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Abstract

Individualized treatment rules (ITRs) recommend treatment according to patient characteristics. 

There is a growing interest in developing novel and efficient statistical methods in constructing 

ITRs. We propose an improved doubly robust estimator of the optimal ITRs. The proposed 

estimator is based on a direct optimization of an augmented inverse-probability weighted estimator 

(AIPWE) of the expected clinical outcome over a class of ITRs. The method enjoys two key 

properties. First, it is doubly robust, meaning that the proposed estimator is consistent when either 

the propensity score or the outcome model is correct. Second, it achieves the smallest variance 

among the class of doubly robust estimators when the propensity score model is correctly 

specified, regardless of the specification of the outcome model. Simulation studies show that the 

estimated ITRs obtained from our method yield better results than those obtained from current 

popular methods. Data from the Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D) study is analyzed as an illustrative example.
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1 Introduction

In recent years, personalized medicine, or precision medicine, has received tremendous 

attention in clinical practice and medical research (Hamburg and Collins, 2010; Chan and 

Ginsburg, 2011; Collins and Varmus, 2015). Its development originates from the fact that 

patients often exhibit heterogenous responses to treatments. A drug that works for the 

majority of individuals may not work for a subgroup of patients with certain characteristics. 

For example, trastuzumab is shown to be effective for treating HER2-overexpressing 

metastatic breast cancer as it is specifically designed to target HER2 amplification (Vogel et 

al., 2002). Individualized treatment rules (ITRs) formalize personalized treatment decisions, 

which recommend treatments using patients’ own information, with the optimal ITR 
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maximizing the mean of a pre-specified clinical outcome if followed by the patient 

population.

Using data collected from clinical trials or observational studies, numerous methods have 

been developed on estimation of optimal ITRs. One approach is to fully or partly specify a 

model of the clinical outcome given treatment and covariates, and then use the fitted model 

to infer the optimal ITR. This includes Q-learning (Qian and Murphy, 2011) and A-learning 

(Murphy, 2003; Robins, 2004; Blatt et al., 2004). Q-learning models the conditional mean of 

the outcome given treatment and covariates while A-learning directly models the differential 

treatment effects between treatments. However, one drawback of Q- and A-learning is that 

the optimal treatment rule is indirectly estimated through posited regression models, and 

thus sensitive to model misspecification. Value-search or direct-maximization methods offer 

an alternative to regression-based methods by directly maximizing an estimator of the 

marginal mean outcome over a pre-specified class of ITRs (Zhao et al., 2012; Zhang et al., 

2012; Zhou et al., 2017; Zhao et al., 2019), thereby separating the class of decision rules 

from the posited regression models.

In particular, Zhang et al. (2012) estimated the optimal ITR by maximizing an augmented 

inverse-probability weighted estimator (AIPWE) for the population mean outcome over a 

class of ITRs. The aforementioned estimator is doubly robust (DR) in the sense that it 

consistently estimates the optimal ITR if either the propensity score or the outcome 

regression model is correctly specified. Doubly robust estimation has enjoyed great 

popularity in missing data and causal inference models (Scharfstein et al., 1999; Robins and 

Rotnitzky, 2001; Van der Laan and Robins, 2003; Bang and Robins, 2005). The DR 

estimators require specification of two nuisance working models, one for the missingness or 

treatment assignment mechanism, and another one for the distribution of complete data or 

potential outcomes. Historically, estimation of the nuisance parameters indexing the working 

models in DR estimators had received little attention, partly because the asymptotic 

properties of the DR estimators do not depend on the choice of nuisance parameter estimates 

when both working models are correctly specified (Tsiatis, 2007). As a result, standard 

maximum likelihood estimators are used, i.e., logistic regression for the propensity score 

model, and linear regression for the outcome model. This standard practice starts to change 

after Kang and Schafer (2007) cautioned against the use of DR estimators when both 

working models are misspecified. Several discussion articles (Robins et al., 2007; Tsiatis 

and Davidian, 2007; Tan, 2007) further pointed out that the choice of nuisance parameter 

estimates can have a dramatic impact on the properties of the DR estimators when at least 

one working model is misspecified. Indeed, in the context of estimating optimal ITRs using 

DR methods, there is still room for improved performance. For example, as illustrated in 

simulation studies of Zhao et al. (2019), the usual DR estimator (Zhang et al., 2012) can be 

inefficient, i.e, exhibits a large variation when the outcome regression model is misspecified. 

The poor performance may be partly a consequence of the default use of maximum 

likelihood estimators for the coefficients in the misspecified outcome regression model (Cao 

et al., 2009). This motivates us to develop improved DR approaches for learning optimal 

ITRs.
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Several improved DR estimators have been proposed in missing data and causal inference 

models for the purpose of variance reduction. The nuisance parameters indexing the 

outcome model are estimated so as to minimize the variance of the DR estimator under a 

correctly specified propensity score model (Rubin and van der Laan, 2008; Cao et al., 2009; 

Tan, 2010; Tsiatis et al., 2011). In this article, we propose to estimate the optimal ITR by 

maximizing an improved DR estimator of the population mean outcome among a set of 

ITRs. Our proposed estimator is doubly robust. In addition, it achieves the smallest variance 

among its class of DR estimators when the propensity score models are correctly specified, 

regardless of the specification of the outcome models. As we demonstrate, this approach 

leads to estimated optimal regimes achieving comparable or better performance than those 

from Zhang et al. (2012).

The heterogeneity in response to treatments exists not only between patients but also within 

each patient. A patient’s response to treatment can change over time because individual 

characteristics, and the nature of disease itself, evolve. This motivates the development of 

dynamic treatment regimes (DTRs) (Murphy, 2003), which are sequential decision rules that 

adapt over time to the clinical status of each patient. At each decision point, the available 

patient history data are used as input for the decision rule, and an individualized treatment is 

recommended for the next stage. Construction of optimal DTRs has been of great interest, 

where several methods are developed to handle multi-stage problems (Zhang et al., 2013; 

Laber et al., 2014; Schulte et al., 2014; Zhao et al., 2015; Wallace and Moodie, 2015; Liu et 

al., 2018). In this paper, we also discuss extending the proposed method to estimate optimal 

DTRs with added efficiency and robustness.

This article proposes 2 major contributions to the literature. (1) We propose improved DR 

approaches for estimating optimal ITRs, which has not been investigated in the field of 

personalized medicine. (2) Current literature such as Cao et al. (2009) and Tsiatis et al. 

(2011) employed inverse-probability weighted estimating equations to estimate the nuisance 

parameters. Instead, we propose augmented inverse-probability weighted estimating 

equations for this purpose, which brings further stability.

The remainder of the article is organized as follows. In Section 2, we introduce background 

information and review existing doubly robust estimators in learning optimal ITRs. We then 

formally describe the proposed improved doubly robust estimator in single-stage optimal 

treatment problems. Theoretical results are presented in Section 3. In Section 4, we present 

simulation studies to evaluate finite sample performance of the proposed method. The 

method is then illustrated using data from the Sequenced Treatment Alternatives to Relieve 

Depression (STAR*D) Study in Section 5. Some concluding remarks are given in Section 6. 

Technical results are relegated to the supplementary material.

2 Method

2.1 Background and preliminaries

We consider the estimation of the optimal ITR in the single-stage setting. We observe 

{(Xi, Ai, Y i)}i = 1
n , comprising n independent and identically distributed triplets of (X, A, Y ), 

where X ∈ X denotes the patient’s baseline variables; A ∈ A = { − 1, 1} denotes the assigned 
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treatment; Y denotes the clinical outcome of interest, coded so that the larger the better. The 

data comes from either randomized trials or observational studies. An ITR is a map 

d:X A such that a patient presenting with X = x will receive treatment d(x).

Let D denote a class of ITRs of interest. To formally define the optimal ITR, dopt, we adopt 

the potential outcome framework (Rubin, 1974). Let Y(a) denote the potential outcome 

under treatment a ∈ { − 1, 1}. The potential outcome under any ITR, d, can be defined as 

Y (d) = Y (1)I{d(X) = 1} + Y ( − 1)I{d(X) = − 1}, where I{ ⋅ } is the indicator function. Here 

we suppress the dependence of Y(d) on X. The performance of d is measured by the 

marginal mean outcome V (d) ≜ E{Y (d)}, the so-called value function associated with the 

rule d. In other words, the value function V(d) represents the overall population mean if 

treatment were to be assigned according to d. The optimal ITR, dopt, is a rule that maximizes 

V(d) among D, i.e., V (dopt) ≥ V (d) for all d ∈ D.

In order to connect the potential outcomes with the observed data, we make the following 

assumptions: (i) consistency, Y = Y (1) I(A = 1) + Y ( − 1)I(A = − 1); (ii) positivity, 

P(A = a|X) > 0 for a = ± 1 and for all X; (iii) no unmeasured confounding, 

A ⊥ {Y ( − 1), Y (1)} |X. These are standard and well-studied assumptions in causal inference 

(Imbens and Rubin, 2015). Assumption (iii) is trivial in a randomized trial but unverifiable 

in an observation study (Robins et al., 2000).

Define Q0(x, a) ≜ E(Y |X = x, A = a), then under the aforementioned assumptions, it can be 

shown that

V (d) = EX Q0(X, 1)I{d(X) = 1} + Q0(X, − 1)I{d(X) = − 1} ,

where the outer expectation EX[ ⋅ ] is taken with respect to the marginal distribution of X. 

The above formulation implies that dopt(x) = argmaxa ∈ { − 1, 1 Q0(x, a). One approach is to 

posit a regression model Q(X, A; β) for Q0(X, A), and estimate the nuisance parameter β by 

some β; e.g. least squares. Subsequently the optimal ITR is estimated by 

d̂(x) = argmaxa ∈ { − 1, 1 Q(x, a; β) (Qian and Murphy, 2011). This is usually referred to as an 

indirect approach, which could lead to inconsistent estimators of dopt when the posited 

model Q(X, A; β) is incorrect.

To alleviate the above issue, value-search or direct-maximization methods attempt to 

estimate dopt by directly maximizing an estimator of the value function over the class D. The 

key step is to construct a consistent and robust estimator of the value function, say V̂ ( ⋅ ). 
Then dopt is estimated by d̂ = argmaxd ∈ DV̂ (d). Let π0(a, x) ≜ P(A = a|X = x) denote the true 

propensity score, so the value function can be rewritten as (Qian and Murphy, 2011; Zhao et 

al., 2012)

V (d) = E Y
π0(A, X)I{A = d(X)} .
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In an observation study, π0(A, X) is unknown. A parametric model π(A, X; γ) may be posited; 

for example, a logistic regression model π(1, X; γ) = {1 + exp(−X⊤γ)}−1
, X = (1, X⊤)⊤. Let γ̂

denote the maximum likelihood estimator for γ based on {(Ai, Xi)}i = 1
n , an inverse-

probability weighted estimator (IPWE) for V(d) is

V̂ IPWE(d; γ̂) ≜ ℙn
Y

π(A, X; γ̂)
I{A = d(X)} ,

where ℙn is the empirical measure. It is straightforward to show that the IPWE is consistent 

for V(d) if π(A, X; γ) is correctly specified, that is, π0(A, X) = π A, X; γ0  for some γ0, but 

may not be otherwise.

Following ideas from Robins et al. (1994), an AIPWE can be constructed:

V̂
AIPWE

(d; γ̂, β) ≜ ℙn
Y I{A = d(X)}
π{d(X), X; γ̂}

− I{A = d(X)} − π{d(X), X; γ̂}
π{d(X), X; γ̂}

Q X, d

(X); β .
(1)

By adding an augmentation term that involves both estimated propensity scores and 

regression models, the AIPWE improves efficiency and provides additional protection 

against model misspecification. The AIPWE is doubly robust in that it consistently estimates 

V(d) as long as one of the nuisance working models is correctly specified, i.e., 

π(A, X; γ̂) p π0(A, X) or Q(X, A; β) p Q0(X, A).

Throughout the paper, we focus on the AIPWE, and suppress the superscript ‘AIPWE’ in 

V̂ (d; γ̂, β). We refer to the estimator (1), with γ estimated by maximum likelihood and β 
estimated by least squares, as the usual doubly robust estimator from Zhang et al. (2012). 

However, when the propensity score model is correctly specified, but the outcome model is 

not, it is inefficient to adopt the least squares estimates of β in (1), where V̂ (d; γ̂, β) could 

have a large variation. This motivates us to develop improved DR estimators with desirable 

efficiency properties.

2.2 Improved doubly robust estimators when the propensity score is fully specified

We first consider a fully specified propensity score model π(A, X), say, involving no 

nuisance parameters. We will relax this shortly. Here, the specified propensity score model 

π(A, X) may or may not be the same as the true propensity π0(A, X). For a fixed treatment 

regime d, the class of AIPW estimators for V(d) is

V̂ (d; β) ≜ ℙn
Y I{A = d(X)}

π{d(X), X} − I{A = d(X)} − π{d(X), X}
π{d(X), X} Q{X, d(X); β} . (2)
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We use V̂ (d; β) to emphasize that the estimator does not involve the nuisance parameters 

related to propensity score, and varying the choice of β leads to different DR estimators with 

potentially very different behaviors. In the following, we will derive an estimator for β, 

denoted by βopt, such that the resulting value function estimator V̂ (d; βopt) satisfies two 

properties:

(i) Doubly robust. V̂ (d; βopt) consistently estimates V(d) when either the propensity 

score or the outcome model is correctly specified.

(ii) If the propensity score is correctly specified, it achieves the smallest asymptotic 

variance among all estimators of form (2), regardless of the specification of the 

outcome model.

Hence, when the outcome model is correctly specified, but the propensity score may not be, 

the desired βopt must converge in probability to β0, where Q X, A; β0 = Q0(X, A). On the 

other hand, when the propensity score is correctly specified, Var{V̂ (d; βopt)} ≤ Var{V̂ (d; β)}
for any β.

Lemma 1.—Let β be any root-n consistent estimator converging in probability to some β*, 

i.e., β − β* = Op(n−1/2). When the propensity score is correct, π(A, X) = π0(A, X), but 

Q(X, A; β) may or may not be, the influence function for V̂ (d; β) is

Y I{A = d(X)}
π0{d(X), X} − I{A = d(X)} − π0{d(X), X}

π0{d(X), X} Q{X, d(X); β*} − V (d) . (3)

A proof is given in Appendix A. The preceding result shows that when the propensity score 

is correct, the asymptotic variance of V̂ (d; β) does not depend on the sampling variation of β 
but only on its limit in probability β*. Based on Lemma 1 and the law of total variance, its 

asymptotic variance is proportional to

E Var Y I{A = d(X)}
π0{d(X), X} − I{A = d(X)} − π0{d(X), X}

π0{d(X), X} Q X, d(X); β* |X

+ Var E Y I{A = d(X)}
π0{d(X), X} − I{A = d(X)} − π0{d(X), X}

π0{d(X), X} Q X, d(X); β* |X
= (I) + (II) .

(4)

Notice that (II) in (4) equals Var Q0{X, d(X)} , which does not depend on β*. Furthermore, it 

can be shown that (see Appendix A for details)

(I) = E
1 − π0{d(X), X}

π0{d(X), X} Q2{X, d(X); β*} + E Y I{A = d(X)}
π0{d(X), X} − Q0{X, d(X)}

2

− 2E
1 − π0{d(X), X}

π0{d(X), X} Q0{X, d(X)} ⋅ Q{X, d(X); β*}
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Denote the minimizer of (4) as βopt. By taking the derivative of (4) with respect to β* and 

setting it equal to zero, βopt is the solution to

E 1 − π0{d(X), X}
π0{d(X), X} Q0{X, d(X)} − Q{X, d(X); β} Qβ{X, d(X); β} = 0, (5)

where Qβ(X, A; β) ≜ ∂Q(X, A; β)/ ∂β.

Hence, if the outcome model Q(X, A; β) is correct; that is, Q(X, A; β0) = Q0(X, A) for some 

β0, then in fact βopt = β0. If the outcome model is incorrect, such βopt still exists and 

minimizes (4). However, the usual least squares estimates βLS solving 

ℙn {Y − Q(X, A; β)}Qβ(X, A; β) = 0 does not converge to this βopt. This explains why the 

usual DR estimator V̂ (d; βLS) is sub-optimal when the outcome regression model is 

misspecified.

In the following, we will propose two different forms of estimators βopt, which converge in 

probability to βopt and satisfy (i) and (ii) simultaneously. We first consider βopt1 as the 

solution to the following inverse-probability weighted estimating equation

ℙn
I{A = d(X)}
π{d(X), X}

1 − π{d(X), X}
π{d(X), X} [Y − Q{X, d(X); β}]Qβ{X, d(X); β} = 0. (6)

This can be viewed as a weighted least squares based on subjects whose treatment 

assignments coincide with those recommended by d, with weights 

[1 − π d(X), X ]/π2 d(X), X . When the propensity score is correct, but the outcome 

regression may not be, the left-hand side of (6) converges in probability to the left-hand side 

of (5), hence βopt1 p βopt. On the other hand, when the outcome regression is correct but the 

propensity score may not be, the left-hand side of (6) converges in probability to

E
π0{d(X), X}[1 − π{d(X), X}]

π2{d(X), X}
Q0{X, d(X)} − Q{X, d(X); β} Qβ{X, d(X); β} ,

which equals 0 when β = β0, thus βopt1 p β0. The following lemma formally establishes the 

improved doubly robust property of the proposed estimator V̂ (d; βopt1). See Appendix A for 

the proof.

Lemma 2.—V̂ (d; βopt1) p V (d) when either the propensity score or the outcome regression 
model is correctly specified. In addition, when the propensity score model is correct, 

V̂ (d; βopt1) achieves the smallest asymptotic variance among all estimators of form (2).

The estimating equation (6) only utilizes the subjects whose treatment assignments coincide 

with those recommended by d. Since we need to search for the best treatment rule in a large 

class of ITRs, D, it is possible that for some d, there are very few subjects satisfying 
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A = d(X). This leads to highly unstable βopt1 and could be problematic, in particular when 

the sample size n is very small. To address this issue, we propose an augmented inverse-

probability weighted estimating equation, denoted by βopt2, which is the solution to

( * ) − ℙn
I{A = d(X)} − π{d(X), X}

π{d(X), X} .
1 − π{d(X), X}

π{d(X), X} Q0{X, d(X)} − Q{X, d(X); β} Qβ{X, d(X); β} = 0 .

Here, (*) is the left hand side of (6), and 

Q̂0 X, d(X) = Q̂0(X, 1)I d(X) = 1 + Q0(X, − 1)I d(X) = − 1 . Q̂0(X, a) is the estimator for 

E(Y |X, A = a). We propose to use nonparametric techniques for obtaining Q̂0(X, a), which 

provides flexibility in model specification. For continuous X, we apply the kernel regression 

method, i.e.,

Q̂0(X, a) =
∑i = 1

n KH(Xi − X)I(Ai = a)Y i
∑i = 1

n KH(Xi − X)I(Ai = a)
,

where KH( ⋅ ) = |H |−1/2K(H−1/2 ⋅ ) is a multivariate kernel with a bandwidth matrix H. 

When X contains both continuous and categorical variables, the ‘generalized product 

kernels’ from Racine and Li (2004) is used. Under some regularity conditions, Q̂0 X, d(X)

is a consistent estimator for Q0 X, d(X) . As a consequence, βopt2 p βopt when the 

propensity score is correct; and βopt2 p β0 when the outcome regression is correct. The 

following lemma formally establishes the improved doubly robust property of the estimator 

V̂ (d; βopt2). The technical conditions and the proofs are provided in Appendix A.

Lemma 3.—V̂ (d; βopt2) V (d) when either the propensity score or the outcome regression 

model is correctly specified. In addition, when the propensity score is correct, V̂ (d; βopt2)
achieves the smallest asymptotic variance among all estimators of form (2).

2.3 Scenario where there is a nuisance parameter in the propensity score model

In practice, if the propensity scores are unknown, we can posit a parametric propensity score 

model π(A, X; γ) involving some nuisance parameters. To construct an improved DR 

estimator for the value function, we must take into account the effect of estimating γ. 

Consider the class of AIPW estimators presented in (1). Let γ be the maximum likelihood 

estimator of γ based on {(Ai, Xi)}i = 1
n . We aim to find βopt such that V̂ (d; γ, βopt) is doubly 

robust, and has the smallest asymptotic variance among the class of estimators (1) when the 

propensity score is correctly specified.

Since γ̂ is the maximizer of the binomial likelihood
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∏
i = 1

n
π(1, Xi; γ)I(Ai = 1){1 − π(1, Xi; γ)}I(Ai = − 1),

the score vector for γ is

Sγ(A, X, γ) = I(A = 1)
πγ(1, X; γ)
π(1, X; γ) − I(A = − 1)

πγ(1, X; γ)
1 − π(1, X; γ) ,

where πγ(1, X; γ) = ∂π(1, X; γ)/ ∂γ. When π(A, X; γ) is correctly specified, i.e. 

π A, X; γ0 = π0(A, X) for some γ0, and β converging in probability to β*, the influence 

functions corresponding to estimators of the form (1) have the following expression

φ̃(Y , A, X, γ0, β*) − Γ0(β*)Σγγ, 0
−1 Sγ A, X, γ0 , (7)

where Σγγ, 0 = E{Sγ(A, X, γ0)Sγ
⊤(A, X, γ0)}, Γ0(β) = − E{∂φ̃(Y , A, X, γ0, β)/ ∂γ⊤}, and 

φ̃(Y , A, X, γ, β) = Y I A = d(X)
π d(X), X; γ − I A = d(X) − π d(X), X; γ

π d(X), X; γ Q X, d(X); β − V (d) .

Compared with (3), the influence functions (7) involve an additional term due to estimation 

of γ. However, this additional term disappears when both models are correct. Define 

Φ0(β) ≜ − E{∂2φ̃ Y , A, X, γ0, β / ∂γ⊤∂β}. In a slight abuse of notation, denote the minimizer 

of the variance of (7) as βopt. It is the solution to

E 1 − π0 d(X), X
π0 d(X), X Qβ X, d(X); β + Φ0(β)Σγγ, 0

−1 πγ d(X), X; γ0
1 − π0 d(X), X

. Q0 X, d(X) − Q X, d(X); β − Γ0(β)Σγγ, 0
−1 · πγ d(X), X; γ0

1 − π0 d(X), X = 0 .
(8)

Detailed derivations of the influence function and its variance are deferred to Appendix A.

To compress notations, we write to R ≜ I{A = d(X)}. Consider βopt3 as the solution to

ℙn
R[1 − π d(X), X; γ̂

π2 d(X), X; γ̂
Qβ X, d(X); β + Φ̂(β)Σ̂γγ

−1
·

πγ d(X), X; γ̂
1 − π d(X), X; γ̂

Y − Q X, d(X); β − Γ̂(β)Σ̂γγ
−1 πγ d(X), X; γ̂

1 − π d(X), X; γ̂
= 0,

(9)

where Σ̂γγ = ℙγγ Sγ(A, X, γ̂)Sγ
⊤(A, X, γ̂) , Γ̂(β) = − ℙn ∂φ̃(Y , A, X, γ̂, β)/ ∂γ⊤ , and 

Φ̂(β) = − ℙn ∂2φ̃(Y , A, X, γ, β)/ ∂γ⊤∂β . In Appendix A, we show that V̂ (d; γ, βopt3) is doubly 

robust, and achieves the smallest asymptotic variance with βopt3 p βopt when the propensity 

score is correct.
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Correspondingly, we can construct an augmented inverse-probability weighted estimating 

equation and consider βopt4 as the solution to

* * ) −ℙn
[R − π d(X), X; γ ][1 − π d(X), X; γ ]

π2 d(X), X; γ

· Qβ X, d(X); β + Φ̂(β)Σ̂γγ
−1

⋅ πγ d(X), X; γ
1 − π d(X), X; γ

· Q̂0 X, d(X) − Q X, d(X); β − Γ̂(β)Σ̂γγ
−1 πγ d(X), X; γ

1 − π d(X), X; γ = 0,

(10)

where (**) is the left hand side of (9). Using a similar argument, V̂ (d; γ̂, βopt4) satisfies (i) 

and (ii), and is improved doubly robust.

In the above discussion, we proposed improved DR estimators of V(d) for a fixed treatment 

regime d. Notice that by (8), the optimal value βopt is d-dependent, i.e., different d’s 

correspond to different βopt. Rigorously speaking, we should write βopt(d), and βopt(d) for 

the nuisance parameter estimates. To estimate dopt, we first identify the corresponding 

βopt(d) and the V̂ {d; γ̂, βopt(d)}, for each d ∈ D. We then find the optimal d among the class D
that leads to the largest V̂ {d; γ̂, βopt(d)}, i.e., d̂ = argmaxd ∈ DV̂ {d; γ̂, βopt(d)}. In practice, the 

ITR is often indexed by a set of parameters, for instance, d(x) = sign{x⊤η}, where 

x = (1, x⊤)⊤. Since V̂ {d; γ̂, βopt(d)} is a nonsmooth function of η, standard optimization 

methods can be problematic. We used a genetic algorithm discussed by Goldberg (1989), 

which is available in the R package rgenoud (Mebane Jr and Sekhon, 2011). In the rest of 

the paper, we suppress the letter d in βopt(d) and βopt(d) when there is no confusion.

3 Theoretical results

In this section, we establish asymptotic normality of the proposed estimators and the usual 

doubly robust estimator of V(d). We do not discuss the situation when both propensity score 

and outcome models are misspecified, given that the resulting estimator is not consistent for 

V(d). We first consider the case where propensity score is fully specified. We have the 

following result.

Theorem 1.

(Asymptotic normality when propensity score model is full specified). When either the 
propensity score or the outcome model is correct,

n V̂ (d; βLS) − V (d) D N(0, U1(θ0
LS)),

n V̂ (d; βopt1) − V (d) D N(0, U2(θ0
opt1)),
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n V̂ (d; βopt2) − V (d) D N(0, U3(θ0
opt2)) .

See Appendix C for detailed expressions of U1(θ), U2(θ), U3(θ). The true parameters are 

θ0
LS = (βLS

* ⊤ , V (d))⊤ where βLS*  satisfies E Qβ(X, A; βLS* ) Y − Q(X, A; βLS* ) = 0. 

θ0
opt1 = (βopt1* ⊤, V (d))⊤ where βopt1*  satisfies 

E I A = d(X)
π d(X), X · 1 − π d(X), X

π d(X), X Y − Q X, d(X); βopt2* Qβ X, d(X); βopt1* = 0. 

θ0
opt2 = (βopt2* ⊤, V (d))⊤ where βopt2*  satisfies

E I A = d(X)
π d(X), X · 1 − π d(X), X

π d(X), X Y − Q X, d(X); βopt2* Qβ X, d(X); βopt2*

− E I A = d(X) − π d(X), X
π d(X), X ⋅ 1 − π d(X), X

π d(X), X .

Q0 X, d(X) − Q X, d(X); βopt2* Qβ X, d(X); βopt2* = 0 .

The estimators V̂ (d; βLS) and V̂ (d; βopt1) involve solving jointly a set of M-estimating 

equations (Stefanski and Boos, 2002). Thus, the asymptotic variance of V̂ (d; βLS ) and 

V̂ (d; βopt1 ) can be calculated based on standard M-estimation theory. The estimator 

V̂ (d; βopt2) is obtained by solving a set of estimating equations where some infinite 

dimensional parameters, in this case, Q0(X, a), a = ± 1, are estimated nonparametrically in 

the first stage, which is referred to as semiparametric M-estimators (Andrews, 1994; Newey, 

1994; Chen et al., 2003; Ichimura and Lee, 2010). In Appendix B, we establish asymptotic 

normality of such semiparametric M-estimators by extending Theorem 2 in Chen et al. 

(2003). The detailed proof of Theorem 1 can be found in Appendix C.

Remark 1.

When propensity score is correct, it can be shown that U1(θ) = U2(θ) = U3(θ) which equals to 

(4), the asymptotic variance of the influence function for V̂ (d; β). In addition, when 

propensity score is correct but outcome model incorrect, βopt1* = βopt2* = βopt. Recall that βopt

is defined in (5), which minimizes the asymptotic variance (4). However, βLS* , the limit of 

least squares estimates, is different from βopt. Consequently, V̂ (d; βopt1) and V̂ (d; βopt2) have 

the same asymptotic variance, which is smaller than that of V̂ (d; βLS). Though, in small 

sample size scenarios, V̂ (d; βopt2) is preferred since it utilizes the complete data, and could 

lead to a more stable estimate. When both models are correct, βopt = βLS* = β0, where β0

satisfies Q X, A; β0 = Q0(X, A). As a result, all three estimators have the same asymptotic 

variance. When the outcome model is correct but propensity score incorrect, it is not 
possible to directly compare the asymptotic variances of these estimators.
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The following theorem presents asymptotic properties of V̂ (d; γ̂, βopt3) and V̂ (d; γ̂, βopt4), the 

estimators for the value function of d where there is a nuisance parameter in the propensity 

score model.

Theorem 2.

(Asymptotic normality when there is a nuisance parameter in the propensity score model). 
When either the propensity score or the outcome model is correct,

n V̂ (d; γ̂, βLS) − V (d) D N(0, U4(θ0
LS2)) .

The true values arewhere θ0
LS2 = (γ * ⊤ , βLS* ⊤, V (d))⊤ where γ* satisfies E Sγ(A, X; γ*) = 0.

When either the propensity score or the outcome model is correct,

n V̂ (d; γ̂, βopt3) − V (d) D N(0, U5(θ0
opt3)),

n V̂ (d; γ̂, βopt4) − V (d) D N(0, U6(θ0
opt4)) .

The true parameters are θ0
opt3 = (γ * ⊤ , ζopt3* ⊤, βopt3* ⊤, V (d))⊤ where (ζopt3* , βopt3* ) is the 

solution to the following set of equations:

α + E ∂φ̃(Y , A, X, γ*, β)/ ∂γ = 0,
[ψ1, …, ψq] − E Sγ(A, X, γ*)Sγ

⊤(A, X, γ*) = 0,
[ϕ1, …, ϕq] + E ∂2φ̃(Y , A, X, γ*, β)/ ∂γ⊤∂β = 0,

(11)

and

E R 1 − π d(X), X; γ*
π2 d(X), X; γ*

Qβ X, d(X); β

+ ϕ1, …, ϕq ψ1, …, ψq
−1 πγ d(X), X; γ*

1 − π d(X), X; γ*

· Y − Q X, d(X); β − α⊤ ψ1, …, ψq
−1 πγ d(X), X; γ*

1 − π d(X), X; γ* = 0 .

(12)

The true parameters are θ0
opt4 = (γ * ⊤ , ζopt4* ⊤, βopt4* ⊤, V (d))⊤ where (ζopt4* , βopt4* ) is the 

solution to (11) and
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( * * * ) − E R − π{d(X), X; γ*} 1 − π{d(X), X; γ*}
π2 d(X), X; γ*

· Qβ X, d(X); β + ϕ1, …, ϕq ψ1, …, ψq
−1 πγ d(X), X; γ*

1 − π d(X), X; γ*

· Q0 X, d(X) − Q X, d(X); β − α⊤ ψ1, …, ψq
−1 πγ d(X), X; γ*

1 − π d(X), X; γ* = 0,

where (***) is the left hand side of (12). See Appendix D for detailed expressions of 

U4(θ), U5(θ), U6(θ) and the definitions of ζ = (α⊤, ψ⊤, ϕ⊤)⊤, ψ = (ψ1
⊤, …, ψq⊤)⊤, 

ϕ = (ϕ1
⊤, …, ϕq

⊤)⊤. Note that here we use [ϕ1, …, ϕq] to represent a matrix with j-th column 

being ϕj, similarly for [ψ1, …, ψq].

Remark 2.

When the propensity score model is correct, observe that θ0
opt3 = θ0

opt4 where 

βopt3* = βopt4* = βopt, where βopt is the the minimizer of the variance of (7) in this case. 

Furthermore, it can be shown that U4(θ0
LS2), U5(θ0

opt3), U6(θ0
opt4) equal to the variance of (7) 

evaluated at β = βLS*  and β* = βopt, respectively. Therefore, when the propensity score is 

correct but outcome incorrect, V̂ (d; γ̂, βopt3) and V̂ (d; γ̂, βopt4) are asymptotically equivalent 

and more efficient than V̂ (d; γ̂, βLS). When both models are correct, all three estimators are 
asymptotically equivalent.

Remark 3.

An estimator for V (dopt), the overall population mean under the optimal regime, may be 

found as V̂ {d̂; γ̂, βopt(d̂)}. Following Zhang et al. (2012), 

n1/2 V̂ {d̂; γ̂, βopt(d̂)} − V (dopt) = n1/2 V̂ {dopt; γ̂, βopt(dopt)} − V (dopt) + op(1).

Thus, the asymptotic variance of V̂ {d̂; γ̂, βopt(d̂)} can be approximated by that of 

V̂ {dopt; γ̂, βopt(dopt)}, which by Theorem 2 can be estimated using the usual sandwich 
technique.

4 Simulation Studies

We conducted several simulation studies to evaluate the finite sample performance of our 

proposed method. The following six methods were compared: Q-learning based on linear 

regression (QL-LR, Qian and Murphy (2011)); Q-learning based on kernel regression (QL-

KR); maximizing V̂ IPWE(d; γ̂) within a pre-specified class of ITRs (IPWE); maximizing 

V̂ (d; γ̂, β) where standard maximum likelihood estimators are used for the nuisance 

parameters (Usual-DR, Zhang et al. (2012)); maximizing V̂ (d; γ̂, βopt3) where βopt3 solves the 

IPW estimating equation (9) (Improved-DR); maximizing V̂ (d; γ̂, βopt4) where DR). βopt4

solves the augmented IPW estimating equation (10) (Aug-Improved-DR).
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The simulation set up is similar to Kang and Schafer (2007) with some modifications. 

Z = Z1, Z2, Z3, Z4  was generated as standard multivariate normal, and X = X1, X2, X3, X4
was defined as 

X1 = exp Z1/2 , X2 = Z2/ 1 + exp Z1 + 10, X3 = Z1Z3/25 + 0.6 3, X4 = Z2 + Z4 + 20 2, so 

that Z can be expressed in terms of X. The treatment A was generated from { − 1, 1}
according to the model P(A = 1|X) = exp l(X) /[1 + exp l(X) ], where l(x) = − z1 + 0.5z2 − 

0.25z3 − 0.1z4 in Scenario 1, and l(x) = 0.5z1 − 0.5 in Scenario 2. The response variable was 

normally distributed with 

Y = 10 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4 + A −1 − 10Z1 + 10Z2 + ϵ, where ϵ N(0, 1). It is 

straightforward to deduce that dopt(x) = sign −1 − 10z1 + 10z2 . Via Monte Carlo simulation 

with 106 replicates, we obtained E{Y (dopt)} = 21.32. The following modeling choices are 

considered for the propensity and outcome regression models.

CCA correctly specified logistic regression model for π0(A; X) with Z as predictors 

in both scenarios, and a correctly specified model for Q0(X, A) with Z, A, ZA as 

predictors in both scenarios.

CI A correctly specified logistic regression model for π0(A; X) with Z as predictors 

in both scenarios, and an incorrectly specified model for Q0(X, A) with X, A, ZA as 

predictors in both scenarios.

IC An incorrectly specified logistic regression model for π0(A; X) with X as 

predictors in Scenario 1, and without any predictors in Scenario 2, and a correctly 

specified model for Q0(X, A) with Z, A, ZA as predictors in both scenarios.

II An incorrectly specified logistic regression model for π0(A; X) with X as 

predictors in Scenario 1, and without any predictors in Scenario 2, and an 

incorrectly specified model for Q0(X, A) with X, A, ZA as predictors in both 

scenarios.

For IPWE, we use C. and I. to denote correct and incorrect propensity models, respectively. 

For QL-LR, we use.C and.I to denote correct and incorrect linear regression models. For 

QL-KR, we use .C and .I to denote kernel regression based on (Z, A) and based on (X, A), 

respectively. In all direct-maximization methods (IPWE, Usual-DR, Improved-DR, Aug-

Improved-DR), we choose D = {sign(η0 + η1z1 + η2z2 + η3z3 + η4z4)} so that dopt ∈ D. By 

imposing ‖η‖ = 1, dopt corresponds to η0, η1, η2, η3, η4 = ( − 0.07, − 0.71, 0.71, 0, 0).

For each scenario, we considered four sample sizes for training datasets: n = 100, 250, 500 

or 1000, and repeated the simulation 500 times. The ITRs are constructed based on the 

training set and then evaluated on a large and independent test set (size 10000) based on two 

criteria: value function, i.e., the overall population mean when we apply the estimated 

optimal ITR to the test dataset; the misclassification error rate of the estimated optimal ITR 

from the true optimal ITR, i.e., ℙn* I{d̂(X) ≠ dopt(X)} . Here ℙn* denotes the empirical 

measure using the test data.
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Results for Scenario 1 are presented in Figure 1, where we draw boxplots of the value 

functions over 500 replications. Here we only report the results for n = 250 or 1000 (see 

Appendix E for further results, e.g., n = 100 or 500). As expected, Q-learning works the best 

if the outcome model is correctly specified but has relatively poor performance if this model 

is incorrect. When the outcome model is correct (CC, IC), Aug-Improved-DR and Usual-DR 

have similar performance. This is not surprising. Recall that when the outcome model is 

correct, the proposed nuisance parameter estimate βopt4 converges in probability to β0, the 

same limit of the least squares estimates. When the propensity model is correct but the 

outcome regression model is misspecified (CI), Aug-Improved-DR dominates Usual-DR, 

evidenced by larger value functions and smaller variance in value functions, e.g., the mean 

(sd) of value functions for Aug-Improved-DR are 21.07 (0.43) and 21.23 (0.39) when the 

sample size is 250 and 1000, respectively. Comparatively, for Usual-DR, the mean (sd) of 

value functions are 20.52 (0.76) and 21.07 (0.40). In addition, note that Improved-DR and 

Aug-Improved-DR have almost identical performance when the sample size is large (n = 

1000). However, Improved-DR is unstable under small sample size (n = 250). This justifies 

the need to construct augmented IPW estimating equations to estimate the nuisance 

parameters, as we discussed in the method section.

To better demonstrate the superior performance of our proposed method under the CI 

setting, we focus on the comparison between Aug-Improved-DR and Usual-DR in terms of 

the misclassification rates. Results for Scenario 1 are shown in Figure 2 with sample sizes 

ranging from 100 to 1000. Notice that Aug-Improved-DR produced much smaller 

misclassification rates as well as smaller variations. In particular, it outperforms the usual 

DR estimator by a large margin when the sample size is small.

Simulation results for Scenario 2 are provided in Figure 3 and Appendix E. Again, the 

proposed method outperforms other competing methods in both value functions and 

misclassification rates. In Appendix E, we also report the mean squared errors (MSE) of 

different methods in terms of estimating η. Aug-Improved-DR has smaller MSE than its 

competitors.

5 Application to the STAR*D Study

We apply the proposed method to analyze data from the STAR*D Study (Rush et al., 2004). 

Funded by the National Institute of Mental Health, the study was conducted to compare 

various treatment options for major depressive disorder when patients fail to respond to the 

initial treatment of citalopram (CIT). From 2001 to 2006, a total of 4041 outpatients with 

nonpsychotic depression, aged 18–75, were enrolled from 41 clinical sites in the U.S. The 

score on the 16-item Quick Inventory of Depressive Symptomatology (QIDS) was the 

primary outcome. The QIDS score ranges from 0 to 27, where higher scores indicate more 

severe depression.

The trial had four levels (see Fig. 1 in Rush et al. (2004)). Here, we focused on the first two 

levels. At level-1, patients received CIT for 12 to 14 weeks. Those who achieved clinically 

meaningful response (total QIDS score under 5) were remitted from future treatments. At 

level-2, participants without a satisfactory response to CIT had the option to either switch to 
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a different medication, or to augment their existing citalopram. Those in the “switch” group 

were randomly assigned to bupropion (BUP), cognitive therapy (CT), sertraline (SER), or 

venlafaxine (VEN). Those in the “augment” group were randomly assigned to CIT+BUP, 

CIT+buspirone (BUS), or CIT+CT. If a patient had no preference, he/she was assigned to 

any of the above treatments.

We use the QIDS score at the end of level-2 as the clinical outcome Y and compared two 

categories of treatments: (i) treatment with selective serotonin reputake inhibitors (SSRI): 

CIT+BUP, CIT+BUS, CIT+CT, and SER; (ii) non-SSRI: BUP, CT, and VEN. Denote A = 1 

for SSRI and A = − 1 for non-SSRI. Since patients in the “augment” group were all treated 

with SSRIs (violating the positivity assumption), we exclude these subjects from our 

analysis, which leaves a total of 817 subjects. Among them, 656 and 161 patients were in the 

“switch” and “no preference” group, respectively. 296 patients received SSRI treatments, 

while 521 patients received non-SSRI treatments. Comparisons using t-test show that there 

is no significant difference between the SSRI and the non-SSRI category with respect to 

QIDS scores.

We applied four methods to estimate the optimal ITR for those patients who had entered 

level-2. Prognostic variables X include QIDS score at the start of level-2, change of QIDS 

score during the level-1 period, preference regarding level-2 treatment, and other 

demographic variables such as gender, race, age, education level and employment status. 

The propensity scores π0(A, X) estimated by empirical proportions based on preferring to 

switch or no are preference. We used a linear regression of Y given (X, A, XA) for the 

outcome model. For all methods, we randomly split the data into training and test set with 

1:1 ratio. The estimated ITR was obtained using the training set, and then evaluated on the 

test set by ℙn* Y I{A = d̂(X)}/π̂0(A, X) /ℙn* I{A = d̂(X)}/π̂0(A, X) . This procedure is repeated 

500 times. Results for IPWE, QL-LR, Usual-DR and Aug-Improved-DR are displayed in 

Figure 4, where lower scores are desirable. The estimated QIDS score by using Aug-

Improved-DR is 9.62 (sd = 0.37), which is smaller than IPWE (10.15, sd = 0.36), QL-LR 

(9.87, sd = 0.38), and Usual-DR (9.65, sd = 0.40). In addition, Aug-Improved-DR 

outperformed the one-size-fits-all approaches (QIDS score of 9.98 for SSRI and 10.12 for 

non-SSRI).

6 Discussion

In this article, we proposed an improved DR estimator for the optimal ITRs by directly 

maximizing an AIPWE of the marginal mean outcome over a class of ITRs. Our estimator is 

doubly robust, and designed to be more efficient than other DR estimators when the 

propensity score model is correctly specified, regardless of the specification of the outcome 

model. As shown in the numerical studies, the proposed method achieves better performance 

compared to other existing methods. The proposed method is appealing, given that in many 

practical applications, correct specification of the outcome model can be challenging, while 

the propensity score is either known by design or more likely to be correctly specified.
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There are several important ways this work may be extended. The first is to extend it to the 

multi-stage decision setting. Zhang et al. (2013) proposed a doubly robust estimator for the 

optimal DTR where the nuisance parameters indexing the outcome models are estimated 

iteratively by a sequence of least squares regressions. More efficient DR estimators could be 

obtained if we use IPW or augmented IPW estimating equations to estimate these nuisance 

parameters. This is the direction we are currently pursuing.

Another future direction is to consider biased-reduced doubly robust estimation, i.e., 

estimate the nuisance parameters so as to minimize the bias of the DR estimator under 

misspecification of both working models. Vermeulen and Vansteelandt (2015) proposed 

biased-reduced DR estimators for several missing data and causal inference models. It would 

be interesting to investigate whether this principle can be adapted to the context of 

estimating optimal treatment regimes.
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Fig. 1. 
Simulation results for Scenario 1. Value functions over 500 replications. The optimal value 

is E{Y(dopt)} = 21.32.
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Fig. 2. 
Simulation results for Scenario 1 under CI: propensity score correct, outcome model 

incorrect. Misclassification rates over 500 replications.
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Fig. 3. 
Simulation results for Scenario 2. Value functions over 500 replications. The optimal value 

is E{Y(dopt)} = 21.32.

Pan and Zhao Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
QIDS score based on 500 replications. Lower scores are more preferable.
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