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Abstract

The number of secondary cases is an important parameter for the control of infec-

tious diseases. When individual variation in disease transmission is present, like for

COVID-19, the number of secondary cases is often modelled using a negative bino-

mial distribution. However, this may not be the best distribution to describe the

underlying transmission process. We propose the use of three other offspring distri-

butions to quantify heterogeneity in transmission, and we assess the possible bias

in estimates of the offspring mean and its overdispersion when the data generating

distribution is different from the one used for inference. We find that overdisper-
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sion estimates may be biased when there is a substantial amount of heterogeneity,

and that the use of other distributions besides the negative binomial should be con-

sidered. We revisit three previously analysed COVID-19 datasets and quantify the

proportion of cases responsible for 80% of transmission, p80%, while acknowledging

the variation arising from the assumed offspring distribution. We find that the num-

ber of secondary cases for these datasets is better described by a Poisson-lognormal

distribution.

Introduction

For any communicable disease, the basic reproduction number, R0, denotes the aver-

age number of secondary cases a single infected individual generates in a completely

susceptible population [1, 2]. The basic reproduction number is considered to be of

constant value among population members or specific population groups. However, for

person-to-person transmitted infections, a complex combination of host, pathogen, and

environmental factors defines the transmission potential of an infected individual, i.e. the

number of other individuals a case infects during their infectious period [3, 4]. It has

been shown that, for a given R0, both the probability that an epidemic will occur and the

subsequent course of the epidemic are affected by individual variation in transmission [3].

Variation in disease transmission may raise the existence of ‘superspreaders’ who infect

substantially more individuals than others. When superspreading plays an important role

during the epidemic, a relatively small part of infected cases will be responsible for most

of the transmission, while many cases do not transmit the disease at all. Furthermore,

when variation in disease transmission is present, large outbreaks can occur even if R0

is less than one. To account for this heterogeneity, the individual number of secondary

cases can be described by a random variable, whereas R0 represents the expected value

for an entire susceptible population.

The transmission potential of infected individuals can be defined as a combination of

their biological infectiousness (i.e. viral shedding) and their contact behaviour [5]. It is

reasonable to assume that individuals with a higher viral shedding will be more likely to

transmit the infection given a contact. In addition, for a fixed level of viral shedding,

infectious individuals with a higher contact rate will be more likely to generate secondary

cases. Regarding SARS-CoV-2, significant individual variation in viral shedding has been

reported [6] and it has been argued that small aerosols exhaled during normal speech

may serve as an important transmission route [7]. Vuorinen et al. [6] investigated the
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possibility of SARS-CoV-2 transmission by inhalation of virus-containing aerosols, by ex-

amining a high-risk scenario where an infected individual coughs within a public indoor

space. They found that there was an elevated risk of infection in case of lengthy exposure

in a confined space with at least one infected individual. These results are in line with

those from another study which has indicated that the virus may remain infectious as

an aerosol for at least three hours [8]. Of course, not only individual characteristics such

as viral shedding but also environmental characteristics such as insufficient ventilation

contribute to the possibility of a superspreading event (SSE) [9].

Lloyd-Smith et al. [3] addressed heterogeneity in transmission by using the concept of an

individual reproduction number as a random variable that represents the expected num-

ber of secondary cases caused by a particular infected individual. In that framework, SSEs

are important realizations from the right-hand tail of the distribution of the individual

reproduction number. Most studies investigating the amount of heterogeneity in disease

transmission have assumed a Poisson process with rate given by the individual reproduc-

tion numbers, assumed to follow a Gamma distribution, resulting in a negative binomial

offspring distribution [3, 10]. In this way, heterogeneity has often been quantified using

the k parameter, with k the negative binomial dispersion parameter. This has allowed

comparison between studies, where lower values of k indicate increased heterogeneity in

transmission, and thus possibly a larger amount of superspreading.

Based on this framework, a substantial amount of individual variation in the transmission

of SARS-CoV-2 has been described, though large differences were found between different

studies. Bi et al. [11] used a negative binomial distribution to describe superspreading

in the COVID-19 outbreak in Shenzhen, China, and found that about 9% of all cases

were responsible for 80% of transmission. Riou and Althaus [12] estimated the negative

binomial dispersion parameter k to have a median of 0.54 (90% HDI 0.014 - 6.95), with

simulations suggesting that very low values of overdispersion (<0.1) are less likely. Adam

et al. [13] estimated the overall mean number of secondary cases to be 0.58 (95%CI

0.45 - 0.72) with a dispersion parameter k of 0.43 (95%CI 0.29 - 0.67) in Hong Kong,

indicating that 19% of cases were responsible for 80% of all local transmission. Similarly,

Endo et al. [14] have used a branching process model where the number of secondary

cases was assumed to follow a negative binomial distribution. Assuming R0 to be 2.5,

they estimated the dispersion parameter k to have a median of 0.1 (95% CrI 0.05 - 0.2),

resulting in 80% of secondary cases being caused by about 10% of infectious cases and
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implying that large transmission events should be prevented in order to contain epidemic

spread. Laxminarayan et al. [15] estimated the negative binomial dispersion parameter k

to be 0.51 (95%CI: 0.49-0.52) using a large contact tracing dataset from two Indian states.

Based on detailed contact tracing data from Hunan, China, Sun et al. [16] found that

15% of cases were responsible for 80% of transmission, and a negative binomial disper-

sion parameter k of 0.3. Lau et al. [17] found that superspreading was widespread across

space and time, with an increasing presence towards later stages of the investigated out-

breaks, highlighting the importance of maintaining social distance measures. They also

found that about 2% of the most infectious cases were directly responsible for 20% of all

infections.

It is well recognized in statistical literature that the distribution underlying a data gener-

ating mechanism imposes a certain mean-to-variance relationship which in practice may

be severely violated [18]. Despite this, the use of other distributions in infectious disease

modelling that may just as well account for variation in disease transmission has been

rather limited. Some studies suggest that SSEs follow a power-law distribution with fat

tails, such as the generalized Pareto distribution [19]. Brooks-Pollock et al. [20] have

used a negative binomial as well as a Poisson-lognormal distribution to model the dis-

tribution of cluster sizes for tuberculosis in the UK and the Netherlands. In this study,

the Poisson-lognormal distribution provided a better fit to the UK data, indicating the

importance of comparing different assumptions about the underlying distribution when

variation in disease transmission is present.

To our knowledge, there are no studies that have explicitly investigated the possible

bias in using the negative binomial distribution as an approximation to the underlying

transmission process. We argue that it is important to compare different distributional

assumptions since different distributions could portray different tail behaviour, and hence

capture SSEs differently. In this work we explore the use of other Poisson mixture dis-

tributions for inference of the offspring mean and the amount of heterogeneity in disease

transmission. We focus on the three-parameter generalized Gamma distribution for the

individual reproduction number, because of its flexibility and the fact that it has as special

cases the Gamma, Weibull, and lognormal distribution [21]. First, we carry out a simula-

tion study to investigate the potential bias in the estimation of the offspring mean and its

variance when the distribution that is fit to the data does not correspond to the actual data

generating distribution. Next, we use the proposed distributions to (re-)analyze several
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COVID-19 datasets and investigate the impact of the considered offspring distribution on

the estimation of the proportion of cases that is responsible for 80% of transmission, p80%.

Results

Simulation study

We consider the Poisson-generalized Gamma (POGG) and three submodels for the off-

spring distributions: negative binomial (NB), Poisson-lognormal (POLN), and Poisson-

Weibull (POWB). See Methods for a description of these Poisson mixture distributions

and how the simulation study was performed. In general we find that when overdispersion

increases, estimates tend to become more biased when the considered offspring distribu-

tion does not correspond to the data generating distribution (Suppl. Table B.1). This

is especially the case when considering estimates of the standard deviation. As overd-

ispersion increases, the true distribution is more often considered as the best fit based on

AIC. In particular, when the data generating mechanism deviates from the NB model,

assuming the NB model will often lead to an underestimation of the standard deviation.

Where results are missing, no estimates could be obtained.

Expected versus realized proportions of transmission

Based on the estimated mean and variance of the considered offspring distribution, we can

obtain estimates for the proportion of cases responsible for a certain amount of transmis-

sion. There are two different approaches for obtaining these proportions (see Methods),

where one is based on the distribution of the individual reproduction number [3], and

the other is based on the complete offspring distribution [14]. Here we show how the dif-

ferent offspring distributions can affect these proportions. Figure 1a shows the expected

proportion of transmission due to the 20% most infectious cases for the varying levels of

heterogeneity used in the simulation study, for the different offspring distributions. For all

distributions, this proportion increases with an increasing amount of heterogeneity (i.e.

higher σ, which for the negative binomial results in lower k). Thus, less heterogeneity

leads to a smaller proportion of transmission being attributed to the 20% most infectious

cases. In case of high overdispersion, there is a substantial difference in the expected

proportions between the distributions. Since for the Poisson-generalized Gamma distri-
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bution it is not possible to specify the parameters from a given mean and variance, we

only estimated these proportions at the specified settings used in the simulation study,

hence these are represented as dots instead of lines. Figure 1b shows the expected propor-

tion of transmission due to a given proportion of infectious cases for the different levels

of overdispersion. It can again be seen that the difference between these estimates across

the different distributions increases when overdispersion increases (i.e. higher σ) and like-

wise there is a substantial difference in terms of the expected proportions of transmission.

When taking into account the additional variation coming from the Poisson process, the

same increase in the proportion of transmission due to the 20% most infectious cases

is seen, again with substantial differences between the distributions when overdispersion

increases (Fig. 1c and 1d). These results also hold when R > 1 (Suppl. Fig. A.2). The

vertical bars in Fig. 1c represent the uncertainty in the proportion of transmission due

to the discrete nature of the offspring distribution. This should be interpreted as the

range of transmission that will be due to the 20% most infectious cases. When taking

into account this uncertainty surrounding these point estimates, a substantial difference

is seen between the Poisson-lognormal and the other distributions for higher levels of

overdispersion.
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(a) (b)

(c) (d)

Figure 1: The top panel shows the expected proportion of all transmission that is (a) due to the

20% most infectious cases for different levels of overdispersion and different distributions, with

the offspring mean R fixed at 0.8; and (b) due to a given proportion of infectious cases, where

cases are ranked by their transmission potential, for σ = 1 (dotted), σ = 1.5 (dashed), σ = 3

(full), and the different distributions, with R fixed at 0.8. The lower panel shows the realized

proportion of all transmission that is (c) due to the 20% most infectious cases, shaded vertical

bars show the uncertainty surrounding the proportions at σ = {1, 1.5, 3}; and (d) due to a given

proportion of infectious cases.

Application to COVID-19 data

Table 1 shows estimates of the offspring mean R and standard deviation σ obtained by

fitting the different offspring distributions to each COVID-19 dataset. In terms of AIC, in

all cases the data are best described by a Poisson-lognormal distribution. Supplementary

Figs. C.1, C.3, and C.5 show the fit of the different distributions to the observed offspring

distribution. It can be seen that for the data from Hong Kong and India the negative

binomial, Poisson-Weibull, and Poisson-generalized Gamma distributions underestimate
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the proportion of cases that generate only one secondary case, while this is captured well

by the Poisson-lognormal distribution. For the data from Rwanda this is less evident.

Goodness-of-fit plots are shown in Supplementary Figs. C.2, C.4, and C.6. For each

of the three datasets (Table 1), p80% is estimated to be substantially higher for the

Poisson-lognormal than for the other distributions when based on the distribution of the

individual reproduction number (Eq. (1), see Methods), and slightly higher when taking

into account additional random variation from the Poisson process (Eq. (2), see Methods).

Figure 2 shows these expected (left) and realized (right) proportions of transmission due

to a certain proportion of cases for each distribution and each dataset. For Hong Kong,

roughly 12-31% of cases are responsible for 68-100% of all transmission based on the

Poisson-lognormal distribution (Fig. 2b). Based on the negative binomial distribution,

roughly 14-31% of cases are responsible for 71-100% of all transmission.

Table 1: Estimates of the offspring mean R and its standard deviation (σ) using the different

mixture distributions, and their AIC value, for three COVID-19 datasets. p80% represents the

proportion of cases responsible for 80% of transmission, following Equations (1) and (2). Estim-

ates based on the negative binomial distribution correspond to those reported in the literature

for the two published datasets.

Dataset Distribution R (95%CI) σ (95%CI) AIC
p80%

Eq. (1) Eq. (2)

Hong Kong [13] NB 0.583 (0.448 - 0.718) 1.175 (0.944 - 1.490) 593.925 0.288 0.191

POLN 0.587 (0.456 - 0.779) 1.413 (0.969 - 2.442) 590.009 0.332 0.195

POWB 0.580 (0.445 - 0.745) 1.218 (0.970 - 1.734) 591.747 0.294 0.189

POGG 0.580 (0.3789 - 0.724) 1.258 (0.923 - 1.550) 592.738 0.303 0.190

India [15] NB 0.484 (0.480 - 0.494) 0.973 (0.962 - 0.985) 163974.5 0.319 0.191

POLN 0.484 (0.477 - 0.491) 1.077 (1.055 - 1.101) 162980.6 0.373 0.195

POWB 0.483 (0.476 - 0.489) 0.997 (0.984 - 1.011) 163530.8 0.322 0.189

POGG 0.484 (0.477 - 0.490) 1.012 (1.000 - 1.024) 163286.5 0.333 0.191

Rwanda NB 0.259 (0.216 - 0.302) 0.623 (0.547 - 0.731) 1015.261 0.323 0.138

POLN 0.260 (0.219 - 0.311) 0.657 (0.560 - 0.820) 1013.073 0.389 0.139

POWB 0.259 (0.217 - 0.311) 0.631 (0.557 - 0.783) 1014.350 0.331 0.137

POGG 0.259 (0.216 - 0.301) 0.634 (0.561 - 0.706) 1015.667 0.344 0.137
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Figure 2: Proportion of most infectious cases responsible for a certain proportion of transmission,

based on estimates from (a-b) Hong Kong, (c-d) India, and (e-f) Rwanda. Proportions are

obtained based on the distribution of the individual reproduction number (left), and based on

the complete offspring distribution (right). The shaded areas in the right panels represent the

uncertainty surrounding specific proportions when considering the discrete nature of the realized

offspring distributions.
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For India, roughly 10-29% of cases are responsible for 61-100% of all transmission based

on the Poisson-lognormal distribution (Fig. 2d). Based on the negative binomial dis-

tribution, roughly 11-29% of cases are responsible for 64-100% of all transmission. For

Rwanda, roughly 5-19% of cases are responsible for 44-100% of all transmission based on

the Poisson-lognormal distribution (Fig. 2f). Based on the negative binomial distribution,

roughly 5-19% of cases are responsible for 46-100% of transmission.

Discussion

Since most studies that aim to quantify variation in disease transmission have assumed the

offspring distribution to follow a negative binomial, we investigated the impact of incor-

rectly assuming this distribution as an approximation to the underlying transmission pro-

cess. Results from our simulation study show that when overdispersion increases, estim-

ates of the offspring mean and especially its variance can become extremely biased when

making incorrect assumptions about the underlying data generating distribution. When

no variation in transmission is present, all distributions performed equally well, although

there was a slightly increased bias in variance estimates when using the Poisson-Weibull or

Poisson-generalized Gamma distribution. We have (re-)analyzed three COVID-19 data-

sets and in each case the Poisson-lognormal distribution gave the best fit to the observed

data. This resulted in considerable differences in terms of the expected p80% compared

to when using a negative binomial distribution, when these proportions were based on

the distribution of the individual reproduction number [3]. When accounting for the ad-

ditional variation introduced by the Poisson process, the differences in these proportions

of cases responsible became more subtle. For example, for the Hong Kong data the point

estimate when using the Poisson-lognormal was 19.5%, compared to the previously re-

ported 19.1% when using the negative binomial [13]. When accounting for the discrete

nature of the offspring distribution, estimated ranges for these proportions were mostly

overlapping for the different distributions, albeit a bit lower for the Poisson-lognormal

distribution. Although most studies report p80%, the right-sided panels in Figure 2 indic-

ate that depending on the proportion of transmission one is interested in, there might be

a more substantial difference between the distributions. This implies that different distri-

butions have different tail properties, underlining the importance of investigating which

distribution best describes the data at hand. In addition we found that the difference

between the distributions increases with an increasing level of overdispersion (Figure 1).
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Our analyses indicated that the negative binomial distribution often underestimates the

proportion of cases that generate only one secondary case, thereby possibly overestim-

ating the importance of superspreading events. This overestimation was observed when

the proportion of cases responsible was obtained based on the distribution for the under-

lying individual reproduction number. When accounting for the Poisson process, super-

spreading was found to be only slightly more important when using a negative binomial

distribution to describe the data, compared to a Poisson-lognormal distribution. A neg-

ative binomial distribution enables easy comparison between different studies through its

dispersion parameter k [3]. However, this should not be a reason to only use negative

binomial offspring distributions. The results from different studies can also be compared

by their estimated p80%, which is often reported as well. It should be noted that there

are different approaches for obtaining these proportions, hence care should be taken when

comparing these results between studies. Lloyd-Smith et al. [3] assume SSEs to be realiz-

ations from the right-hand tail of the distribution of the individual reproduction number,

hence their approach is based on this continuous distribution. In contrast, Endo et al.

[14] have based these estimates on the complete offspring distribution, taking into account

additional variation arising from the discrete Poisson process. In this way, the second ap-

proach accounts for more heterogeneity. However, if the effective contact process in reality

is not a Poisson process, this approach may result in biased estimates.

In this study we have considered the three-parameter Poisson-generalized Gamma distri-

bution, which has as special cases the Poisson-lognormal, Poisson-Weibull, and negative

binomial distribution. Although the Poisson-generalized Gamma distribution has the ad-

vantage of being very flexible due to the additional parameter, the disadvantage is that

because of this added complexity the estimation is computationally more extensive, es-

pecially for large datasets. Furthermore, parameter estimation can be difficult because

different parameter sets can give rise to the same density function. In general, parameter

estimation becomes more difficult when the amount of overdispersion is high and incorrect

assumptions about the underlying data generating distribution are made. For that reason

we were not able to fit the Poisson-Weibull and Poisson-lognormal distributions in some

scenarios of our simulation study. This occurred when the data were highly overdispersed

(k < 0.1), which is less likely to be encountered in practice [12].

Inference of the amount of heterogeneity in transmission is paramount for identifying a

disease’s potential of superspreading. Correctly quantifying this heterogeneity is import-
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ant because it affects estimates of other epidemiological parameters, modulates the degree

of unpredictability of an epidemic, and needs to be taken into account when modeling

disease control and planning control strategies [22]. When there is evidence of substantial

superspreading, control measures should focus on limiting the potential for SSEs to occur

by restricting large events and avoiding crowding in other public spaces. Typically, when

control measures are taken, one aims to prevent transmission from those cases expected to

have a high individual reproduction number, without knowing whether they will actually

realize these secondary cases. Control measures thus act on the individual reproduction

number and the expected transmissions, whereas their effect will be observed at the level

of realized transmissions. Also, because of the increased speed at which the epidemic

spreads when SSEs are present, heterogeneity could lower the doubling times [23].

Detailed contact tracing data are needed to obtain empirical offspring distributions, but

these are often not available. Therefore this work should be extended such that the con-

sidered distributions can be used to infer the offspring mean R and its overdispersion

from final size data [10], which are often more readily available. Rock et al. [24] have

mentioned the distinction between ‘super-spreaders’ and ‘super-shedders’, who are both

responsible for an above average number of secondary cases but for different reasons. In

a meta-regression analysis, Chen et al. [25] investigated the relationship between the

dispersion parameter k and respiratory viral load (rVL). They found that heterogeneity

in rVL facilitates variation in individual infectiousness and hence may be associated with

overdispersion in the number of secondary cases. Future work should thus aim to disen-

tangle heterogeneity coming from variation in contact rates versus heterogeneity coming

from variation in viral shedding. Furthermore, assuming a homogeneous Poisson process

for effective contacts is likely a simplification of the real contact process, hence the use of

other distributions to describe the contact process should also be considered. In a recent

study, Wong & Collins [19] have suggested that the offspring distribution for SARS-CoV-2

is fat-tailed, which is consistent with a generalized Pareto distribution. We did not find

evidence that a discrete Pareto offspring distribution would better describe the data used

in this study (see Supplementary Text). Overall, the results of the present study suggest

that, whenever possible, several distributions should be compared in terms of their fit to

the observed data before making conclusions on the amount of heterogeneity by simply

assuming a negative binomial offspring distribution.
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Methods

Poisson mixture distributions

Differences in infectious disease transmission among individuals can arise either from dif-

ferences in infectiousness or from differences in susceptibility, and can be interpreted in

terms of the underlying contact and infection processes [26]. An effective contact is a con-

tact that can lead to transmission, whereas an infectious contact occurs when an effective

contact is realized between an infectious and susceptible individual. Effective contacts can

be described using a Poisson counting process. Let Y denote the effective contact process

that follows a Poisson distribution, Y ∼ Po(ν), where ν represents the individual repro-

duction number that itself is a random variable to allow for heterogeneity in transmission.

The effective contact process Y is then described by a Poisson mixture distribution. In

this work we focus on the three-parameter generalized Gamma distribution for ν, be-

cause of its flexibility and the fact that it has as special cases the Gamma, Weibull, and

lognormal distribution [21]. Table 2 shows the resulting Poisson mixture distributions,

each with mean R and variance σ2. More details can be found in the Supplementary Text.

Table 2: Different mixture distributions, assuming a Poisson distribution for the effective

contact process.

Distribution for ν Offspring distribution R σ2

ν ∼ Ga(α,β) Y ∼ NB(µ, k) µ = α
β µ(1 + µ

k ) = α
β (1 + 1

β )

ν ∼ LogN(µlog, σlog) Y ∼ PoLN(µlog, σlog) eµlog+
σ2log

2 eµlog+
σ2log

2 +
[
(eσ

2
log − 1)e2µlog+σ2

log
]

ν ∼ Weibull(p,l) Y ∼ PoWB(p, l) lΓ(1 + 1
p ) lΓ(1 + 1

p ) + l2
[
Γ(1 + 2

p )−
(
Γ(1 + 1

p )
)2]

ν ∼ GG(a,d,p) Y ∼ PoGG(a, d, p) a
Γ( d+1

p )

Γ( dp )
a

Γ( d+1
p )

Γ( dp )
+ a2

[
Γ( d+2

p )

Γ( dp )
−
(

Γ( d+1
p )

Γ( dp )

)2]

Simulation study

To assess the possible bias in estimates of the reproduction number R and its overd-

ispersion, which are based on assuming a certain offspring distribution for the underlying

transmission process, we investigate the influence of the choice of distribution on the cor-

responding estimates. Using each of the mixtures in Table 2 we generate 1,000 datasets

containing the distribution of secondary cases for 10,000 individuals. We set the mean
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number of secondary cases (i.e. the offspring mean) to 0.8, and vary the standard devi-

ation σ = {1, 1.5, 3} corresponding to different levels of overdispersion (negative binomial

k = {3.2, 0.44, 0.08}). We also consider a scenario without heterogeneity where the data

are generated from a Poisson distribution with variance equal to the mean, R = σ2 = 0.8.

We then estimate the parameters of the mixture distributions for each simulated dataset

(i = 1, . . . , 1000) using maximum likelihood estimation (MLE) and obtain the estimated

mean R̂i and standard deviation σ̂i of the offspring distribution. For each distribution we

calculate the bias in the estimates as ¯̂x − x, where x is the true value of the parameter

of interest and ¯̂x is the sample mean. Following Burton et al. [27], a bias larger than

|0.5SE(x̂)| is alarming, where SE(x̂) is the empirical standard error of the estimate x̂

across all simulated datasets (i.e. the between-sample variability). We also obtain the

bias as a percentage of the SE(x̂), which ideally would be smaller than 40% in either

direction [28]. Further, we calculate the mean squared error (MSE) as a measure of over-

all accuracy by taking into account the bias as well as the variability in the estimates.

For example, a more flexible model such as the Poisson-generalized Gamma distribution

is expected to have lower bias, but as a consequence of its complexity the variability is

expected to be higher [29].

Expected versus realized proportions of transmission

After estimating the mean R̂ and variance σ̂2 of the considered mixture distribution, we

can obtain the proportion of cases responsible for a given proportion of transmission.

Following Lloyd-Smith et al. [3], the parameters R̂ and σ2 = σ̂2 − R̂ specify the prob-

ability density function (pdf) fν(x) and cumulative distribution function (cdf) Fν(x) of

the distribution describing the individual reproduction number ν. The cdf for disease

transmission is defined by

Ftrans(x) =
1

R̂

∫ x

0

xfν(x)dx (1)

and denotes the expected proportion of transmission due to infectious cases with ν < x,

while 1 − Ftrans(x) denotes the expected proportion of transmission due to those cases

with ν > x. If p is the proportion of transmission for which we want to know the expected

proportion of cases responsible, a, we first need to find x such that 1 − Ftrans(x) = p.

The value x then denotes the threshold value of the reproduction number for which

1 − Ftrans(x) is the expected proportion of transmission p due to cases with ν > x. We

can then obtain the expected proportion of cases which have their reproduction number

ν > x as P (X > x) = 1 − P (X ≤ x) = 1 − Fν(x). This is the expected proportion of
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infectious cases a that is responsible for a proportion p of all transmission. Note that

in case of a homogeneous Poisson process the relation between a and p will be linear

(Supplementary Fig. A.1b) because the variance of the mixing distribution will be zero.

If we want to take into account the additional variation coming from the Poisson process,

we need to extend the method above for use with the Poisson mixtures (i.e. the offspring

distributions). Endo et al. [14] have done this for the negative binomial distribution

and we extend this for the other mixtures in the following way. The cdf for disease

transmission is now defined by

Ftrans(x) =
1

R̂

∫ x

0

bxcf(bxc)dx (2)

where f(bxc) is the density function of the mixture distribution evaluated at the integer

part of x. Ftrans(x) now denotes the proportion of transmission that is due to cases that

have their number of secondary cases r < x. Again we first need to find x such that

1− Ftrans(x) = p, where x then denotes the threshold value of the reproduction number

for which 1− Ftrans(x) is the proportion of transmission p due to cases with r ≥ x. The

proportion of cases that have r < x is defined as

F (x− 1) =

∫ x

0

f(bxc)dx. (3)

The proportion of cases that have their number of secondary cases r ≥ x is then P (X ≥

x) = P (X > x−1) = 1−F (x−1). This is now the proportion of cases a that is responsible

for a proportion p of all transmission. However, as this is a continuous approximation of a

discrete distribution, we should account for uncertainty in these point estimates of a and

p. To do this, we use a discrete version of the method proposed by Lloyd-Smith et al. [3]

(see details in Supplementary Text). We then obtain a range for the proportion of cases

a responsible for a certain proportion of transmission p, which is then also expressed as

a range.

More details on the difference between these two approaches can be found in Supplement-

ary Text. Essentially, Lloyd-Smith et al. [3] estimate the expected proportion of cases

responsible, whereas Endo et al. [14] estimate the realized proportion. We investigate the

impact of the assumed offspring distribution on estimates of the proportion of infectious

cases responsible for a certain amount of transmission.
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Application to COVID-19 data

Using MLE, we fit the different Poisson mixture distributions to three datasets containing

the distribution of secondary cases for COVID-19. From the estimated parameters we

calculate the mean R and standard deviation σ of the offspring distribution, and obtain

their 95% confidence intervals (CI) by sampling 100,000 values from a multivariate normal

distribution for the parameters of the offspring distribution. We compare the models in

terms of AIC and goodness of fit based on observed vs. expected distribution of secondary

cases. We also investigate the impact of the different distributions on the inference of

p80%. We use two publicly available datasets, one containing the offspring distribution

for 290 cases in Hong Kong [13], and one containing the offspring distribution for 84,965

cases in India [15]. The third dataset contains the offspring distribution for 795 cases in

Rwanda (personal communication).

Data availability The data from Hong Kong and India used in this study are publicly

available. The empirical offspring distribution from Rwanda and the code to generate

data as used in the simulation study are available on GitHub (https://github.com/

cecilekremer/PoiMixtSS).

Code availability All relevant R code used in this study is available on GitHub (https:

//github.com/cecilekremer/PoiMixtSS).
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