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Abstract

reduce the impact of these biases.

Advances in DNA sequencing technology have vastly improved the ability of researchers to explore the microbial
inhabitants of the human body. Unfortunately, while these studies have uncovered the importance of these
microbial communities to our health, they often do not result in similar findings. One possible reason for the
disagreement in these results is due to the multitude of systemic biases that are introduced during sequence-based
microbiome studies. These biases begin with sample collection and continue to be introduced throughout the
entire experiment leading to an observed community that is significantly altered from the true underlying microbial
composition. In this review, we will highlight the various steps in typical sequence-based human microbiome
studies where significant bias can be introduced, and we will review the current efforts within the field that aim to
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Introduction
Recent advances in DNA sequencing technology have
allowed community-wide investigation into the microbes
that live on and within the human body. These commu-
nities and their cellular functions are known as the
human microbiome, which has now been associated with
multiple different influences on human health [1, 2]. In-
vestigation into these microbes has led to the develop-
ment of both novel therapeutics [3] and diagnostic tools
[4]. However, results from different studies often do not
match with previous findings [5, 6]. One possible reason
for inconsistent results across studies is the high level of
random and systemic bias that is introduced throughout
sequenced-based human microbiome studies.
Microbiome studies are particularly at fault for
elevated levels of these biases due to the high sensitivity
of DNA sequencing instruments and the relatively
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unknown underlying microbial compositions within a
sample. Throughout a typical microbiome study, there
are numerous areas where biases are introduced [7]. The
introduction of these biases often results in distorted ob-
servations of the true underlying microbial composition
contained within a sample [8]. While sometimes these
biases can be subtle, they often result in significant im-
pacts on biological conclusions. In this report, we will
review each step in a typical marker gene and metage-
nomic shotgun sequencing microbiome study, starting
with sample collection and ending with downstream bio-
informatic analysis (Fig. 1). Throughout each section, we
will highlight the various biases that are introduced
during each step, and we will then review current ap-
proaches that have been taken to help alleviate those
biases to improve our understanding of the human
microbiome (Table 1).

Sample collection and storage

Sample collection and storage are a vital part of an ex-
periment and if not carefully planned can often intro-
duce unaccounted bias. The way in which the sample is
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Fig. 1 The various stages that can introduce bias in sequenced-based human microbiome studies. Each blue box represents a stage in either

DNA marker gene sequencing or DNA shotgun sequencing experiments. Orange boxes represent the various areas within a stage that can result
in the introduction of systemic bias. Figure created using images from Servier Medical Art (http://smartservier.com)
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collected, how long the sample is stored, and what the
sample is stored in can all impact the underlying observed
microbial composition. All these details should be noted
during sample collection and accounted for during down-
stream analysis to ensure consistent results across studies.

Sample collection

The method of sample collection is particularly import-
ant to consider as different types of systematic bias can
be introduced depending on the sampling environment.
This has been highlighted in studies of the various areas
of the human microbiome. Work on the gut microbiome

has compared colon biopsy samples to both stool and
rectal swab samples. In both cases, it was found that col-
lection of samples by biopsy introduced strong biases
toward the identification of specific microbes such as
those that adhere to the mucosal wall of the colon [9—
12]. This is not surprising given the drastically different
collection methods. For example, biopsies often have
higher levels of human DNA and do not account for im-
pacts on community composition during the transit of
stool in the colon [13, 14].

In contrast, multiple studies have compared the ob-
served microbial communities from rectal swabs and
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Table 1 Recommended best practices during sequenced-based microbiome studies

Processing step Recommended best practices

Sample collection - Collect biological and technical replicates when possible.
- Use the same collection device and manufacturer.

- When possible, use the same collection personnel.

- Use aseptic techniques during sample collection.

- Make note of any variations during sample collection and include them in downstream analysis.

Sample storage - When possible freeze samples at —80°C immediately upon collection.

- Exposure of samples to room temperature conditions should be minimized.

- Preservatives should be used only when freezing of samples is infeasible (e.g., self-collected human samples).
- If used, all samples should be stored in the same preservative.

- Length of sample storage should be noted and included in downstream analysis.

DNA extraction - Extractions should be done using validated extraction kits or validated protocols such as those presented by the
Earth Microbiome project or International Human Microbiome Standards.

- All samples must be extracted with the same protocol.

- Extraction batches should be noted and used as covariates in downstream analysis.

- Extraction should include a mechanical lysis step (e.g., bead-beating).

- Extraction should be done using aseptic techniques and a biological safety cabinet to reduce the amount of
possible contamination.

- A small pool of samples should be extracted during each extraction batch and sequenced to determine technical
variation.

- Blanks should be carried through extraction to sequencing (critical for low-biomass samples).

PCR amplification - Use high-fidelity polymerases.

- Minimize the number of required PCR cycles (preferably max. 20-25).

- Obtain as uniform amplification as possible for all samples.

- Primers should be chosen based on the microbes of interest and whether the work is to be compared against

previous literature.

Metagenomic library
construction

- Use equal amounts of template for library construction.
- Avoid usage of discontinued Illumina Nextera XT kit.
- Note mechanical sonication can cause minor biases toward high-GC content sequences.

- Use denoising algorithms such as Deblur, DADA2, or UNOISE.

- Use validated taxonomic classification methods such as QIIME2 feature classifiers or Kraken2.

- Taxonomic classifiers should be consistent between comparison studies.

- Use well-curated, up-to-date, comprehensive taxonomic databases such as SILVA, RDP, or NCBI.

Marker gene bioinformatics

Metagenomic shotgun
bioinformatics

- Referenced-based analysis:
Use DNA-based KMER taxonomic assignment such as Kraken2 or taxMaps.
Removal/filtering of low abundance taxa is recommended.
Employ phylogenetic marker-gene-based strategies when examining low abundance taxa.
- Metagenomic assembly:
Use well-validated assembly methods such as MEGAHIT or metaSPAdes.
Use validated binning methods such as DASTool, MetaWrap, or MetaBat2.
- For all methods, reference databases should be well-curated and up-to-date such as:
NCBI RefSeq
Genome Taxonomy Database

fecal samples and have found similar profiles. Bassis
et al. [15] compared stool samples and rectal swabs from
the same patients and found no significant difference in
microbial abundances between these collection methods.
A further report by Reyman et al. [16] has shown similar
results; however, a recent study by Jones et al. reported
significant differences in both taxonomic makeup and
functional pathway abundances between rectal swab and
stool samples. They found that 24 of 48 families were
significantly different in relative abundance between
swab and stool samples through 16S rRNA gene sequen-
cing, and a higher proportion of aerobic bacteria could
be found in rectal swabs. Furthermore, they found nu-
merous differences in levels 1 and 2 KEGG pathways
through metagenomic shotgun sequencing (MGS) ana-
lysis. However, it should be noted that they did find

rectal swab microbial profiles, matched stool profiles
closer than biopsies [17]. Overall, these results indicate
that while stool and biopsy samples reveal different mi-
crobial communities in both membership and diversity,
rectal swabs may provide a viable easy-to-collect alterna-
tive to stool while keeping in mind that the proportions
of aerobic genera will be elevated.

Another body site of interest that has been studied
comprehensively is the human oral microbiome. Within
this environment, it has been shown that while different
sites of the oral cavity such as the tongue, dental pla-
ques, and saliva accommodate unique microbial commu-
nities [18, 19], the sampling of these communities using
different techniques has been shown to be comparable.
Work by Fan et al. [20] and Jo et al. [21] compared hu-
man oral microbiome compositions collected through
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several approaches, including mouthwashes, water rinses,
and unstimulated or stimulated saliva. They found no sig-
nificant differences in community composition at the
genus level due to the sampling method. Furthermore,
work on comparing dental plaque collection methods
found no differences in total DNA extracted, alpha diver-
sity, or overall community structure between using a
scaler or CytoSoft brush [22].

Several other body sites contain microbial communi-
ties that have been examined using several different col-
lection methods. Studies that have compared different
sampling techniques used in these areas have shown
variable results. For example, reports have shown that
skin swabs and tape-stripping result in similar family
level relative abundances (Rho 0.792-0.999) [23] and no
differences in alpha diversity [23, 24]. Interestingly, work
by Bjerre et al. [25] comparing skin swabs and skin
scrapping showed significant differences in alpha diver-
sity between sampling techniques despite having an
overlap of ~90% between the OTUs identified through
each method. A similar conclusion was found between
lung brushings and exhaled breath condensates where
lung brushings were found to have significantly higher
DNA levels and cluster separately from breath conden-
sates when comparing overall community structure [26].
Overall, these cases highlight the fact that new collection
methods should be compared with previous work to de-
termine whether they will introduce, or conversely re-
duce, a significant amount of bias during downstream
analysis.

Overall, the most important thing to consider during
sample collection is the use of consistent collection
methods within any given analysis. The same aseptic
techniques should be employed during the collection of
all samples. Furthermore, due to the high sensitivity of
sequencing instruments, the use of the same type and
manufacturer of collection devices is heavily advised, as
DNA from collection devices can be introduced into
samples [27]. When possible, all samples should be col-
lected by the same individual as batch effects may be in-
troduced due to differences in the individual collectors.
This could be due to several issues including slight varia-
tions in collection technique between individuals or the
individual’s own microbial flora contaminating the sam-
ple. This principle also holds true for sample preparation
and sequencing. Any variation in sample collection
methodology, such as those highlighted above, should be
noted during collection and be included as confounded
effects during data analysis.

Study design

While the proper collection of samples is critical for any
microbiome study, samples need to be collected in a
manner that can be used to answer the hypothesis in
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question. Common study designs for microbiome studies
include longitudinal, cross-sectional, and cohort designs
[28]. While a thorough description of study designs is
beyond the scope of this review, we have highlighted a
number of factors that should be of particular import-
ance to reduce systemic bias or confounding information
within your study.

All studies should randomize samples during extrac-
tion and sequencing to ensure that technical variation is
equally spread between samples. Previous work has
shown that batch effects due to non-random sample
preparation can lead to spurious results [29]. Further-
more, when possible, samples should be extracted using
the same extraction kit lot and within the smallest time
frame as possible. When this is not possible, extraction
kit lot numbers and extraction dates should be included
as confounding variables during data analysis. During
the identification and recruitment of participants in your
study, we suggest matching them on basic dietary infor-
mation along with their age and BMI, although it should
be noted that these choices are sample specific, as recent
work on the oral microbiome has shown that the effect
size of these factors is relatively small with no single fac-
tor explaining a variation larger than 2% [30]. Finally,
the most important thing researchers need to do is to be
consistent in the way samples are handled, and when ab-
normalities occur, they should be noted and included
during any data analysis.

Timing of sample storage

It often is impractical to immediately analyze fresh sam-
ples in microbiome research. As a result, many samples
are preserved through storage at —-80°C. It remains un-
clear whether freezing samples significantly affects the
resulting community profiles. Work by Bahl et al. [31]
compared frozen and fresh human stool samples from
the same donors using quantitative PCR (qPCR) and
found significant differences in the Firmicutes to Bacter-
oidetes ratio. However, subsequent work by Fouhy et al.
[32] comparing frozen and fresh stool samples using
both culture and DNA sequence-based approaches
showed no significant differences in the relative abun-
dances of bacteria at the phylum or family level. At the
genus level, there was only minor evidence suggesting
that the relative abundances of Faecalibacterium and
Leuconostoc may be biased due to sample freezing.
Taken together, these results have helped reinforce the
current standard of immediately freezing samples at
-80°C upon collection [33].

Research on what happens to room temperature-
stored stool, which can commonly occur when freezers
are not readily available, has shown promising results.
Work by both Shaw et al. [34] and Bokulich et al. [35]
has shown that fresh and 2-day-old stool and stool
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swabs have similar alpha diversity measurements and
observed microbial relative abundances. However, Shaw
et al. did note significant differences in weighted beta di-
versity measurements after 48 h of storage. Longer dura-
tions of room temperature storage, such as those
sometimes seen during the shipping of self-collected
stool samples, has indicated that Enterobacteriaceae and
other aerobic bacteria can begin to bloom while alpha
diversity measurements such as richness can decrease
over time [35-37]. Fortunately, work by Amir et al. has
characterized 20 different 16S rRNA gene sequences
mainly belonging to Gammaproteobacteria that com-
monly bloom during room temperature storage [38].
Based on these identifications, they have developed
bloom-filtering software that reduces taxonomic biases
due to room temperature storage and have successfully
implanted its use in the analysis of data from the Ameri-
can Gut project [36].

Not only does the length of time samples remain
unpreserved need to be considered when looking at
biases during microbiome studies, but so does the length
of time samples are frozen. Work by Lauber et al. [39]
compared multiple different short-length storage timings
(3—14 days) of frozen stool and skin samples and found
that samples clustered together based on their sampling
source rather than the amount of time they were frozen,
indicating minimal impact on overall microbial compos-
ition in the short term. Investigation into longer freezing
times by Shaw et al. [34] found that all diversity metrics
remained stable throughout storage with the exception
of OTU richness, which slightly decreased over time.
Comparing taxonomic abundances between samples
stored from 2 months up to 2 years resulted in no sig-
nificant differences. Overall, these findings indicated that
long-term storage may introduce small biases in overall
sample richness that should be taken note of during ana-
lysis, but the overall community structure and relative
abundances of microbial DNA within samples remains
similar for at least 2 years of storage time. Based on
these results, when examining samples from longitudinal
designs, researchers should be weary of any conclusions
showing slight consistent reductions in microbial rich-
ness over long periods of time unless samples were se-
quenced upon or near the collection date.

Sample preservatives

While the current gold standard of sample preservation
is to immediately store samples at —80°C, this is not al-
ways feasible. This had led to the development of mul-
tiple different preservatives that allow samples to be
stored at room temperature for extended periods of
time. This is accomplished by inhibiting microbial
growth within the sample while preserving microbial
DNA. Currently, there are several different preservatives
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that can be used to store microbiome samples including
RNAlater, OMNIgene preservatives, Tris-EDTA, FTA
cards, and ethanol. While in many cases the use of pre-
servatives has been shown to not impact DNA quality or
yield [33], they often introduce biases toward the detec-
tion of specific microorganisms. In 2015, Choo et al
[40] compared commonly used microbiome preserva-
tives for stool and found that each one was linked to the
introduction of bias in observed community compos-
ition. Preservation in OMNIgene.GUT and RNAlater
was linked with inflated microbial diversity when com-
pared to frozen samples, and Tris-EDTA usage led to
significant differences in the relative abundance of mul-
tiple taxa [40]. Additional work on biases introduced
due to the use of preservatives has shown that the use of
RNAlater leads to significant biases toward the detection
of certain taxonomic groups [41, 42], and that Stool
Nucleic Acid Collection and Preservation tubes (Norgen
BioTek Corp.) can result in the over-identification of
gram-negative bacteria [43]. Finally, work by Song et al.
[37] has shown that the use of FTA cards results in
higher levels of taxonomic diversity, but only small con-
sistent differences in taxonomic proportions. Overall,
these results indicate that the use of preservatives can
have a substantial impact on the observed relative abun-
dances of different taxonomic groups within a sample,
but large scale overall community structure metrics may
be comparable between some methods [44]. Since the
type of preservative chosen can result in a biased obser-
vation of the true underlying microbial community,
many may want to avoid their use. If freezing samples
immediately is not possible, the same preservative
should be used for all samples within a study and should
be noted within the methodology section of the corre-
sponding manuscripts.

Benchmark sample/technical replicates

A possible solution that could aid in dealing with batch
effects during both sample collection and downstream
processing is the increased usage of technical replicates.
Currently, the use of technical replicates during a micro-
biome study is uncommon. While sequencing facilities
may initially benchmark their sequencing process on
multiple mock communities, biological samples or sam-
ples reflecting a composition like those of the sample of
interest are rarely sequenced twice. This is often due to
budgetary constraints and the thought that a larger
number of unique biological samples is a better use of
resources than the creation of technical replicates, espe-
cially when they are pseudoreplicates and not true bio-
logical replicates. While there may be some truth to this
argument, the use of technical replicates has numerous
benefits and serves as an important tool to help identify
batch effects during sample processing. It allows the
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researchers to identify the amount of variance in their
sample preparation procedures and, as such, allows one
to determine the minimal effect size that can be reliably
determined as being from biological signal vs. originat-
ing from technical variation.

One possible avenue researchers could take to help
with the budgetary constraints of the creation of tech-
nical replicates is to pick a small group (or one pool) of
samples that will be processed throughout each batch of
sample processing. By comparing the same biological
sample throughout numerous sample batches, re-
searchers can benchmark the variance in composition
that they can expect between sample sequencing and
preparation rounds. While in the past, mock communi-
ties have generally served this purpose, they often do not
reflect the composition of the samples of interest, and,
as such, a biological sample that is similar in compos-
ition to those under examination should be chosen.

DNA extraction

After sample collection and storage, the next step in
most microbiome experiments is DNA extraction.
During this step, there are three main areas that can
result in significant biases within a study: the differing
DNA extraction efficiencies of microorganisms, the
introduction of contaminant DNA, and the introduc-
tion of DNA from non-viable microorganisms. Due to
these issues, DNA extraction is one of the most
biased steps in sequenced-based human microbiome
studies [6, 45].

Extraction efficiencies

It is well-known that many microbes exhibit different
DNA extraction efficiencies that can result in lower or
higher yields of DNA. For example, both bacterial endo-
spores and gram-positive bacteria are known to produce
less DNA upon extraction compared to gram-negative
bacteria [46]. These large differences due to cell wall
structure can be alleviated using mechanical cell lysis
techniques such as bead-beating [47]. Nonetheless, even
with the inclusion of bead-beating steps, it has been sug-
gested that extraction biases remain even between spe-
cies in the same genera [6, 48, 49]. For example, despite
using the same number of starting cells and accounting
for genome size, Morgan et al. [48] found that two
strains within Lactococcus lactis can exhibit different
DNA extraction efficiencies. While cell wall architecture
could account for many differences, it is not understood
why closely related species would have different DNA
extraction efficiencies. Without a better understanding
of the factors underlying differential extraction effi-
ciency, this step will remain highly biased. As such, it is
recommended that future researchers identify the
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extraction efficiencies of health-related microbes starting
from known cell counts for those organisms.

Further work in this area has also shown that the use
of different DNA extraction kits can result in different
DNA extraction efficiencies for taxa depending on the
kit used [50]. This can result in systemic biases toward
the detection of specific bacteria in microbiome studies.
Early work by Carrigg et al. and Krsek et al. using
denaturing gradient gel electrophoresis showed that dif-
ferent DNA extraction protocols used on soil and sedi-
ment samples significantly altered the observed
microbial profiles [51, 52]. Furthermore, work by Costea
et al. [53] compared 21 different extraction protocols
and found that, while taxon abundances correlated
strongly between protocols, there were significant differ-
ences between them based on various beta diversity
measurements. Overall, their work along with others has
shown that while technical biases due to the use of dif-
ferent DNA extraction kits are smaller than interindivid-
ual variation, they still posed significant issues for
downstream analysis [54, 55]. Based on these studies, it
is highly recommended that researchers include a mech-
anical lysis step during DNA extraction and either use a
standardized kit [48] or well-validated protocols such as
those presented by the International Human Micro-
biome Standards project [53].

In addition, the amount of systemic bias introduced
due to differences in DNA extraction protocols has been
recently linked to the level of biomass within a sample.
A recent study by Davis et al. [56] has shown that biases
due to choice of DNA extraction kit are stronger in low-
biomass samples compared to high-biomass samples.
This critically shows that comparisons of low-biomass
samples should be done using the same DNA extraction
protocols and that extreme caution should be taken
when comparing results between studies with different
DNA extraction methods.

In fact, almost all systematic bias that is introduced dur-
ing sample collection and processing is amplified when
working with low-biomass samples such as breast milk
[57], lung samplings [58], tumor tissues [59], or placental
tissue [60]. This is due to factors such as contamination or
sampling procedures having a larger relative impact on
community composition than they would in high-biomass
samples such as human stool. As highlighted by Great-
house et al. [50], it is important to reduce all possible
sources of contaminants during sample preparation and
to show the existence of microbial life beyond sequencing.
This could include approaches such as fluorescence in situ
hybridization, microscopy, or culturing. Furthermore, it is
recommended to use technical replicates during the se-
quencing of low-biomass samples to ensure the reproduci-
bility of the sample composition between extractions and
sequencing runs.
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Contaminant DNA

Contamination is a common issue that can be intro-
duced during multiple steps of sequencing experiments
including during sample collection, DNA extraction, and
DNA sequencing. Sequencing experiments are particu-
larly vulnerable to the introduction of contaminants due
to the high sensitivity of DNA sequencing platforms.
This is highlighted in their ability to sequence DNA in
samples that appear DNA-free based on gel electrophor-
esis [61]. In a recent review of 265 microbiome studies
by Hornung et al. [62], only 30% of studies were found
to report using any type of negative control during se-
quencing experiments. Furthermore, it was unclear in
many cases whether the negative control was only ana-
lyzed by gel electrophoresis or also subjected to DNA se-
quencing. This highlights the fact that many microbiome
studies could be potentially biased due to the introduc-
tion of contaminants.

Fortunately, in many cases, such as during the analysis
of fecal samples or oral washes, contamination will only
account for a very small proportion of total biomass and
as a result only create a minor amount of bias [63].
However, as mentioned above, contamination can be a
major issue in low-biomass samples such as those col-
lected from the human airway, brain, or placenta [63]. In
some cases, such as for placental samples, the identifica-
tion of microbes has been argued to be purely due to
contamination itself [64—66]. This has led to studies on
the “kitome” which represents the microbial inhabitants
of commonly used lab reagents. These studies have re-
vealed that while lab reagents are DNase free, they are
often not DNA free [61]. Multiple different strategies
have been implemented to remove contaminant DNA
from lab reagents, including the use of restriction endo-
nucleases [67, 68], UV irradiation [69], and ultrafine
filtration [70]. In a recent report, Stinson et al. [71] com-
pared low-biomass samples that were prepared using
standard PCR master mixes or PCR master mixes
treated with dsDNase. They found that treatment with
dsDNase resulted in a significant reduction of contamin-
ant bacterial reads within their samples. This indicates
that the simple pre-treatment of PCR master mixes with
dsDNase may result in improved microbiome analysis
for low biomass samples. However, it still remains
unclear whether any of these potential solutions can reli-
ably remove all contaminant DNA [71] and as such most
microbiome samples will contain some amount of
contamination. As this remains true, it is critical for
low-biomass samples to include extraction blanks that
have been carried through the entire extraction and se-
quencing process in order to determine the level of con-
taminants and whether your samples contain enough
reads to determine true biological effects above the
“background” of the blanks.
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While DNA extraction is arguably the most susceptible
step to contamination issues, there is evidence that se-
quencing and library preparation can also be affected [72].
Index hopping has been identified as a potential source of
contamination between samples during library prepar-
ation, especially on Illumina instruments that use ExAmp
chemistry on patterned flow cells [73, 74]. Index hopping
refers to DNA sequence barcodes being swapped between
samples due to recombination events, which leads to sam-
ple cross-contamination. Furthermore, there is evidence
of sample bleed-through during sequencing, which refers
to DNA from previous sequencing runs being incorpo-
rated into later runs. Although we are in the process of
comprehensively evaluating the effect of bleed-through,
on the Illumina MiSeq, it is currently thought to contrib-
ute to 0.1% of total DNA reads per run [75].

Post hoc contamination removal

Due to the significance of this issue, various bioinfor-
matic techniques have been suggested as ways to identify
potential contaminant sequences. In 2017, Edmonds and
Williams [76] suggested that complete removal of OTUs
found in negative/blank sequencing controls could be
used to eliminate potential contaminant sequences.
However, this is not always advisable as complete re-
moval can lead to the loss of biologically relevant signals
due to cross-contamination between samples and nega-
tive controls [77]. A second common approach for con-
taminant removal is the removal of sequences below a
specified relative abundance or read count threshold.
Nonetheless, this also does not work well in practice on
low-biomass samples and in some cases will lead to the
removal of rare features that are truly present [78].

In 2018, Davis et al. [78] presented a novel method,
“decontam,” which attempts to identify levels of contam-
ination rather than completely remove suspected con-
taminates. In this method, the authors take advantage of
two different patterns of contamination through the
measurement of DNA concentration levels and the se-
quencing of negative controls. The first pattern is that
the abundance of contaminant sequences tends to be in-
versely proportional to the total DNA concentration in a
sample, whereas true sequence abundance is independ-
ent of DNA concentration levels. This allows the authors
to fit models of contamination to various sequences and
remove contaminant abundances according to signifi-
cant model fits. The second feature they take advantage
of is the greater presence of contaminant sequences in
negative controls than in real samples. While the authors
show their tool is effective at controlling contamination
in multiple different types of samples, their models still
cannot account for cross-contamination between bio-
logical samples, nor the more significant problem of se-
quence bleed-through on Illumina machines.
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Currently, to the best of our knowledge there are no
bioinformatic methods that can deal with cross-
contamination between samples in microbiome data.
However, Minich et al. [72] have suggested a few steps
that can be used to reduce its effect on microbiome ana-
lysis. These steps include that samples should be ran-
domized across plates, and, when possible, single-tube
extraction methods should be employed. Furthermore,
low-biomass samples should not be prepared on the
same plates as samples with high biomass.

Overall, while the use of reagents to remove microbial
DNA may be promising, they have yet to be consistently
shown as a valid approach to reduce contamination.
However, researchers might think about opting for the
use of a similar strategy when working with low-biomass
samples. Furthermore, the removal of contaminants post
hoc using bioinformatic software such as “decontam”
should be included as part of the standard analysis of
low-biomass samples, but will only provide minimal im-
provements to high biomass samples such as stool [78].
Finally, as previously mentioned, sample collection and
processing should be done using aseptic techniques and
when possible completed within biosafety cabinets.

DNA from non-viable cells

One of the final bias that can be introduced during
DNA extraction is the inclusion of extracellular DNA
found in biofilms and dead cells. DNA included from
these sources can often result in the obstruction of
phylogenetic signals and the over-identification of spe-
cific microorganisms [79]. This has been shown to be
particularly problematic in the study of the airway
microbiome in cystic fibrosis patients due to the biofilms
formed by resident bacteria [80]. However, recent work
on the gut microbiome of rabbits has shown that the in-
clusion of dead cells in fecal samples can result in sig-
nificant biases and interfere with identifying the true live
microbial community within a sample [81].

Various methods have been introduced to identify the
living portion of microbial communities [79]. One pro-
posed method to distinguish viable and non-viable cells
takes advantage of the fact that RNA is only actively
transcribed in living cells and is degraded quickly when
exposed to factors outside of the cell. Therefore, by se-
quencing RNA (cDNA) instead of DNA, only genetic in-
formation from the living fraction of cells within a
community will be captured. Nonetheless, this method
suffers from multiple weaknesses, including the lower
stability of RNA prevent the use of some samples (ex:
stool), a higher detection rate of non-dormant microor-
ganisms [82], and that rRNA transcription levels and cel-
lular growth rates are not perfectly associated [83].

A second promising approach takes advantage of cell
membrane integrity and the ability to pass specific
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chemicals through the membranes of non-viable cells.
While these techniques are commonly used in micros-
copy and flow cytometry, it has only recently been ap-
plied to DNA sequencing experiments [79]. Recent work
by Weinmaier et al. [84] has shown that the use of pro-
pidium monoazide (PMA), a chemical that binds extra-
cellular DNA and inhibits PCR amplification, can
significantly improve the ability to identify DNA from
live cells prior to sequencing. Since this initial work,
multiple other studies have successfully taken advantage
of PMA to characterize differences between the “live”
microbiome and the total microbiome [85-87]. While
this method is promising, it cannot accurately distin-
guish between viable and non-viable spores and archaea
[84]. Further caution is also required when using this
method as certain microbes such as strict anaerobes that
are alive within the sampling environment upon collec-
tion will die off during sample processing. This can re-
sult in the loss of information from these groups of
microbes, despite them being alive and present in the
original sample.

Library preparation and sequencing

DNA amplification

Multiple factors can lead to biases at the PCR amplifica-
tion step of microbiome studies. One of these factors is
the inclusion of both inorganic ions and organic material
that can interfere with PCR amplification [88]. The in-
clusion of these materials is usually due to inefficient
DNA extraction steps in poorly optimized sampling en-
vironments. Interference by the inclusion of these inhibi-
tors can lead to reduced PCR amplification and the
inability to identify low abundance organisms within a
sample.

One countermeasure to the reduced PCR amplification
due to inhibitors is to increase the number of PCR cy-
cles. Increasing PCR cycle numbers has been shown to
significantly increase bacterial richness while not signifi-
cantly impacting overall community structure due to the
stronger detection of low abundant organisms [89].
However, this does come at the cost of reduced specifi-
city. Work by Qiu et al. [90] has shown that increasing
PCR cycle numbers directly increases the number of
PCR products that contain sequences from two different
DNA templates. Accumulation of these sequences,
known as chimeras, is due to the creation of incom-
pletely extended primers during the later cycles of PCR
amplification that can act as primers for new DNA tem-
plates [91]. This issue is further exacerbated in marker
gene sequencing studies due to the higher likelihood of
homology between template DNA strands from the
same or highly related species within a PCR [92].

Various strategies have been developed to reduce
chimeric sequences in multiple template PCRs, with the
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use of high-fidelity polymerases with proof-reading cap-
ability being one of the most promising [93]. In 2019,
Sze and Schloss [94] examined bias introduced through
the use of different polymerases and found that signifi-
cant differences in error rate and chimeric sequence
generation could be found between them. Interestingly,
they found that after 30 PCR cycles AccuPrime polymer-
ases had the lowest chimera rate (0.9%), but the highest
error rate (0.124%), indicating a strong trade-off between
lowering error rate and chimera formation. They found
that the Q5, KAPA, and Phusion polymerases had the
lowest error rates (~0.06%), although the KAPA poly-
merase’s chimera rates were also the second lowest
(2.3%) among polymerases tested. Based on these results,
they recommended the use of KAPA polymerase for 16S
rRNA gene sequencing studies. However, despite these
differences they concluded that the choice of polymerase
has little impact on the biological interpretations of
community-wide measurements of diversity when using
appropriate chimera filtering software such as UCHIME
[95]. Similarly, in 2016, Gohl et al. [93] examined mul-
tiple polymerases and found that the use of high-fidelity
polymerases resulted in fewer chimeric sequences. In
summary, these two reports indicate that the choice of
polymerase can affect both the error rate of sequences and
the abundance of chimeras. To reduce these issues during
PCR amplification, it has been suggested that researchers
should use the highest possible fidelity polymerases and
minimize the number of PCR cycles used [94].

Finally, one potential source of bias in PCR is the
amount of template added to reactions. Although the
overall goal would be to standardize the input DNA
amounts across all community samples, achieving this
goal is currently not possible for most microbiome sam-
ples. Due to the abovementioned extraction differences,
copy-number variations between organisms differing be-
tween samples and, most importantly, the unquantified
amounts of background “non-target” DNA that can be
present in samples, it is quite difficult to assess the true
“on-target” template amounts being added to PCRs. Given
this, it is usually more productive to generate similarly
strong amplification, regardless of template input differ-
ences, from as many samples as possible so that post-
library normalization will generate as consistent sequen-
cing between all samples as possible (i.e., will generate
similar “sequencing effort”). In conclusion, researchers
should keep a consistent protocol throughout their micro-
biome study and should report all PCR parameters within
the methodology section of their report.

Sequencing platform

The majority of DNA sequencing projects are now done on
[lumina sequencing platforms, which generally show pref-
erable DNA sequencing performance when compared to
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other short read technologies such as Roche 454 sequen-
cing or Ion torrent sequencing [7]. In 2016, D’Amore et al.
[96] compared several sequencing platforms using 16S
rRNA gene sequencing to determine the amount of bias in-
troduced by the choice of DNA sequencing platform. They
found that each DNA sequencer had its own unique bias
profile that caused significant differences in the observed
community make up that explained small levels of variation
between microbial profiles [96]. This confirms earlier work
by Salipante et al. [97] who compared the [llumina MiSeq
and Ion Torrent Personal Genome Machine and found that
overall the disparities between the two platforms were
minor. Accordingly, these studies show that, while the
choice of DNA sequencing platform can impact the ob-
served community, the systemic bias introduced tends to
be smaller than sample-to-sample variation.

Recent advances in long-read sequencing technologies
have now enabled the sequencing of large DNA frag-
ments. These advancements have enabled full-length
marker gene studies and more comprehensive evaluation
of metagenomes [98, 99]. However, historically long-read
technologies have been plagued by significantly higher
error rates (5-15%) [100, 101], particularly when com-
pared to short-read technologies such as Illumina sequen-
cing (0.01-3%) [96]. Nonetheless, recent work by Schloss
et al. [102] and Johnson et al. [98] has shown that ad-
vancements in PacBio circular consensus sequencing have
led to observed error rates as low as 0.027%. Unfortu-
nately, this comes at a significant cost to sequencing
throughput and other long-read sequencing platforms
such as the MinION still have significantly lower accur-
acies than its short-read competitors. While the through-
put of long-read platforms are still significantly lower than
[lumina short-read technologies, the use of full-length
marker genes has been shown to provide considerable ad-
vantages [98]. These advantages include the elimination of
systemic biases between studies that have sequenced dif-
ferent marker gene regions and improvement on our abil-
ity to resolve lower levels of taxonomy.

It should also be noted that advancements in DNA se-
quencing technology have introduced the use of linked
reads and proximity ligation strategies to produce high-
quality synthetic long reads [103]. Using these methods,
it is possible to produce higher quality genome assem-
blies; however, users should be aware of the potential
biases these methods introduce due to the various en-
zymes used during library preparation [104]. As such, re-
searchers should be aware that data produced through
other library preparation methods may not be directly
comparable.

Primer choice during marker gene studies
Despite the recent advances in long-read technology,
marker gene sequencing is still predominately performed
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with high-throughput short-read technologies. These
technologies, such as the Illumina MiSeq and HiSeq, are
limited to short fragments ranging from ~150 to 550 bp.
This has resulted in the creation of multiple different
primer sets to target different variable regions on marker
genes, such as the bacterial 16S rRNA gene [105-107].
Unfortunately, these primer sets differentially amplify
different bacterial taxa, and no 16S rRNA gene primer
set has been shown to equally amplify all bacteria. This
is due to multiple reasons, including differing
hybridization rates between taxonomic groups [7] and
the presence of inhibitory flanking DNA [108], often
caused by secondary structure and/or GC content differ-
ences. These unequal priming events lead to over- and
under-detection of various bacterial groups, depending
on the primer set used, leading to obstruction of the true
underlying community composition and large taxonomic
differences between studies that use different primer sets
[109]. Numerous studies have compared the detection
biases of various primers in different environments, and
primer choice remains a debated topic within the field
[20, 75, 106, 110, 111]. While large projects such as the
Earth Microbiome Project recommend the usage of the
V4 region, this choice does suffer from the underrepre-
sentation of several important taxonomic groups, includ-
ing Actinobacteria and Propionibacterium, while over
representing groups such as Streptococcus, Treponema,
and Prevotella [75, 107]. It is highly recommended that
researchers use a primer set that is either directly com-
parable to previous literature or can detect the groups of
bacteria they are interested in studying.

Fortunately, as mentioned previously, improvements
in DNA sequencing technologies have now begun to en-
able higher throughput full-length marker gene sequen-
cing. This has the promise to reduce biases between
studies that use primer sets that target different regions
on marker genes. However, the primers used in full
length studies will still have different priming rates be-
tween taxonomic groups.

Metagenomic library preparation

Currently, the majority of metagenomic shotgun sequen-
cing projects rely on high-throughput short-read Illu-
mina DNA sequencing [112]. Several different library
construction methods have been developed for Illumina
sequencers, which generally consist of three to four dif-
ferent stages: DNA fragmentation, optional repairing of
DNA fragments, ligation of platform specific adaptors,
and optional library PCR amplification [113]. Multiple
different strategies have been used to accomplish these
tasks including enzymatic digestion, mechanical shear-
ing, and the use of transposons. In 2019, Sato et al. [113]
compared the biases introduced by using different li-
brary preparation kits by examining both mock
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communities and isolated bacteria. They found that li-
brary preparation using the now-discontinued Illumina
Nextera XT kit suffered from strong biases toward high-
GC content regions. Examination of mock communities
prepared using the XT kit resulted in the under-
observation of low-GC content species such as Staphylo-
coccus aureus, Brachyspira pilosicoli, and Streptobacillus
moniliformis. Further investigation also revealed that
minor biases toward high-GC content were also present
in library preparations using mechanical fragmentation,
likely due to non-random DNA shearing during sonic-
ation methods [114]; however, these biases were smaller
than in the case of XT kits. Interestingly, the other li-
brary preparation kits they tested, including the new
Nextera Flex (replacement for XT) Illumina transposon-
based method, showed relatively little bias when com-
pared to one another. Overall, this indicates that the ob-
served microbial community can be systemically biased
when using library preparation methods such as the Illu-
mina Nextera XT kit or sonication-based mechanical
fragmentation.

Marker gene bioinformatics

After sequencing has been accomplished, a significant
amount of bias can be introduced during downstream
bioinformatic analysis [55]. A typical analysis begins with
quality filtering to remove reads with ambiguous or
error-prone base calls. Despite this step removing a sig-
nificant amount of poor-quality data, it has been shown
to only introduce a relatively small amount of bias
directed toward the detection of low-abundance micro-
organisms [8]. After quality filtering, reads must be
assigned to an analytical unit using either error-
correction denoising algorithms or operational taxo-
nomic unit (OTU) picking.

Taxonomic units

As both sequencing and PCR can introduce base errors
during sequencing experiments, it is not recommended
to analyze sequences directly. Instead, users can choose
to either cluster sequences together into OTUs or cor-
rect sequencing errors using denoising algorithms. The
choice to use denoising algorithms or OTU-picking
strategies has been shown to create systematic bias in
marker gene sequencing studies [8, 115]. Within each of
these distinct categories, further systemic bias can be in-
troduced based on the implementation of the chosen
denoising or OTU-picking algorithm [7]. In the case of
OTU picking, there are three major methods for defin-
ing OTUs: reference-based, de novo, and open-reference
clustering. During reference-based clustering, sequences
are compared to known marker genes within a database
and clustered at a specific percent identity cutoff [116].
This differs from de novo clustering strategies as these
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methods do not rely on reference databases, but rather
cluster all sequences within a study based on pairwise
nucleotide distances [117]. Finally, open-reference
clustering uses both strategies by first performing
reference-based OTU picking and then clustering the
remaining sequences in a de novo manner [118]. Over-
all, the clustering of sequences in these manners allows
researchers to mitigate the impact of sequencing errors
on any one read.

Currently there is mixed evidence on which strategy is
best when attempting to define OTUs [7]. While de
novo methods have been shown to create higher quality
OTU classifications [117], they often suffer from being
unstable both within studies [119] and between studies
[120]. Furthermore, while the use of different strategies
can result in significantly different richness counts [117],
they often resulted in similar beta-diversity metrics, indi-
cating that, while biases are present, they are often
smaller than sample-to-sample variation [121]. Overall,
it currently remains unclear which clustering strategy re-
veals observations closest to the true community, al-
though recent work by Edgar [122] has shown that,
regardless of clustering strategy, the use of OTUs often
inflates the diversity and richness present within a mi-
crobial community.

To help counteract these issues, various denoising al-
gorithms have been created to resolve single-nucleotide
accuracy while also generating sequences that can be
compared between studies [120]. Currently, there are
several denoising algorithms that generate amplicon se-
quence variants (ASVs), including DADA?2 [123], Deblur
[124], and UNOISE [125]. While the goal of these three
tools is similar, they achieve it through different mecha-
nisms. Deblur first filters reads for possible artifacts
through the alignment of reads against sequence artifact
databases and the removal of reads that do not map to
the 88% OTU Greengenes database. It then aligns all
remaining sequences against one another and uses infor-
mation on their abundances and the error rate of
[lumina sequencers to remove sequences derived from
errors. UNOISE uses a similar approach that first clus-
ters sequences together and then uses pre-set parame-
ters to remove error-derived sequences. Unlike the other
two methods, DADA2 generates a parametric error
model for each sequencing run and then uses quality
score information to remove sequencing errors.

These algorithms have been compared to standard
OTU-clustering methods and in many cases have shown
preferable results. Nearing et al. [8] found that while
open reference-based OTU clustering resulted in the in-
flated richness of mock communities, all three denoising
algorithms had richness scores comparable to the
expected number of biological sequences. They also
found that all three denoising algorithms resulted in
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comparable biological conclusions when examining met-
rics that were weighted by abundance. Subsequently,
Caruso et al. [115] have shown that denoising algorithms
outperform conventional de novo OTU-clustering strat-
egies on several different mock communities. It should
be noted that denoising tools have been developed using
mock communities and as such their pre-set parameters
and modeling behaviors may be overfit toward simple
microbial communities. This makes it extremely import-
ant to be consistent in your choice of algorithm when
comparing data within and across studies. However,
overall, the data does suggest that denoising algorithms
may be a preferable option for analytic unit assignment
in future marker gene studies.

Regardless of the advantages and disadvantages of each
algorithm, it is important to record which strategy was
used to assign analytical units during analysis. Due to the
intrinsic nature of each algorithm, they all generate their
own systemic biases which become especially apparent
during the examination of rare taxonomic groups [8].

Taxonomic classification
Taxonomic classification of ASVs or OTUs poses a sec-
ond challenge in the bioinformatic analysis of micro-
biome sequencing data. There have been multiple
different strategies used to assign taxonomy to ASVs or
OTUs throughout the years [126]. Common strategies
include the use of kmer-based classifiers, such as naive
Bayes or Kraken2 [127, 128], local alignment search
tools [129], or multiple global alignment strategies [130].
Each of these classifiers have been shown to have vary-
ing accuracy scores depending on the sample that is be-
ing analyzed [126, 128, 131] and introduce systemic
biases in their ability to resolve the classification of novel
taxonomic groups [131]. Furthermore, each of these
methods is dependent on the use of reference databases
that can result in additional differences between studies.
Currently, there are four commonly used marker gene
databases for microbiome studies: Greengenes [132],
SILVA [133], Ribosomal Database Project (RDP) [134],
and NCBI [135, 136]. Interestingly, each of these data-
bases use their own method for taxonomic classification
assignment. While all four use seven main ranks: do-
main, phylum, class, order, family, and genus, both the
SILVA and RDP databases also contain intermediate
ranks. Furthermore, unlike the other three databases that
use manually curated systematics to assign taxonomy,
Greengenes taxonomy is assigned based on de novo 16S
rRNA gene tree construction [137]. While work has
shown that Greengenes, SILVA, and RDP can be
mapped onto NCBI taxonomy with only low levels of
dissimilarity, there are many instances where Green-
genes, SILVA, and RDP cannot be mapped reliably to
one another [137]. This distinction is important as slight
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differences in taxonomic assignments between studies
can lead to substantial differences in interpretation of
the biological conclusions from studies.

Copy number correction

Unfortunately, not all marker genes that are studied are
present as single copies within microorganisms. The
commonly sequenced 16S rRNA gene is present in vari-
able numbers among both bacteria and archaea [138].
While it has been shown that 16S rRNA gene copy num-
ber rarely varies within species, it often increases in vari-
ation with taxonomic distance [139]. Furthermore, due
to these differences, 16S rRNA gene sequencing experi-
ments can be biased toward the detection of bacteria
with higher 16S rRNA copy numbers [140]. While this
bias will have minimal impact on between-study com-
parisons, they can severely distort the observed compos-
ition from the underlying truth [141].

Work by both Kembel et al. [140] and Angly et al. [142]
has found that 16S rRNA gene copy number variation ex-
hibits strong phylogenetic signals. This has led to the de-
velopment of multiple different phylogenetic methods for
correcting 16S rRNA gene copy number variation within
microbiome studies. Louca et al. [141] recently compared
three different tools (PICRUSt [143], CopyRighter [142],
and PAPRICA [144]) in their ability to correctly predict
the number of 16S rRNA gene copies within a wide range
of both bacterial and archaeal clades. In their analysis, they
found that independently of the tool used, 16S rRNA gene
copy number could only be accurately predicted for a
small number of tested genomes that had low levels of se-
quence divergence from reference 16S rRNA genes [141].
This indicates that while copy number correction methods
could be useful in well-studied environments, they gener-
ally introduce more noise than they correct. Fortunately,
like most bioinformatic methods that rely on reference da-
tabases, their accuracy may increase as new genomes are
sequenced.

Metagenomic shotgun bioinformatics

Unlike marker-gene sequencing, metagenomic shotgun se-
quencing involves the sequencing of all the DNA contained
within a sample. This can significantly complicate bioinfor-
matic workflows, and, as a result, two main approaches for
data analysis are available: referenced-based metagenomics
and de novo metagenomic assembly. Each of these methods
have their own benefits and detriments and often analysis
with one method can complement the other.

Reference based

Reference-based metagenomic shotgun sequencing strat-
egies generally involve three different approaches by com-
paring sequenced DNA to databases containing reference
genes, marker genes, or translated protein sequences [145].
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Multiple tools exist for each strategy; however, they often
are either comparing full-length sequences, marker gene se-
quences, or kmer sequence composition to reference data-
bases to achieve taxonomic and functional assignment
[146]. MclIntyre et al. [147] compared 11 different metage-
nomic classifiers and found that the number of species
identified within the same sample could differ by three or-
ders of magnitude depending on tool choice. However, they
found that the overlap between the true taxa within the
sample and most abundant species identified was relatively
high, indicating that filtering of low-proportion species
could improve accuracy and reduce the number of false
positives. Furthermore, they found that the most commonly
identified false positives belong to the phyla Proteobacteria,
Firmicutes, or Actinobacteria. More recent work by Ye
et al. [145] compared 20 different metagenomic classifiers
and found that all tools had relatively high area under the
curve for precision and recall with the exception of the
phylogenetic marker-gene-based tools MetaPhlAn2 [148]
and mOTUs2 [149]. The authors also found that DNA-
based strategies, in particular Kraken [150] and taxMaps
[151], tended to have abundance estimates that were closer
to the underlying truth than other strategies. This is most
likely due to protein classifiers lacking untranslated regions
within their database and marker-gene strategies lacking
marker genes for specific taxonomic lineages. However, it
was also found that DNA strategies tended to suffer from
large numbers of low-abundance false positives while
marker gene strategies did not [145]. Overall, these studies
indicate that the use of DNA-based strategies with an
appropriate abundance filter, such as Kraken and its
related tools Kraken2 [152] and Bracken [153], is rec-
ommended due to their favorable performance met-
rics. However, it should be noted that a combined
approach using marker gene-based classifiers may be
required when researchers are interested in studying
low-abundance taxa.

Finally, it was shown that all classifiers underper-
formed as the number of poorly described taxonomic
groups increased within a sample [145]. This issue has
become especially apparent within the study of the hu-
man virome, where sequence databases cover only a
small amount of total viral diversity [154, 155]. This
issue highlights one of the largest biases in reference-
based approaches as they are only able to classify func-
tions and taxonomic groups within the target reference
database. This limitation suggests that additional analysis
on poorly described samples using de novo assembly
could significantly improve insights into the observed
underlying microbial composition.

Metagenomic assembly
Unlike reference-based metagenomics, de novo assembly
methods do not rely on the use of existing reference
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sequences. Instead, they take advantage of sequence
overlaps between DNA reads to generate longer pre-
dicted sequences known as contigs and scaffolds
[112]. This process is known as assembly and can be
accomplished by multiple different programs includ-
ing the popular tools MEGAHIT [156] and metaS-
PAdes [157]. The recovery of complete genomes from
assembly is often not possible due to their inability to
resolve highly repetitive regions [158] and regions of
similarity between different genomes [112]. This has
led to the development of a second step known as
binning. Binning takes advantage of multiple features,
including the co-abundance and coverage of contigs
between samples [159] and the grouping of contigs
with similar kmer frequencies and GC content [160,
161]. This allows contigs to be grouped into bins
which represent groups of contigs likely co-occurring
within the same genome.

This process has enabled the recent discovery of
thousands of novel metagenome-assembled genomes
in human microbiome samples [162-164]. However,
while assembly methods have a lower dependency on
reference databases, they are biased in multiple other
aspects. Due to the complex composition of micro-
biome samples, assemblers are often not able to de-
termine the relationship between a large portion of
reads within a sample [112]. This can result in the
under classification of functional genes such as rRNA
genes that are often found in repetitive regions [158].
Vollmers et al. [165] recently compared various tools
for assembling metagenomes and found significant
biases in their ability to identify both high- and low-
abundance organisms. Similarly, work by Yue et al.
[166] compared various binning strategies and found
that tools output differing results, with DASTool,
MetaWrap, and MetaBat2 showing the strongest re-
sults. This indicates that, like reference-based ap-
proaches, the choice of bioinformatic software could
have significant impacts on the observed results.

Finally, like reference-based metagenomics, the an-
notation of assembled bins and genomes is dependent
on known reference databases. Several reference data-
bases exist for this purpose including NCBI RefSeq
[167] and the Genome Taxonomy Database [168].
Currently, there is debate within the field as to which
databases provide the most accurate representation of
the underlying data. This can result in biased annota-
tions of genes or taxa that are overrepresented within
a database which can considerably bias the informa-
tion obtained during analysis [169]. Despite these
drawbacks, assembly based methods offer a
complimentary strategy to reference-based approaches
that offer the ability to identify novel microorganisms
within a sample.
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Abundance correction methods

Bias adjustment using mock communities

In 2015, Brooks et al. [45] presented a novel protocol for
identifying and correcting biases for specific taxa within
a microbial community using mock community mix-
tures. Using 80 different mock communities of specific
taxa, they were able to predict the true abundance of
those taxa within sequenced samples of unknown com-
position. Based on their model, they found that biases
could introduce abundance error rates as high as 85%,
indicating the importance of incorporating them during
downstream analysis. Furthermore, they found that the
predicted true abundances of specific bacteria within
clinical samples better reflected the physiology and diag-
nosis of patients. For example, they found that the pre-
dicted abundance of G. vaginalis using their modeling
method correlated better with pH levels than the origin-
ally observed proportions.

Further work in later years by Krehenwinkel et al. [170]
and Bell et al. [171] involved the use of simple linear re-
gression models of observed proportions against actual
abundances to estimate experimental biases. Like previous
work, they found that each taxon within a sample had dif-
ferent levels of observed biases. While they were able to
show strong model fits for many taxa, these studies suf-
fered from their inability to consider the interactions be-
tween biases within a single sample, which is critical when
modeling compositions using proportions [6].

Fortunately, recent work by McLaren et al. [6] has
shown the promising ability to adjust biases introduced
throughout microbiome sequencing experiments using a
mathematical model based on the ratio of observed
reads between different taxa. Within this model, they
show that, unlike proportions, biases that impact ratios
between taxa are independent of sample composition.
This critical finding helps address previous issues with
models that failed to consider interactions between vari-
ous biases within samples. The authors then go on to
show that, using a simple mathematical model based on
taxon-specific multiplicative biases and the ratios be-
tween taxa, they could predict proportions that closely
matched observed results from mock communities. Fur-
thermore, they showed that the use of mock community
calibration controls can help adjust observed propor-
tions to their true values in samples with unknown
composition.

Unfortunately, all these methods for bias adjustment
rely on the ability to use mock communities as calibra-
tion controls. While this may be feasible for a small
number of bacteria as suggested by Brooks et al. [45], it
is currently not feasible for the majority of microbiome
sequence-based experiments. With the inability to cul-
ture a significant proportion of microbes, many projects
will suffer from the inability to create cell-based mock
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communities [172]. This will result in the inability to
measure DNA extraction biases which have been shown
to play a significant role in microbiome studies. Further-
more, due to the resolution of many 16S rRNA gene se-
quences, OTUs or ASVs of interest may not currently
correspond with any known living organisms. This
would again create barriers in the ability to collect and
create mock communities. Despite these drawbacks,
there are many instances where mock community con-
struction is possible, as shown by Brooks et al. [45], and
these methods should be considered when plausible.
Furthermore, a publicly available database of extraction
efficiencies of different microbes using different extrac-
tion protocols would substantially improve the usability
of these methods in the future.

Determining absolute microbial abundances

Unlike the use of culturing, qPCR, or flow cytometry,
DNA sequence-based microbiome studies currently
lack the ability to determine absolute microbial abun-
dances. This is due to the compositional nature of
DNA sequencing data where one read does not cor-
respond to one cellular unit [173]. This can often ob-
scure the analysis of microbiome data, as the
increased relative abundance of one taxon will always
result in the decreased relative abundance of all other
taxa in a sample, even if they have not actually chan-
ged (Fig. 2). In 2017, Vandeputte et al. [174] com-
bined 16S rRNA gene sequencing data with flow
cytometry and qPCR data to generate quantitative
microbiome profiles (QMP). While this method
allowed the authors to generate new insights into the
microbial etiology of Crohn’s disease, it suffers from
multiple different downfalls. To generate QMP data
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from 16S rRNA gene sequencing data, the number of
16S rRNA gene copies in each cell must be deter-
mined. Unfortunately, this process is unreliable for
most bacterial and archaeal genomes [141]. Further-
more, QMPs cannot consider multiple different biases
that are introduced throughout sequencing experi-
ments that disrupt the relationship between cellular
counts and sequence abundance [6, 45]. This includes
differing DNA extraction efficiencies and PCR ampli-
fication efficiencies between different taxonomic
groups. Decades of work in “classical” environmental
microbiology have also shown that it is not a trivial
matter to obtain accurate cell counts for many sam-
ples. There are also the considerations of live vs. dead
cells included in counts (or the accuracy of live-dead
stains, if used) and the potentially variable biases (de-
pending on sample type) introduced by the sample
preparations required to enable microscopy or flow-
cytometry counting. Even if accurate counts could fi-
nally be obtained, the end-point nature of current
high-throughput sequencing PCRs means that re-
solved abundances are “semi-quantitative” at best, as
they are not based upon the same technique as
qPCR.

Tkacz et al. [175] presented a second method in
2018 for determining absolute microbial abundances
from DNA sequencing data. They proposed the use
of synthetic chimeric DNA with known quantities as
controls during marker gene sequencing experiments.
Furthermore, they suggest that these chimeric DNA
sequences can be modeled after different taxonomic
sequence signatures to control for amplification
biases. This provides a significant improvement over
the previous attempts; however, it still suffers from

o
N

Relative Abundance

1
e -

Community 1 Community 2 Community 3 Community 4

Absolute Abundances
Staphylococcus aureus 1 1 2
Bacteroides fragilis 1 4 1 1
Akkermansia muciniphila 1 1 2 1

Fig. 2 Microbiome data is compositional and does not represent absolute counts. As a consequence of the arbitrary total amount of sequencing
reads a DNA sequencing platform can generate, the resulting data is compositional. This means that one DNA sequence does not correspond to
one cellular unit, and an increase in relative abundance from one group can result in the decrease of relative abundance of another. This can
occur even when the absolute abundance of a group does not change
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differences in marker gene copy numbers and differ-
ing DNA extraction efficiencies.

Methodology standardization and reporting
Consistent study protocols

A significant portion of the bias between microbiome
studies is introduced through the use of different proto-
cols [53, 176]. This has led to attempts to standardize
protocols within the microbiome field to allow for im-
proved inter-study comparisons. In 2010, the Earth
Microbiome Project [176] was initiated as an attempt to
collect and sequence microbiome samples from around
the world. With the initiation of this project, several
standardized protocols were developed including the ac-
quisition of metadata, DNA extraction, and both
marker-gene and shotgun-sequencing library prepar-
ation. Following this, the International Human Micro-
biome Standards group compared a number of different
protocols on human fecal samples and presented recom-
mended protocols based on reproducibility and accuracy
of community diversity [53]. While following these rec-
ommended protocols would reduce biases between stud-
ies, not all protocols are appropriate for the diverse
number of biological questions at hand [6]. For example,
some protocols may need to be altered if the researchers
are interested in either the live or total microbial com-
munity contained within a sample. Furthermore, the use
of standardized protocols still does not solve the sys-
temic biases introduced during sequencing experiments
that led to distorted observations of the true underlying
microbial community.

Despite these issues, it is still recommended that
whenever possible, protocols between closely-related
studies should be replicated to reduce the amount of
bias introduced between each study. As previously men-
tioned, when possible, manufactured kits or the use of
well-validated protocols such as those outlined by the
International Human Microbiome Standards project or
Earth Microbiome project should be used. Furthermore,
the use of classification tools such as random-forest
modeling or neural networks should be validated on data
from more than one study group to ensure the reliability
of their model on real world data. Overall, when inter-
preting results, researchers should remember that the
observed communities are only one representation of
the true underlying abundances contained within the
sample.

Methodology reporting

While there are several promising approaches to help re-
duce the amount of systematic bias within microbiome
studies, the best way to help between study comparisons
is the creation of a comprehensive methodology section.
Not only will this allow researchers to replicate your

Page 15 of 22

results but will also allow them to help identify why re-
sults may not be reproducible from one study to an-
other. A number of studies including projects such as
the Earth Microbiome project and more recently the
STORMS microbiome project [177] have addressed this
issue. As such, we will only briefly outline in the section
below as well as in Table 2 key information that should
be present in the methodology of all microbiome
studies.

All sample collection procedures should be included
within the methods section. This includes the collection
method and sterile techniques used during sample col-
lection, as well as the media used to store the samples.
Furthermore, authors are also recommended to give the
general length of time samples remained in storage be-
fore processing began. One of the most critical pieces of
information included in the methods section should be
the DNA extraction method used during sample prepar-
ation. As highlighted, above DNA extraction is one of
the largest factors that introduces systematic bias within
a study. If a DNA extraction kit is used, author must re-
port the manufacturer and product name, along with
any modification or optional steps that the authors used,
such as the addition of proteinase K. Within this section,
it is also recommended that the authors report all steps
taken to reduce any possible sources of contamination,
such as the use of biological safety hoods and inclusion
of blanks (critical for low-biomass samples) during DNA
extraction.

Depending on the type of DNA sequencing used to in-
vestigate the samples of interest, the exact reporting
parameters will differ between marker gene or metage-
nomic shotgun sequencing. Researchers should report
all parameters used during PCR amplification, including
the number of cycles and the type of polymerase used.
The authors should also report the primer names and
sequences if custom primers are used, during marker
gene sequencing. If a commercial metagenomic library
preparation kit was used, the authors should report the
manufacturer as well as the product name and any mod-
ifications or optional steps used during sample process-
ing. The amounts of template and the method of library
normalization should be reported within the methods
for both marker gene and metagenomic shotgun sequen-
cing studies. The DNA sequencing instruments, along
with which consumable versions used during sequen-
cing, should be reported.

No matter what approach is used to investigate your
samples, the bioinformatics method section of a manu-
script should include the names and versions of all bio-
informatic tools used within the workflow. This includes
any databases that were used for classification through-
out the study and all non-default parameters used. Any
programs used for statistical analysis should be reported,
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Table 2 Key information to report within sequenced-based microbiome manuscripts

Processing step Parameters

Sample collection

- - Description of samples of interest

- Collection location

- Collection device

- Number of different collection personnel
- Sterile techniques used

- Use of technical replicates

Sample storage

- Media used to store samples

- Length of storage and storage conditions
- Length of time spent unpreserved

DNA extraction

- DNA extraction method

- If using manufacturer kit:
Product name
Optional steps used
- Any methods used to reduce or remove possible contaminants

Library preparation

- PCR parameters including:

Polymerase
Cycle number
Thermal profile
- Marker gene studies:
Primer names and gene target(s)
- Metagenomic shotgun studies:
Library preparation kit name/protocol
Detailed information about:
= DNA fragmentation
= DNA fragment repair

= Ligation

= PCR amplification
- Normalization method
- Amount of starting template used

Sequencing

- Sequencing platform

- Consumable product names
- Whether demultiplexing or any other sequence pre-processing on-instrument was done

Bioinformatics

- All tools used to process raw data along with:

Goal of tool

Version number

Non-default parameters
- Any database names along with their version numbers
- Any statistical tests used to analysis data

along with any hypothesis tests that were used to investi-
gate the samples of interest. Finally, all code along with
its documentation and comments should be deposited in
a public repository (e.g., GitHub) and linked within the
methodology section of its accompanying study.

Closing remarks

The study of the human microbiome has clearly created
a better understanding of the relationship between
humans and microbes. However, multiple different ex-
perimental steps have led to the inclusion of significant
biases within the human microbiome literature. In many
cases, this has led to the inability to compare results
from one study to another. The use of consistent proto-
cols on similar sample types could help address issues of
between-study bias [7]. This will, however, require the
development of further environment-specific protocols,
as not every sample is amendable to currently recom-
mended solutions. Furthermore, authors should report
the key parameters outlined within this review in all

microbiome-based sequence studies to help ensure the
reproducibility of their results.

While reporting these key parameters will help with
addressing between-study biases, it will not help address
within-study biases that can lead to distorted observa-
tions of the true underlying microbial composition.
These issues generally stem from multiple areas, includ-
ing the inability to quantify extraction efficiencies
between different microbes and different DNA amplifi-
cation rates. Without solving these issues, the true view
of the absolute abundances of microbes within the hu-
man microbiome will not be possible. This is critically
important to understand when evaluating methods that
rely on qPCR, flow cytometry, or DNA spike-in
methods. Although recent work in the field of mathem-
atical modeling shows the promising ability to adjust
most biases within a microbiome experiment, they cur-
rently rely on the ability to create mock communities
[6]. Unfortunately, as stated previously, this is currently
not possible for many microbes. Despite this, we suggest
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that future work should attempt to quantify DNA ex-
traction efficiencies for various protocols and health-
related microbes as it is currently one of the largest
areas of bias within microbiome studies.

Overall, it is currently recommended that all methods
in a study should be kept consistent and, when compar-
ing to previous work, the same protocols should be
followed. If this is not possible, protocols should be
benchmarked between studies to identify whether con-
sistent patterns of bias can be found between them. This
will give researchers additional information that can be
used when comparing results between studies. Finally,
all biological conclusions generated from sequenced-
based microbiome experiments should be validated
through other molecular techniques to ensure that the
underlying results are robust to biases introduced during
microbiome sequencing experiments.
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