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Machine learning (ML) has been widely used in microbiome research for biomarker selection and disease
prediction. By training microbial profiles of samples from patients and healthy controls, ML classifiers
constructs data models by community features that highly correlated with the target diseases, so as to
determine the status of new samples. To clearly understand the host-microbe interaction of specific dis-
eases, previous studies always focused on well-designed cohorts, in which each sample was exactly
labeled by a single status type. However, in fact an individual may be associated with multiple diseases
simultaneously, which introduce additional variations on microbial patterns that interferes the status
detection. More importantly, comorbidities or complications can be missed by regular ML models, limit-
ing the practical application of microbiome techniques. In this review, we summarize the typical ML
approaches of single-label classification for microbiome research, and demonstrate their limitations in
multi-label disease detection using a real dataset. Then we prospect a further step of ML towards
multi-label classification that potentially solves the aforementioned problem, including a series of
promising strategies and key technical issues for applying multi-label classification in microbiome-
based studies.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Comparison of single-label classification and multi-label classification. a. Single-label classification requires a sample has one label (status). b. Multi-label classification
can detect more than one status for each sample.

Table 1
Characteristics of machine learning methods widely used for microbiome-based
disease detection.

ML approach Feature
importance
measurement

Interpretability Package and applicable
programming language

LR Y Excellent Scikit-learn (Python)
[33]

SVM Y Good Scikit-learn (Python),
LibSVM
(Python/R/Java) [34]

k-NN N Weak Scikit-learn (Python)
RF Y Good Scikit-learn (Python)

randomForest (R) [35]
GBDT Y Good Xgboost (Python/R/C+

+) [36,37]
Lightgbm (Python/R/C+
+) [38]
Catboost (Python/R/C+
+) [39]

Neural
Networks

N Weak Tensorflow (Python/
Java) [40]
PyTorch (Python) [41]
Keras (Python) [42]
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1. Introduction

Microbiome analysis characterizes the dynamics of complex
microbial communities, thus provides opportunities to investigate
the associations between microbial profiles and human diseases
[1–3]. Recently years, the scale of publicly-available microbiome
data is increasing intensively due to high-throughput sequencing.
Usually, microbiome features can be surveyed on shallow taxon-
omy by clustering amplicon-based DNA reads into OTUs (Opera-
tional Taxonomic Units) [4,5], or species/strain level taxonomy
and metabolic functions by decoding shotgun metagenomic
sequences [6,7]. Such features (e.g. species, OTU, functions, etc.)
are quantified by either sequence count, or normalized into rela-
tive abundance by sequence proportion. Then machine learning
(ML) algorithms uncover unique patterns of microbiome features
under different statuses, thus promote microbiome-based disease
detection and treatment [8–10]. As an important technique of
machine learning, supervised classification has been widely used
in prediction of inflammatory bowel disease (IBD) [11,12], cancer
[13,14], diabetes [15], gingivitis [16,17] and other diseases based
on human microbiome profiles [18,19]. By constructing classifiers
and models using taxonomical or functional profiles from patients
and their healthy control as training data, ML classifiers determine
the status of new samples. In addition, some ML approaches such
as support vector machines (SVM) [20] and random forest (RF)
[21] can further measure the importance of each feature during
the model training, which can identify microbial biomarkers that
highly contribute to the classification [2,22,23].

To clearly understand the interaction between microbes and
healthy status, previously research cohorts are always well
designed, in which a sample has only one exact label that describes
its healthy status, e.g. a sample is either confident healthy, or asso-
ciated with a definite disease (Fig. 1a). Nevertheless, such strategy
exhibits its limitations in practical and clinical applications, since a
patient may have more than one label (multiple diseases, also
denoted as complications or comorbidities; Fig. 1b). For example,
in American Gut Project [24] cohort, 8297 of 13,545 patients were
marked with at least 2 diseases. In this case, regular classifiers do
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not work well for the prediction could be significantly interfered
by the co-effect and interactions of multiple diseases. More impor-
tantly, since only a single label (e.g. a specific disease) was pre-
sented in the prediction result, comorbidities or complications
were always missed or omitted by single-label ML models [2,22].

In this work, we summarize the typical and classical machine
learning methods for microbiome research, and demonstrate their
limitations in disease recognition using American Gut Project data-
set. Then we prospect a further step to solve the aforementioned
problems by a series of promising strategies on multi-label classi-
fication [25–28]. Finally, we also raise and discuss some key tech-
nical issues in applying multi-label classification into microbiome-
based disease detection.



Table 2
Brief summary of samples labeled with target diseases.

Target
disease

Total number of
disease samples

Number of single-
disease samples

Number of
comorbidities
samples

IBS 2351 1064 1287
Autoimmune 2301 487 1814
Lung disease 2251 1248 1003
Migraine 2109 938 1171
Thyroid 1814 559 1255
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2. Single-label classification in microbiome studies

Microbiome-based disease detection can be considered as a
classification problem using microbial profiles, which are parsed
from DNA sequences by bioinformatics tools such as UPARSE [5],
QIIME/QIIME2 [29,30], Parallel-Meta3 [31], MetaPhlAn2 [6],
HUMANn2 [7], Kraken [32], according to the sequencing method
and type [3]. Given microbiome profiles X ¼ fx1!; � � � ; xn!g for n sam-
ples (xi

! is the microbial profile of a sample that can be represented
by normalized richness of features like species, OTU, function, etc.)
and their corresponding status meta-data (label) Y ¼ fy1; � � � ; yng,
ML classifier solves a function f : X ! Y that maps the profiles to
their meta-data, thus predict the status of a new subject based
on its profile. Usually, the classifier requires each subject has a sin-
gle label (status), which is known as single-label classification.
Here label yi in meta-data Y is a discrete variable that yi 2
fc1; � � � ; cmg, here cj is a status (e.g. a specific disease). Specifically,
when m ¼ 2 (e.g., c1 is healthy and c2 is IBD), the ML works as bin-
ary classifier that only differentiates IBD samples from healthy
ones; When m > 2, it becomes multiple-category classifier that
can determine the disease type of a new sample from multiple dis-
ease categories (Fig. 1a). Here we review the commonly used
single-label classification approaches, including logistic regression,
support vector machine, k nearest neighbors, random forest, gradi-
ent boosting tree and neural networks (Table 1).

Logistic regression (LR) is a typical linear model for binary clas-
sification that utilizes a logistic function to model a binary depen-
dent variable [43]. Basically, it calculates the probability for the
occurrence of a specified event, e.g., a microbiome sample is
healthy or disease. Due to the advantages in efficiency and inter-
pretability, it is commonly used as a benchmark in microbiome-
based disease detection [9,44], although the performance is not
as well as other methods. Different from LR, support vector
machine (SVM) captures non-linear associations of microbiome
profiles and host status to maximize the margin between healthy
and disease samples [20], which achieves much better perfor-
mance than LR. Noteworthy, as binary classifiers, LR and SVM
can also be extended as multi-category classifier, by assigning a
respective classifier for each disease. Another method is k-
nearest neighbors (k-NN), which directly label a new sample by
its k nearest neighbors [45]. One crucial problem of k-NN is how
to appropriately measure the neighborship among microbiomes
[46] by geometry-based distance metrices such as Bray-Curtis,
JSD, JCCARD [47], or phylogeny-based algorithms like UniFrac
[48] or Meta-Storms [49]. Recently, A search-based strategy
employed microbiome search engine (MSE) [50] to separate
unhealthy microbiomes from health ones by outlier novelty score,
and then recognize their detailed disease type via a phylogeny-
distance based k-NN, which outperforms traditional ML implemen-
tations in sensitivity, robustness and speed [51].

To further improve the performance for microbiome disease
detection, ensemble classification approaches are developed by
integrating individual ML methods [52,53]. As an ensemble classi-
fier, random forest (RF) constructs a multitude of decision trees
through random selection of samples and features in training data,
and then combines the predicted status of new samples by voting
[2,8,9,21]. Different from RF, gradient boosting decision tree
(GBDT) assigns a weight to each microbiome sample, builds the
tree-like model in a stage-wise fashion [54,55] and then update
parameters iteratively to minimize estimation errors [56]. Both
RF and GBDT are not only superior to individual ML methods in
precision, but can also evaluate the elucidate the contribution of
each microbial feature for classification [22,23].

In traditional ML, feature extraction from input data is funda-
mental for accuracy and sensitivity, e.g. select out biomarker spe-
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cies that play as signatures during the development of a disease,
while such process always requires artificial efforts [57]. Deep
learning performs feature extraction automatically and trains deep
neural networks in an end-to-end way [58], which can alleviate the
high dimensionality introduced by the complexity of microbial
communities. Neural networks (such as deep neural networks
(DNNs) [59], recurrent neural networks (RNNs) [60], convolutional
neural networks (CNNs) [61], etc.) have been successfully transited
from image analysis to microbiome research. In computer vision,
CNNs make convolution operation for neighboring pixels to gener-
ate new variables. However, neighborship relations between
microbes are not well-defined in a community. Therefore, Sharma
et al. [62] developed a novel method based on CNNs by incorporat-
ing a stratified approach to group OTUs into phylum clusters. Lo
et al. [63] also modeled microbiome profiles with a negative bino-
mial distribution and solved over fitting problem by data augmen-
tation technique in CNNs.
3. Limitations of single-label classification on real microbiome
dataset

To measure the feasibility of single-label classifiers in handling
microbiomes with multiple labels, we performed the disease
detection using a subset of American Gut Project [24] cohort (refer
to Materials and Methods for details). 16S rRNA amplicon micro-
biomes were collected from 3433 healthy hosts as control and
10,826 patients recorded with five target diseases, including Irrita-
ble bowel syndrome (IBS), Autoimmune, Lung disease, Migraine
and Thyroid (Table 2). For each target disease, microbiome samples
were divided into two groups: i) Single Disease group (SD) that
contains controls and samples only with this target disease; ii)
Multiple Disease group (MD) that contains controls and samples
with this target disease and other comorbidities. Controls in each
group were randomly selected from the healthy samples, and the
sample number was set as equal to disease samples. We imple-
mented two ensemble single-label classifiers of RF and GBDT to
detect the target disease using OTU level profiles in each group,
respectively. Performance was evaluated by AUC (Area Under the
receiver operating characteristic Curve) using 5-fold cross-
validation (refer to Materials and Methods for detailed configura-
tions and parameters).

As results shown in Table 3, to detect the target disease in
single-disease group, classifiers trained by SD outperformed those
by MD, mainly due to eliminating additional variations on micro-
biota patterns of comorbidities. On the other side, classifiers
trained by MD was superior to those by SD on multi-disease sam-
ples. Then we further dissected the microbial biomarkers and ML
models between SD and MD that led to such results. A
distribution-free test [64,65] on autoimmune samples showed that
biomarkers selected from SD were shared with MD (Fig. 2; taxon-
omy was annotated on genus level; refer to Materials and Methods
for details). However, the decision tree constructed by GBDT binary
classifier from SD was quite different from that from MD (Fig. 3;
e.g. the structure and interactions between nodes in the MD tree



Table 3
Results of single-label classifiers on target diseases detection.

a. Performance (AUC) on IBS

Testing set SD MD

Training set SD MD SD MD

RF 0.681 ± 0.039 0.661 ± 0.032 0.718 ± 0.025 0.757 ± 0.018
GBDT 0.713 ± 0.025 0.689 ± 0.036 0.731 ± 0.022 0.787 ± 0.015

b. Performance (AUC) on Lung disease

Testing set SD MD

Training set SD MD SD MD

RF 0.671 ±0.28 0.538 ±0.023 0.618 ±0.024 0.727 ±0.025
GBDT 0.659 ±0.017 0.571 ±0.021 0.614 ±0.006 0.754 ±0.019

c. Performance (AUC) on Migraine

Testing set SD MD

Training set SD MD SD MD

RF 0.686 ±0.018 0.619 ± 0.021 0.670 ± 0.021 0.749 ± 0.017
GBDT 0.682 ± 0.019 0.642 ± 0.015 0.656 ± 0.018 0.764 ± 0.017

d. Performance (AUC) on Thyroid

Testing set SD MD

Training set SD MD SD MD

RF 0.714 ± 0.021 0.683 ± 0.017 0.755 ± 0.032 0.769 ± 0.032
GBDT 0.728 ± 0.026 0.700 ± 0.025 0.764 ± 0.024 0.794 ± 0.024
e. Performance (AUC) on Autoimmune

Testing set SD MD

Training set SD MD SD MD

RF 0.664 ± 0.05 0.650 ± 0.036 0.715 ± 0.039 0.776 ± 0.035
GBDT 0.689 ± 0.041 0.665 ± 0.031 0.741 ± 0.022 0.790 ± 0.041

Fig. 2. Microbial biomarkers of autoimmune selected from SD and MD by distribution-free independence test.
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Fig. 3. Decision tree of GBDT binary classifier constructed from SD (A) was less complicated than that from MD (B). In each tree internal nodes represent taxa on genus-level,
leaf nodes represent labels, and branch weights represent criteria for decision.
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were more complicated), implying the variation of microbial inter-
actions between single disease and multiple disease. Therefore,
influences of comorbidities on microbiota should be considered
for ML model design and construction in practical cases. Notably,
although the precision on target disease detection can be opti-
mized, neither of the single-label ML classifier is able to detect
the comorbidities or complications beyond the target disease.
4. Multi-label classification: one step forward of machine
learning for microbiome

Different from single-label ML classifiers (Fig. 1a), multi-label
classification allows each sample to have more than one status (la-
bel; Fig. 1b). It is natural to introduce multi-label classification into
microbiome-based disease detection for a sample (patient) may
have multiple labels (comorbidities or complications). Here we
introduce two schemes for multi-label classification: algorithm
adaption and problem transformation [27].
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Algorithm adaptation processes multi-label data by directly
modifying single-label classifiers. For example, ML-kNN (multi-
label k-nearest neighbors) combines the k-NN and Bayesian rule
to determine the label set of a new sample [66]. Another example
is a decision tree algorithm named C4.5 [67] that makes leaves rep-
resent a set of labels and modifying entropy-like function [68] for
multi-label classification. Recently, a new ML-DT (Multi-Label
Decision Tree) algorithm has been developed based on the non-
parametric predictive inference model on multinomial data, which
achieves a robust performance using precise probabilities [69].

Problem transformation, as the name suggests, transforms the
multi-label problem into single-label ones by binary relevance, cal-
ibrated label ranking or class chains. Binary relevance bases on a
one-against-all strategy that converts m (m > 1) labels into sepa-
rate m binary classification problems, and determines each label
by a binary classifier. Although it provides a simple and efficient
solution, binary relevance ignores the possible correlations
between labels thus leads to erroneous results [70]. To tackle such



Fig. 4. Three key technical issues in multi-label classification. a. Too many labels in training data leads to unexpected high computational cost. b. Missed label reduces the
detection sensitivity. c. Ambiguous label introduces false positive results.
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disadvantage, calibrated label ranking transforms m-label classifi-
cation into label ranking problem [71] by considering the relevance
in pairwise labels and constructs m * (m � 1)/2 binary classifiers.
Hence, each label is voted by m-1 binary classifiers. Additionally,
voting probabilities of m-1 binary classifiers can be utilized as fea-
tures to train a new binary classifier to further improve the perfor-
mance. Furthermore, one label may depend on some other labels,
e.g. diagnosis and treatment of cardiovascular disease has been
linked with those of IBD [72]. In this condition, class chains [73]
that treats dependent labels as features of binary classifiers will
be an ideal option.
5. Key technical issues of multi-label classification for
microbiome-based disease detection

Well-established multi-label classification methods also exhibit
shortages in processing microbiome datasets due to the high data
complexity, data heterogeneity and microbe-disease interaction. In
the past years, hundreds of microbiome-diseases interactions have
been studied and reported, e.g. Disbiome database [74] collected
10,934 experimentally verified microbe-disease associations
between 372 diseases and 1622 microbes. A general challenge is
that such a large number of labels can lead to unexpected high
computational cost (Fig. 4a). For example, to train a 100-label clas-
sification model (a sample has more than one disease from a total
number of 100 diseases), binary relevance approach needs 100 bin-
ary classifiers, and calibrated label ranking requires up to 4950
classifiers. Recently, embedding methods such as SLEEC (Sparse
Local Embeddings for Extreme Classification) algorithm [75] are
proposed for many-label challenge. It projects labels into lower
dimension-space vectors, constructs a regression for each label,
and decodes the predicted labels via compressed techniques. To
fit large-scale datasets, SLEEC uses unsupervised k-means algo-
rithm to partition training data into several smaller subsets before
the projection step. However, due to omitting the label informa-
tion, the pre-partition may affect the quality of afterward projec-
tion. Therefore, embedding methods are further improved by
incorporating feature vectors and label information using graph
embedding algorithm [76] and an adaptive feature agglomeration
technique like DEFRAG (aDaptive Extreme FeatuRe AGglomera-
tion) [77].

Label missing is another common problem in multi-label classi-
fication (Fig. 4b). It is possible that in the American Gut Project
cohort, some multi-disease samples were incorrectly grouped in
SD for inadequate clinical examinations, making a ‘Negative’ or
‘Not provided’ record for some diseases in meta-data. Such label
missing may also occur in multi-label classification result due to
the low sensitivity when detecting multiple statuses at the same
time. Here we introduce two alternatives including graph-based
method and low-rank method to improve the sensitivity. The for-
mer one, graph-based method, estimates the comprehensive labels
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derived from label-specific graph [78] or label vectors [79]. The
later one, low rank method, formulates multi-label learning as a
matrix completion problem that contains side information [80],
which can be estimated by empirical risk minimization framework
[81] to avoid label missing.

In real-world scenarios, it is possible that the diseases meta-
data is based on hosts’ personal experience or other unreliable con-
clusions without clinical diagnosis or confirmation from medical
professionals. Such ambiguous labels in training data (Fig. 4c)
may introduce false positive results. Partial multi-label approaches
can eliminate errors caused by ambiguous or erroneous labels,
mainly by maintaining a confidence value for each candidate label
[82]. Based on how to calculate the confidence value, partial multi-
label approaches are generally divided into two types, two-stage
method and end-to-end learning method. Two-stage method esti-
mates the confidence of candidate labels for each sample by itera-
tive label propagation, and then train multi-label classifiers using
credible labels with high confidence [83]. This straightforward con-
cept however can be error-prone due to insufficient disambigua-
tion. Different from separating confidence estimation and
classifier construction as two stages, the end-to-end method treats
confidence values as weights of model training functions
[82,84,85] and enhance label disambiguation by combining two
stages into a unified framework.
6. Conclusion and discussion

In this work, we reviewed typical single-label machine learning
methods in microbiome research. While such ML approaches can
help in interpreting the pattern of microbiome-disease linkages
and predicting the status for newly sequenced samples, a signifi-
cant limitation is raised, mainly in handling multi-label problems
that a single microbiome can be associated with several different
healthy conditions. Hence, we prospect one step forward of ML
in microbiome filed towards multi-label classification that pro-
vides promising opportunities to tackle such limitation in research
and application.

Another concern is that interactions among microbes has not
been effectively considered by ML classifiers. Although biomarker
fractions from single disease and comorbidities were similar
(Fig. 1), their hierarchies in the GBDT decision tree are highly
diverse (Fig. 2), probably directed by different interactions
between microbes. Recently, co-occurrence or correlation among
microbes have been widely studied in various ecosystems [86–
89], which survey microbe-microbe interactions from biological
aspect. Nevertheless, how to efficiently and effectively integrate
such biological information into ML classifiers is still an opening
problem for further work [22,90].

Few studies concentrated on the interpretability of ML model in
microbiome studies, however it is meaningful to explain the dis-
ease prediction results. Among single-label classification methods,
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logistic regression has the best interpretability and the lowest per-
formance, while NNs are on the opposite side. Although RF and
GBDT also output feature importance, the calculation are too rough
for further causal interpretation. Advanced statistical methods
such as single index model that combines flexibility of modeling
with interpretability of (linear) coefficients [91,92] may provide a
potential solution for balancing the interpretability and perfor-
mance. Meanwhile, host heterogeneity on age, gender, diet, life
style and other factors [93], as well as the sparsity, variance, and
high-dimensionality [94] of microbiome data can also confound
the disease detection and interpretation, which should be evalu-
ated and considered in experiment design and ML analysis.
7. Materials and methods

7.1. Experiment design and datasets

The American Gut Project cohort contains 29,344 subjects
including 15,799 healthy controls and 13,545 patients. The disease
statuses of each subject were obtained from the original question-
naire -based meta-data that consists of information in diet, health
status and hygiene. 16S rRNA OTU profiles of gut microbiomes (by
close-OTU-picking) were download from Qiita [95], and taxonomy
annotation on genus level was parsed by GreenGenes 13-8 data-
base [96] using Parallel-META 3 [31]. The relative abundance on
OTU and genus level was directly calculated by sequence count,
and then normalized by 16S rRNA gene copy number from PICRUSt
2 [97]. We also drop subjects without microbiome samples.

A subject was treated either as a patient if recorded as ‘Diag-
nosed by a medical professional (doctor, physician assistant)’ for
a specified disease in the meta-data, or as healthy if marked as ‘I
do not have this condition’ for all diseases. Finally, we collected
data of 3433 healthy samples and 10,826 patients. For each target
disease, microbiome samples were selected and divided into two
groups: Single Disease group (SD) contains controls and samples
only with the target disease; Multiple Disease group (MD) contains
controls and samples with the target disease and other comorbidi-
ties. Controls samples in each group were randomly selected from
the 3,433 healthy samples, and the sample number was set as
equal to disease samples.

For each target disease we performed two experiments. First,
we assessed the ML classifiers in distinguishing disease samples
and healthy controls in SD group. Classifier models were con-
structed by SD group and MD group. Specifically, 5-fold cross-
validation was employed when detecting SD samples by models
trained from SD group (in which 80% of the samples were ran-
domly selected as the training set for model construction and the
remaining 20% were the testing set for validation). Meanwhile, in
each of the 5 folds we also randomly select the same number of
samples from MD group to train another model for target disease
detection in the identical SD testing set. AUCs of the SD-trained
model and MD-trained model were recorded for comparison. Sec-
ondly, we then assessed the ML classifiers in detecting MD group,
and models were also constructed by SD group and MD group in
the previous procedure.
7.2. Machine learning methods and biomarker selection

Two popular ensemble single-label classification methods, ran-
dom forest and GBDT were employed to construct single-label
classifiers. Random forest was implemented by ‘scikit-learn’ pack-
age in python, the ‘number of trees’ is set as 500, while other
parameters were kept as default configuration. GBDT was imple-
mented by ‘lightgbm’ package in python with parameters of ‘learn-
ing rate’ = 0.02, ‘maximum tree depth’=6, ‘number of boosted
2748
trees’ = 1000, ‘maximum tree leaves’ = 64, ‘subsample ratio’=0.8
and ‘colsample_bytree’=0.8. Biomarkers analysis was performed
by distribution-free test (‘mvtpy’ package in python) on genus-
level abundance between disease and control samples, and the
top 10 taxa on the test statistic with p-value < 0.01were selected
out as biomarkers.

7.3. Code and data availability

All datasets and code in this work are available at https://
github.com/BruceQD/Microbiome-based-disease-detection. All
other relevant data is available upon request.
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[9] Topçuoğlu BD et al. A framework for effective application of machine learning
to microbiome-based classification problems. Mbio 2020;11(3).

[10] Cammarota G et al. Gut microbiome, big data and machine learning to
promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol 2020.

[11] Gevers D et al. The treatment-naive microbiome in new-onset Crohn’s disease.
Cell Host Microbe 2014;15(3):382–92.

[12] Halfvarson J et al. Dynamics of the human gut microbiome in inflammatory
bowel disease. Nat Microbiol 2017;2:17004.

[13] Wirbel J et al. Meta-analysis of fecal metagenomes reveals global microbial
signatures that are specific for colorectal cancer. Nat Med 2019;25(4):679.

[14] Poore GD et al. Microbiome analyses of blood and tissues suggest cancer
diagnostic approach. Nature 2020;579(7800):567–74.

[15] Bajaj JS et al. Linkage of gut microbiome with cognition in hepatic
encephalopathy. Am J Physiol Gastrointest Liver Physiol 2012;302(1):
G168–75.

[16] Huang S et al. Predictive modeling of gingivitis severity and susceptibility via
oral microbiota. ISME J 2014;8(9):1768–80.

[17] Huang S et al. Longitudinal multi-omics and microbiome meta-analysis
identify an asymptomatic gingival state that links gingivitis, periodontitis,
and aging. mBio 2021;12(2).

[18] Duvallet C et al. Meta-analysis of gut microbiome studies identifies disease-
specific and shared responses. Nat Commun 2017;8(1):1784.

https://github.com/BruceQD/Microbiome-based-disease-detection
https://github.com/BruceQD/Microbiome-based-disease-detection
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0005
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0005
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0010
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0010
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0015
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0015
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0020
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0020
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0025
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0025
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0030
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0030
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0035
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0035
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0040
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0040
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0045
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0045
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0050
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0050
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0055
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0055
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0060
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0060
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0065
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0065
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0070
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0070
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0075
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0075
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0075
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0080
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0080
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0085
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0085
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0085
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0090
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0090


S. Wu, Y. Chen, Z. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 2742–2749
[19] Vangay P, Hillmann BM, Knights D. Microbiome Learning Repo (ML Repo): a
public repository of microbiome regression and classification tasks.
GigaScience 2019;8(5).

[20] Cortes C, Vapnik V. Support-vector networks. Machine Learn 1995;20
(3):273–97.

[21] Breiman L. Random forests. Machine Learn 2001;45(1):5–32.
[22] Duvallet C et al. Meta-analysis of gut microbiome studies identifies disease-

specific and shared responses. Nat Commun 2017;8(1):1–10.
[23] Pasolli E et al. Machine learning meta-analysis of large metagenomic datasets:

tools and biological insights. PLoS Comput Biol 2016;12(7):e1004977.
[24] McDonald D et al. American Gut: an open platform for citizen science

microbiome research. Msystems 2018;3(3):e00031–e118.
[25] Liu, W., et al., The Emerging Trends of Multi-Label Learning. arXiv preprint

arXiv:2011.11197; 2020.
[26] Tsoumakas G, Katakis I. Multi-label classification: an overview. Int J Data

Warehous Min (IJDWM) 2007;3(3):1–13.
[27] Zhang M-L, Zhou Z-H. A review on multi-label learning algorithms. IEEE Trans

Knowl Data Eng 2013;26(8):1819–37.
[28] Gibaja E, Ventura S. Multi-label learning: a review of the state of the art and

ongoing research. Wiley Interdiscip Rev: Data Min Knowledge Disc 2014;4
(6):411–44.

[29] Caporaso JG et al. QIIME allows analysis of high-throughput community
sequencing data. Nat Methods 2010;7(5):335–6.

[30] Bolyen E et al. Reproducible, interactive, scalable and extensible microbiome
data science using QIIME 2. Nat Biotechnol 2019;37(8):852–7.

[31] Jing G et al. Parallel-META 3: comprehensive taxonomical and functional
analysis platform for efficient comparison of microbial communities. Sci Rep
2017;7(1):1–11.

[32] Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biol 2014;15(3):R46.

[33] Pedregosa F et al. Scikit-learn: machine learning in Python. J Mach Learn Res
2011;12:2825–30.

[34] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans
Intell Syst Technol (TIST) 2011;2(3):1–27.

[35] RColorBrewer S, Liaw MA. Package ‘randomForest’. Berkeley, CA,
USA: University of California, Berkeley; 2018.

[36] Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and
data mining, 2016.

[37] Chen, T., et al., Xgboost: extreme gradient boosting. R package version 0.4-2,
2015: p. 1–4.

[38] Ke G, et al. Lightgbm: A highly efficient gradient boosting decision tree. in
Advances in neural information processing systems; 2017.

[39] Prokhorenkova L, et al. CatBoost: unbiased boosting with categorical features.
in Advances in neural information processing systems. 2018.

[40] Abadi M, et al. Tensorflow: A system for large-scale machine learning. in 12th
{USENIX} symposium on operating systems design and implementation
({OSDI} 16); 2016.

[41] Paszke A, et al., Pytorch: An imperative style, high-performance deep learning
library. arXiv preprint arXiv:1912.01703, 2019.

[42] Ketkar N. Introduction to keras. In: Deep learning with Python. Springer; 2017.
p. 97–111.

[43] Kleinbaum DG, et al., Logistic regression. 2002: Springer.
[44] Song K, Wright F, Zhou Y-H. Systematic comparisons for composition profiles,

taxonomic levels, and machine learning methods for microbiome-based
disease prediction. Front Mol Biosci 2020;7:423.

[45] Peterson LE. K-nearest neighbor. Scholarpedia 2009;4(2):1883.
[46] Comin M et al. Comparison of microbiome samples: methods and

computational challenges. Brief Bioinform 2020.
[47] Ricotta C, Podani J. On some properties of the Bray-Curtis dissimilarity and

their ecological meaning. Ecol Complexity 2017;31:201–5.
[48] McDonald D et al. Striped UniFrac: enabling microbiome analysis at

unprecedented scale. Nat Methods 2018;15(11):847–8.
[49] Jing G et al. Dynamic Meta-Storms enables comprehensive taxonomic and

phylogenetic comparison of shotgun metagenomes at the species level.
Bioinformatics 2019.

[50] Jing G et al. Microbiome search engine 2: a Platform for taxonomic and
functional search of global microbiomes on the whole-microbiome level.
mSystems 2021;6(1).

[51] Su X et al. Multiple-disease detection and classification across cohorts via
microbiome search. Msystems 2020;5(2).

[52] Zhou, Z.-H., Ensemble Learning. Encyclopedia of biometrics, 2009. 1: p. 270–3.
[53] Polikar R. Ensemble learning. In: Ensemble machine learning. Springer; 2012.

p. 1–34.
[54] Friedman JH. Greedy function approximation: a gradient boosting machine.

Ann Stat 2001:1189–232.
[55] Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002;38

(4):367–78.
[56] Ruder, S., An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.
[57] Pouyanfar S et al. A survey on deep learning: algorithms, techniques, and

applications. ACM Comput Surveys (CSUR) 2018;51(5):1–36.
[58] Glasmachers T. Limits of End-to-End Learning, in Proceedings of the Ninth

Asian Conference on Machine Learning, Z. Min-Ling and N. Yung-Kyun, Editors.
2017, PMLR: Proceedings of Machine Learning Research. p. 17–32.
2749
[59] Deng Y et al. A hierarchical fused fuzzy deep neural network for data
classification. IEEE Trans Fuzzy Syst 2016;25(4):1006–12.

[60] Mou L, Ghamisi P, Zhu XX. Deep recurrent neural networks for hyperspectral
image classification. IEEE Trans Geosci Remote Sens 2017;55(7):3639–55.

[61] Gu J et al. Recent advances in convolutional neural networks. Pattern Recogn
2018;77:354–77.

[62] Sharma D, Paterson AD, Xu W. TaxoNN: ensemble of neural networks on
stratified microbiome data for disease prediction. Bioinformatics 2020.

[63] Lo C, Marculescu R. MetaNN: accurate classification of host phenotypes from
metagenomic data using neural networks. BMC Bioinf 2019;20(12):314.

[64] Cui H, Zhong W. A distribution-free test of independence based on mean
variance index. Comput Stat Data Anal 2019;139:117–33.

[65] Cui H, Li R, Zhong W. Model-free feature screening for ultrahigh dimensional
discriminant analysis. J Am Stat Assoc 2015;110(510):630–41.

[66] Zhang M-L, Zhou Z-H. ML-KNN: A lazy learning approach to multi-label
learning. Pattern Recogn 2007;40(7):2038–48.

[67] Quinlan JR. C4. 5: programs for machine learning. 2014: Elsevier.
[68] Clare A, King RD. Knowledge discovery in multi-label phenotype data.

European conference on principles of data mining and knowledge
discovery. Springer; 2001.

[69] Moral-García S et al. Non-parametric predictive inference for solving multi-
label classification. Appl Soft Comput 2020;88:106011.

[70] Zhang M-L et al. Binary relevance for multi-label learning: an overview. Front
Comp Sci 2018;12(2):191–202.

[71] Dery, L., Multi-label Ranking: Mining Multi-label and Label Ranking Data.
arXiv preprint arXiv:2101.00583, 2021.

[72] Argollo M et al. Comorbidities in inflammatory bowel disease: a call for action.
Lancet Gastroenterol Hepatol 2019;4(8):643–54.

[73] Read J et al. Classifier chains for multi-label classification. Machine Learn
2011;85(3):333.

[74] Janssens Y et al. Disbiome database: linking the microbiome to disease. BMC
Microbiol 2018;18(1):1–6.

[75] Bhatia, K., et al. Sparse Local Embeddings for Extreme Multi-label
Classification. in NIPS. 2015.

[76] Tagami, Annexml Y. Approximate nearest neighbor search for extreme multi-
label classification. Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, 2017.

[77] Jalan A, Kar P. Accelerating extreme classification via adaptive feature
agglomeration. arXiv preprint arXiv:1905.11769; 2019.

[78] Sun Y-Y, Zhang Y, Zhou Z-H. Multi-label learning with weak label. Proceedings
of the AAAI Conference on Artificial Intelligence, 2010.

[79] Wu B et al. Multi-label learning with missing labels. 22nd International
Conference on Pattern Recognition. IEEE; 2014.

[80] Xu M, Jin R, Zhou Z-H. Speedup matrix completion with side information:
Application to multi-label learning. In: Advances in neural information
processing systems. 2013.

[81] Yu H-F, et al. Large-scale multi-label learning with missing labels. in
International conference on machine learning; 2014. PMLR.

[82] Xie M-K, Huang S-J. Partial multi-label learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 2018.

[83] Fang J-P, Zhang M-L. Partial multi-label learning via credible label elicitation.
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[84] He S et al. Discriminatively relabel for partial multi-label learning. IEEE
International Conference on Data Mining (ICDM). IEEE; 2019.

[85] Yu G et al. Feature-induced partial multi-label learning. 2018 IEEE
International Conference on Data Mining (ICDM). IEEE; 2018.

[86] Friedman J, Alm EJ. Inferring correlation networks from genomic survey data.
PLoS Comput Biol 2012;8(9):e1002687.

[87] Faust K et al. Microbial co-occurrence relationships in the human microbiome.
PLoS comput biol 2012;8(7):e1002606.

[88] Kurtz ZD et al. Sparse and compositionally robust inference of microbial
ecological networks. PLoS Comput Biol 2015;11(5):e1004226.

[89] Wu G et al. Guild-based analysis for understanding gut microbiome in human
health and diseases. Genome Med 2021;13(1):22.

[90] Jackson MA et al. Gut microbiota associations with common diseases and
prescription medications in a population-based cohort. Nat Commun 2018;9
(1):1–8.

[91] Liang H et al. Estimation and testing for partially linear single-index models.
Ann Stat 2010;38(6):3811.

[92] Yang Y, Tong T, Li G. SIMEX estimation for single-index model with covariate
measurement error. AStA Adv Statist Anal 2019;103(1):137–61.

[93] Vujkovic-Cvijin I et al. Host variables confound gut microbiota studies of
human disease. Nature 2020;587(7834):448–54.

[94] Xu LZ et al. Assessment and selection of competing models for zero-inflated
microbiome data. PLoS ONE 2015;10(7).

[95] Gonzalez A et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat
Methods 2018;15(10):796–8.

[96] McDonald D et al. An improved Greengenes taxonomy with explicit ranks for
ecological and evolutionary analyses of bacteria and archaea. ISME J 2012;6
(3):610–8.

[97] Douglas GM et al. PICRUSt2 for prediction of metagenome functions. Nat
Biotechnol 2020;38(6):685–8.

http://refhub.elsevier.com/S2001-0370(21)00166-5/h0095
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0095
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0095
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0100
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0100
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0105
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0110
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0110
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0115
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0115
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0120
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0120
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0130
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0130
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0135
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0135
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0140
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0140
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0140
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0145
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0145
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0150
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0150
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0155
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0155
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0155
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0160
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0160
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0165
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0165
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0170
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0170
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0175
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0175
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0180
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0180
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0180
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0210
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0210
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0220
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0220
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0220
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0225
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0230
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0230
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0235
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0235
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0240
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0240
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0245
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0245
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0245
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0250
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0250
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0250
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0255
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0255
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0265
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0265
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0270
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0270
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0275
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0275
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0285
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0285
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0295
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0295
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0300
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0300
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0305
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0305
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0310
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0310
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0315
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0315
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0320
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0320
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0325
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0325
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0330
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0330
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0340
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0340
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0340
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0345
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0345
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0350
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0350
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0360
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0360
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0365
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0365
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0370
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0370
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0380
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0380
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0380
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0390
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0390
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0395
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0395
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0410
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0410
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0415
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0415
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0420
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0420
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0425
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0425
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0430
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0430
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0435
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0435
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0440
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0440
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0445
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0445
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0450
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0450
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0450
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0455
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0455
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0460
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0460
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0465
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0465
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0470
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0470
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0475
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0475
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0480
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0480
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0480
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0485
http://refhub.elsevier.com/S2001-0370(21)00166-5/h0485

	Towards multi-label classification: Next step of machine learning for microbiome research
	1 Introduction
	2 Single-label classification in microbiome studies
	3 Limitations of single-label classification on real microbiome dataset
	4 Multi-label classification: one step forward of machine learning for microbiome
	5 Key technical issues of multi-label classification for microbiome-based disease detection
	6 Conclusion and discussion
	7 Materials and methods
	7.1 Experiment design and datasets
	7.2 Machine learning methods and biomarker selection
	7.3 Code and data availability

	8 Author statement
	Declaration of Competing Interest
	Acknowledgements
	References


