific Mendelian disorders Smedley et al., 2016 Genomiser https://hpo.jax.org/app/tools/genomiser ReMM framework/RF classifier Beckwith-Wiedemann syndrome (ORPHA:116), beta thalassemia (ORPHA:848), Marie Unna hereditary hypotrichosis (ORPHA:444) Supervised
Causal variant analysis and identification Farh et al., 2015 PICS Bayesian approaches Immune disorders Supervised
Predict the effect of regulatory variation Vuckovic et al., 2020 Delta SVM http://www.beerlab.org/deltasvm/ SVM classifier Blood cell traits Supervised
Genes and gene sets prediction Hou et al., 2017 GeneMANIA https://genemania.org/ Fast heuristic algorithm derived from ridge regression RVF Supervised/Unsupervised
miRNA target prediction and functional annotation miRDB MirTarget
Detect statistically significant interaction events in Capture HiC data McMaster et al., 2018 CHiCAGO (http://regulatorygenomicsgroup.org/chicago) Convolution background model Waldenstrom macroglobulinemia Supervised
Identifies the precise location of active TREs Chu et al., 2018 dREG.HDhttps://github.com/Danko-Lab/dREG.HD Epsilon SVR with a Gaussian kernel Human glioblastoma Supervised
Genotype/phenotype data analysis Luzón-Toro, 2015; Glubb et al., 2017; Vijayakrishnan et al., 2017; Moreno-Moral et al., 2018; Cochran et al., 2020 PLINK (https://zzz.bwh.harvard.edu/plink/) Linear regression model EOC, sMTC and PTC, leukemia Supervised
miRNA-disease associations Liu et al., 2019 NBMDA Gaussian interaction profile kernel similarity/KNN Esophageal, breast, and colon neoplasms Supervised
Learning and characterization of chromatin states Bien et al., 2017 ChromHMM http://compbio.mit.edu/ChromHMM/ HMM CRC Supervised
Analysis of high-throughput sequencing data (ChIP-seq, RNA-seq, MNase-seq) Han et al., 2016 DeepTools https://deeptools.readthedocs.io/en/develop/ k-means clustering AML Unsupervised

AML, acute myeloid leukemia; CRC, colorectal cancer; eQTL, expression quantitative trait loci; EOC, epithelial ovarian cancer; HMM, Hidden Markov Model; NB, negative binomial; KNN, k-nearest neighborhood, PICS, Probabilistic identification of causal SNPs; PTC, papillary thyroid carcinoma; RF, Random forest; ReMM, Regulatory Mendelian mutation; RVF, Rift valley fever; sMTC, sporadic medullar thyroid carcinoma; SVM, support-vector machine; SVR, support-vector regression.