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Abstract

Advances in machine learning and low-cost, ubiquitous sensors offer a practical method for
understanding the predictive relationship between behavior and health. In this study, we analyze
this relationship by building a behaviorome, or set of digital behavior markers, from a fusion of
data collected from ambient and wearable sensors. We then use the behaviorome to predict clinical
scores for a sample of n = 21 participants based on continuous data collected from smart homes
and smartwatches and automatically labeled with corresponding activity and location types. To
further investigate the relationship between domains, including participant demographics, self-
report and external observation-based health scores, and behavior markers, we propose a joint
inference technique that improves predictive performance for these types of high-dimensional
spaces. For our participant sample, we observe correlations ranging from small to large for the
clinical scores. We also observe an improvement in predictive performance when multiple sensor
modalities are used and when joint inference is employed.
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l. INTRODUCTION

Care providers, patients, families, and researchers all struggle to understand human health
and its influences. Until recently, theories that connect behavior and health were based on
self-report, which can suffer from retrospective memory limitations [1], or experimenter
observations, which can introduce confounds and unintended bias [2]. Because we can how
collect continuous behavior and health data in an ecologically-valid manner, we can leverage
substantial evidence to support or contradict these theories. Despite the tremendous potential
of emerging technologies to monitor and assess health and behavior, many of them are
constrained to operate in controlled environments, laboratory settings, and clinics.
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We hypothesize that multi-modal sensor data collected in uncontrolled settings can be
harnessed to predictively connect health and behavior. Such time series data consist of
sensor state information along with a timestamp for when the state change occurred. Using
activity recognition and machine learning, we will investigate whether clinical scores can be
predicted from time series data. If successful, such predictions can provide unprecedented,
naturalistic insight into a person’s health status and the relationship between behavior and
health. They will allow caregivers to track and predict health trajectories over time, which
may be particularly valuable for individuals going through rehabilitation or experiencing
cognitive decline. Sensor-based continual assessment of daily physical and behavior
patterns, combined with predicted clinical scores, provides insights that cannot be gleaned
from spending a few minutes in a doctor’s office or clinic.

The specific research contributions we make in this paper are the following. First, we
describe methods of labeling ambient sensor and wearable sensor data in real time with
corresponding activity labels. Second, we introduce methods to extract a behaviorome, or set
of digital behavior markers, from activity-labeled time series data. Third, we investigate the
predictability of clinical scores from a person’s behaviorome. In this investigation, we
collect continuous smart home and smartwatch data for n = 21 healthy older adults while
they perform their normal daily routines. Finally, we introduce a method to enhance clinical
score predictability by leveraging the relationships between multiple target variables.

RELATED WORK

Sensor data hold the potential to give researchers substantial information about a person’s
behavior as well as health. While sensors have become low cost, wireless, and deployable in
real-world settings, researchers have found no single “silver bullet” sensor that provides all
the necessary insight into a person’s health and behavior. However, researchers have made
progress in linking features of individual sensor modalities with specific health
characteristics. Here we review recent advances in analyzing time series sensor data to gain
insights for automated health assessment.

Our study combines behavior markers from wearable sensors and ambient sensors. Other
sensors could be considered for this task as well, such as video, audio, phone, and biometric,
to name a few. We restrict our analysis to sensors which are commercially available, easily
deployable, and able to handle a variety of environment conditions. Within these constraints,
researchers have made considerable progress in performing health assessment from sensor
data. One such sensor platform is provided by wearable and mobile sensors. Wearable
sensors typically quantify aspects of movement. These sensors may be embedded into
inertial measurement units (IMUs) or included on commercial phones and watches which
collect acceleration and angular velocity data.

In one study, Mancini et a/. [3] analyzed wearable data to analyze movement parameters
when a person performed turning motions. Customized wearable devices collected angular
velocities. These velocities were shown to be predictive of falls and of cognitive function as
determined by Clinical Dementia Rating scores. In other work, Adler et al. [4] collected data
from a commercial smartphone to predict schizophrenia-related psychotic relapse using a
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neural network. They extracted features from movement-based sensors but also included app
use, phone calls, and inferred sleep times. In addition to these features, Wang et a/. [5] also
inferred movement category (e.g., walking, in a vehicle) and computed an index that
estimates the regularity of a person’s daily schedule from phone-based sensors. They used
this information to infer symptoms of depression as indicated by in-the-moment Patient
Health Questionnaire-4 (PHQ-4). Huckins et a/. [6] utilized a similar set of features to
predict PHQ-4-detected anxiety among college students at the beginning of the COVID-19
pandemic. Focusing on a different health domain, Newland et a/. [7] analyzed movement
data collected from wearable sensors to infer clinical scores that are specific for assessing
symptoms of multiple sclerosis.

In other studies, researchers utilized information from wearable sensors to infer a behavior
or health marker that is consistent with a larger health condition. For example, Fiorini et al.
[8] analyzed statistical features from wearable accelerometer and angular velocity readings
to measure a person’s auditory sustained attention. This measure, in turn, provided insights
on the person’s cognitive function and thus the impact of cognitive training on cognitive
function. Fallahzadeh et a/. [9] collected movement and location information on
smartphones to predict and promote medication adherence. They extracted statistical
features from movement-based sensors, labeled data with corresponding activities
categories, and used this information to infer whether a patient would be adherent to their
medication schedule at the prescribed time based on their activity context.

Wearable sensors are particularly insightful at analyzing and inferring movement-based
parameters that help to determine a person’s health status. In particular, Ravichandran et al.
[10] surveyed and compared the effectiveness of alternative commercial accelerometer-based
devices for detecting sleep stages and durations. Fallmann and Chen [11] also surveyed
approaches to detect and analyze sleep stages from wearable sensor data, focusing on
research advances. Lee et al. [12] analyzed smartphone motion sensors to measure walking
movements of healthy individuals and an individual with back pain. In particular, they
calculated the variation of rotation about three axes and found that the participant with back
pain demonstrated a wider range of variations, indicating a diminished level of walking
balance.

The above studies primarily analyze movement sensors to provide insights on health status
and behavior parameters that impact health status. However, some recent work provides
evidence that location information can also be gathered from mobile devices and generalized
among individuals. Lin and Hsu [13] introduced multiple generalizable location features,
including heading change rate, distance covered, and velocity change rate. They also
suggested clustering location readings to detect person-specific frequented spots.
Boukhechba et al. [14] employed this strategy to identify significant locations. They used
this information together with phone call frequency to predict a person’s social anxiety.

Similar to these reviewed studies, we extract features from both movement and location
information provided by wearable devices. Wearable devices offer other data modalities as
well. These include phone usage, heart rate, and even audio and video data. These data
sources offer valuable behavior and health features. For example, Tseng et a/. [15] found that
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they could predict a person’s inhibitory control based solely on phone usage statistics. To
enable longitudinal data collection without additional hardware and participant involvement,
we do not incorporate these additional wearable information sources into the analysis.

Ambient sensors that are embedded into physical environments complement wearable
sensors by localizing a person within the building. This information, combined with
environment state readings, can be used to longitudinally track complex activity patterns. As
in the case of analyzing wearable sensors, researchers have devised methods to extract
features from longitudinal ambient sensor data that provide insights on behavior patterns.
For example, Austin et al. [16] inferred behavior parameters from passive infrared motion
sensors. The parameters include time spent out of the home, indoor walking speed, and time
spent sleeping. From these features, they were able to predict loneliness among older adults.
Akl et al. [17] also analyzed ambient motion sensor data to calculate times that individuals
spent in rooms of the house. Based on this information, they were able to infer a person’s
cognitive health as indicated by Mini-Mental State Examination and Clinical Dementia
Rating scores. Dawadi et a/. [18] similarly extracted features from motion and door sensors.
From these features, they inferred activity categories and mapped activity features (duration
and time of day) onto clinical cognitive health indicators including the Repeatable Battery of
Neuropsychological Status and Timed Up and Go scores. Aramendi et a/. [19] collected
similar activity features over multiple years to predict these scores as well as scores on a
self-report measure of instrumental activities of daily living (IADL-C).

Fritz et al. [20] collected similar features from ambient sensors as the previous studies. In
this case, however, the features were used to detect pain episodes for participants with
chronic health conditions. Skubic et al. [21] also collected data in naturalistic settings to
identify possible health events. Unlike the previous studies, they analyzed video data
together with ambient sensors, and created rules to identify anomalies from extracted
features that increased the possibility of detecting events requiring intervention. In our study,
we include features collected from motion, door, light, and temperature ambient sensors. As
indicated by these prior studies, such sensors can be used to recognize activities and in turn
provide insights on health status.

In all of these prior works, as in this current study, the goal of the technology is monitoring
behavior over time, in the wild, to perform health assessment. In contrast to prior work, this
study extracts a large set of behavior markers from both wearable and ambient sensor data.
Because sensor platforms provide distinct insights in these routines, we hypothesize that the
fused information will provide a more comprehensive picture of behavior patterns and thus
improve predictive performance over a range of clinical health scores. Additionally, we
introduce a method to predict multiple health scores in a way that boosts the prediction of
each health parameter. These insights can be used to better understand the impact of
behavior on health and to inform the continued design of assessment measures.
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. METHODS
A. DATA COLLECTION

In this paper, we analyze smart home data collected from 21 healthy older adult volunteers
(16 female, 5 male). The mean age was 69 (SD 10.9) and the distribution of demographics is
shown in Fig. 1. All participants were recruited through community advertisements or
referral from physicians and local community agencies. Before they were selected for the
study, participants completed a health screening interview and the Telephone Interview of
Cognitive Status [22] over the phone. The interview allowed experimenters to rule out
exclusion criteria. In particular, we enrolled participants who were at least 45 years of age
and did not indicate a possibility of dementia or lack of insight that could lead to unreliable
self-report data (TICS = 26). The data were collected as part of a larger study focused on
developing and validating methods for health assessment and intervention that utilize
continuously-collected sensor data in naturalistic, real-world settings. The parent study does
not target specific distributions of education levels, age, gender, or race.

We equipped the homes of these study participants with a CASAS “smart home in a box”
[23]. Each CASAS smart home apartment contains ambient sensors, consisting of passive
infrared motion/light sensors attached to the ceilings and door/temperature sensors attached
to external doors and commonly-used cabinets. In participant homes, experimenters install
approximately two sensors per room with adhesive strips that can be removed at the end of
data collection. Data can be collected from these sensors for long periods of time while
requiring no extra tasks from the participants, and the efficacy of these sensors to capture
activity patterns and indicate health status has been demonstrated in prior work [19], [24],
[25]. The CASAS sensors generate timestamped readings whenever the sensed state changes
(e.g., still to motion, door closed to open). We collected 1 month of ambient sensor data for
each participant. A 1-month data collection period was chosen to ensure that routine
behavior patterns that occur on a daily, weekly, or monthly basis would be observed. This
study was approved by the Washington State University Institutional Review Board.

During the same month, we also collected continuous smartwatch data for each participant.
Participants wore the watch continuously while data were collected at 1Hz. To provide
continuous data collection, participants wore one watch during the day while charging a
second watch, then wore the other watch at night while charging the first. This sample rate
was selected to ensure that data could be collected continuously during the day without
draining the battery. Consistent with prior studies [3]-[8], smartwatch data consist of
timestamped readings for 3D accelerometer, 3D gyroscope, course, and speed. We
additionally collected location data. As suggested in earlier work [13], [14], raw location
coordinates were not included in the models because of the privacy risk and because they do
not generalize well to new participants. Instead, we employ an open street map to map each
coordinate onto a location type (home, road, work, other).

Prior activity recognition and health assessment research offers evidence that movement-
based sensors including accelerometers and gyroscopes provide insight on behavior patterns
“in the wild” [26]-[28]. Many of these previous efforts analyze movement-based activities
such as walking, lying down, and exercising. Recognizing more complex activities such as
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working and shopping relies on additional information, because the movements associated
with sitting in front of a television at home will be similar to the movements associated with
sitting in a meeting at work. We incorporate location information to aid in detecting and
distinguishing these more complex activities.

We also calculated person-specific location parameters including mean location and the top
three most-frequented location regions by time of day (morning, afternoon, evening, night).
For some participants, there were periods of time during transition between watches where
smartwatch data were missing (mean minutes of missing readings/day = 5.59, s.d. = 5.33).
We imputed the missing values using random forest regression with 100 trees. The features
employed for imputation-based prediction are the previous readings from all sensors leading
up to the missing time and readings for the missing sensor occurring at the same time of day
(number of minutes past midnight) for the seven prior days for which readings are available.
In the case of ambient sensor data from smart homes, no data were missing. These data
collection environments require no actions on the part of participants. Because batteries for
each sensor last for more than a year without a need for recharge, data collection did not
experience any interruptions in the smart homes.

Finally, a neuropsychologist team collected self-report information for each participant and
administered a battery of clinical assessments. We include a total of 129 self-report answers
to health-related items and clinical parameters for analysis. Baseline self-report questions
primarily assessed everyday health-related behaviors (e.g., level of engagement in physical
exercise, educational community activities) based on a Likert Scale. We also collected self-
report answers and performance on a cognitive n-back test [29] during data collection using
an ecological momentary assessment (EMA) app. EMA self-report questions assessed in-
the-moment functioning, socialization, physical and mental activity, fatigue, and mood. For
the purposes of this work, these scores were averaged across the data collection period. The
neurocognitive measures assessed performance across varying cognitive domains (e.g.,
memory, executive function, attention).

We selected 7 clinical scores as target variables for the prediction models. The target scores
are summarized in Table 1. These scores were chosen because they reflect cognitive or
mobility health and exhibited a sufficient variance (>0.1 after normalization to a [0, 1]
range) among the participants. The first such score is provided by the Wechsler Test of Adult
Reading (WTAR) [30]. The WTAR estimates intellectual functioning, 1Q, by having
participants read aloud a list of 50 words with irregular pronunciations. This assesses
knowledge and reading skills that are acquired over time as the test does not rely on standard
pronunciation rules. The Telephone Interview of Cognitive Status (TICS) [22] offers a
cognitive screening measure that can be linked directly to the widely-used Mini-Mental
State Examination (MMSE). Unlike the MMSE, the TICS can be administrated over the
phone. In this test, cognitive function is assessed by having participants complete an 11-item
brief screening test over the phone by completing tasks such as “count backwards by 7 from
100”. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)
[31] characterizes abnormal cognitive decline. Participants complete 12 subsets that assess
the cognitive domains of attention, language, visuospatial/constructional abilities, and
delayed memory. The F-A-S (FAS) [32] measures executive function. Participants are given

IEEE Access. Author manuscript; available in PMC 2021 May 19.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

COOK and SCHMITTER-EDGECOMBE Page 7

one minute to list as many words as they can that begin with the letters “F”, “A”, or “S”. The
Timed Up and Go (TUG) Test [33] is a widely-employed method of evaluating basic
mobility maneuvers and has also been shown to offer indicators of cognitive and functional
abilities [34].

We also include two measures of functional abilities. These exhibit lower variance among
the normalized values (0.01 for DEX, 0.07 for ADCS-ADL) among participants. However,
they provide insight on how behavior patterns reflect standardized clinical assessment
methods and vice versa. The first of these tests is the Dysexecutive Functioning
Questionnaire (DEX) [35]. DEX asks participants to rate 20 items that are designed to assess
everyday manifestations of difficulties consistent with common executive difficulties. These
are emotion and personality changes, motivational changes, behavioral changes, and
cognitive changes. Each item is scored on a 5-point Likert scale. The last targeted clinical
score is generated by the Alzheimer’s disease Cooperative Study Instrumental protocol. In
this inventory, ADCS-ADL.([36], participants rate their ability (ranging from full
independence to full dependence) to complete 6 basic activities of daily living (e.g., eating)
and 16 instrumental activities of daily living (e.g., cooking) over the prior 4-week period.
The remaining clinical parameters are used as supplemental clinical variables in the analysis.
Fig. 2 shows the distribution of the target clinical scores projected using Principal
Components Analysis onto a 4D space.

B. ACTIVITY RECOGNITION

We define a behaviorome as a set of digital behavior markers. The markers are more
comprehensive if the set includes details of time spent on activities that are common and
often included in clinical assessments. To include this information, we need a method that
will automatically label sensor data with corresponding activity labels.

We have previously designed machine learning algorithms that label each ambient or
wearable sensor reading with a corresponding activity label, referred to as Mobile-AR and
Home-AR [37].l Researchers have designed numerous methods for human activity
recognition from smart home sensors [37]-[40] and mobile sensors [41]-[46]. However,
most methods operate in controlled laboratory conditions and no previously-reported work
has investigated labeling and modeling activities from both ambient and wearable sensor
data. The Mobile-AR and Home-AR algorithms, in contrast, label activities in real-time for
data collected in noisy, complex, realistic settings. Both algorithms employ a random forest
with 100 trees to map a window of sensor readings to a corresponding activity label. The
window size for ambient sensor readings is 30 readings (they do not arrive at equally-spaced
time intervals) and for wearable sensor readings is 5 seconds. These window sizes have
demonstrated success for activity recognition in earlier studies [25], [37], [47].

Each ambient sensor is identified based on its location and its type. Sensor locations are
defined by regions of the home (bathroom, bedroom, dining room, entry, hall, kitchen, living
room, office, other) and type (motion, door, temperature, light). These designators allow us

1code for Mobile-AR and Home-AR is available at https://github.com/WSU-CASAS/AL and https://github.com/WSU-CASAS/AL-

Smarthome.
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to build models that generalize to new home settings without a need for floorplan
information or a way to map sensor identifiers in one home to sensor identifiers in other
homes. In the case of wearable data, Mobile-AR applies a Butterworth low-pass filter with a
cutoff of 0.3Hz to sensor readings before extracting features to remove signal noise. The
features extracted for each sensor modality are listed in Table 2, together with the activity
categories that are automatically recognized for each modality.

As shown in Table 2, the learned activities are distinct for the different sensor platforms.
Activity models are created from prior studies in which ground truth labels were provided
for training. Activity categories were selected in those cases based on the types of activities
that could be readily detected by the corresponding type of sensor. Many of the activity
labels represent pre-defined activities of daily living (ADLSs), while other labels are based on
common behavior patterns.

The participants in the study we report here did not provide any ground truth activity labels
for each smart home data or smartwatch data. As a result, we rely on pre-trained models to
accurately provide activity information. Because the accuracy of the labels will impact the
reliability of the extracted behaviorome, we evaluated the pre-trained models for their
predictive performance on the activities listed in Table 2.

We started by performing a leave-one-house-out performance analysis for Home-AR. The
evaluation is based on 94 homes containing a total of 22,602,331 sensor reading sequences
with corresponding ground truth activity labels. Table 3 summarizes the performance results
for Home-AR. Similarly, we evaluate Mobile-AR using leave-one-subject-out evaluation for
250 individuals who provided activity labels for a total of 1,485,438 sensor reading
sequences. Table 4 summarizes the performance results for Mobile-AR. For both platforms,
activity recognition performs at an f1 score of 0.85 or higher. This provides some evidence
supporting inclusion of activity labels in the behaviorome that we describe in the next
section.

C. CREATING A BEHAVIOROME

Using the activity-labeled time series data, we compute and compile digital behavior
markers, which become the person’s behaviorome. The set of digital behavior markers
includes a set of behavior markers for each day and each hour of the day to describe
observed behavior within that time period. From this information, we then additionally
extract a set of overall behavior markers.?

The daily, hourly, and overall behavior markers are summarized in Table 5. As this table
indicates, statistical summaries are gathered for each separate (daily, hourly) time period as
well as for the entire data collection time period. In the case of smartwatch data, additional
sensor data were available that were not labeled with the primary activity categories listed in
Table 2. For some earlier studies, participants were asked to provide any appropriate activity
label. Many of these diverse labels only appeared for a few participants, represented
specialized activities, or indicated a person’s location context rather than an activity

2Code to extract digital behavior markers is available at https://github.com/WSU-CASAS/DM.
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category. However, these extra labels can be valuable in building a behaviorome. Therefore,
we train additional one-class random forest classifiers to recognize whether a person’s
current context belongs to one of these categories. For all learning tasks, the class
distributions are imbalanced. To address this challenge, we weight each training point.
Weights are inversely proportionate to the corresponding class relative frequency in the
training data. As shown in Table 5, the set of behavior markers includes time spent in one of
these specialized activities. The one-class categories are: airplane, art, bathe, beach, biking,
bus, car, chores, church, computer, cook, dress, drink, entertainment, groom, hobby, lunch,
movie, music, relax, restaurant, school, service, shop, socialize, and sport.

Furthermore, the overall behavior markers contain information about a person’s behavior
routine as a whole, as observed over the entire data collection period. These include
computation of a set of regularity indicators and circadian rhythm values. A regularity index
is calculated using the hourly data and compares the uniformity of a person’s schedule. This
index is calculated for a within-week measure to compare days with a week, within-weekday
measure to specifically determine the regularity of a Monday-through-Friday schedule, and
between weeks to determine if there is a longer-term uniformity of schedule. The indices are
calculated based on total acceleration, total rotation, and total distance traveled values. To
calculate a regularity index, the data are first scaled to the range [-0.5, 0.5]. As introduced
by Wang et al. [5], the regularity index comparing days a and b is defined as:

X X
RI, ,,Z ’ ! @

For our analysis, T = 24 hours and x{ represents the scaled value for hour ¢of day a.

Finally, we compute values that reflect the circadian rhythm of a person’s routine. The
computation is applied only to the markers extracted for hourly time periods and is
computed based on total acceleration, total rotation, and distanced traveled during the
corresponding time period. To quantify circadian rhythm strength, we estimate a power
spectral density using a periodogram. Based on Fourier analysis, the spectral energy of each
frequency can be calculated using Equation 2.

= (% Z;N= 1xicos(zﬂ—ﬂ)) ( N z x,sm( 271t )) @

In Equation 2, N represents the number of samples in the time series, x;represents the value
of the measured variable at time /, and the spectral energy is computed for a particular
frequency, j. We calculate the spectral energy for a range of possible frequencies, resulting in
a periodogram. This periodogram generates values to a set of possible cycle lengths. The
computed circadian rhythm is then represented by the normalized periodogram-derived
value for a 24-hour cycle [48].

Fig. 3 illustrates a periodogram that was constructed using sensor data collected from one
smart home (the graph contains separate plots for each week of data collection). In the case
of this home, the sensor data most strongly support a 24-hour cycle length. In the next
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section, we will examine whether a behaviorome constructed from these features can predict
the clinical state of participants in our study.

D. JOINT INFERENCE OF CLINICAL SCORES

The goal of this work is to predict clinical scores from a sensor-derived behaviorome. We
hypothesize that these digital behavior markers provide an indication of a person’s health
status and thus offer the ability to predict clinical assessment scores. We further postulate
that the relationship between multiple assessment measures that are typically collected can
boost the predictive performance, by leveraging the relationship.

Fig. 4 illustrates the joint inference process. The intuition is that demographic and sensor
information is used to infer values for each clinical parameter. In a second step, demographic
and sensor information is combined with the inferred clinical parameters values (from step
one) to predict values for each clinical parameter. If our hypothesis is valid, the inferred
values from step two (joint inference) will result in greater predictive accuracy than the
inferred values from step one (independent inference).

The independent predictor is our baseline clinical score predictor. As the name suggests, this
predictor ignores the relational structure of the scores, and makes predictions using only
information from the demographics and behaviorome. Here, the term “demographic” is
broadly used to indicate the population sector and the health background of the person (e.g.,
substance abuse, high blood pressure). No clinical variables are used to predict values for
other clinical variables.

More formally, the independent predictor is trained as follows. For each subject, we collect
demographic features - extract the digital behavior features ys,and g, listed in Table 5,
and gather ground truth scores for the target clinical scores . listed in Table 1 as well as
supplemental clinical scores . described in Section I11A. We train an independent
regressor I, for each target and supplemental clinical score /. To do this, we collect the
combined features as input x;and the ground truth predictions as output y;. We feed the

aggregate set of input/output pairs, {x;, y;}\_ | as training examples to a regression learner
that seeks to minimize loss function L. For this problem, the non-negative loss function
L(x,5) € R is the loss associated with labeling a particular input x € ®* as output 5 € R’
when the true output is y € R’ (normalized mean absolute error).

Our inference goal is to return a function/predictor whose outputs have low expected loss, or
correspondingly yield high predictive performance. Random forest performs well for
complex problems, such as Home-AR and Mobile-AR. However, the clinical score
prediction problem exhibits even higher dimensionality. The independent predictor utilizes
1,038 features (86 demographic features and 952 behavior features). The joint predictor
utilizes these 1,038 features plus 7 target clinical scores and 129 supplemental clinical
scores. For very high-dimensional spaces, gradient boosting has demonstrated consistent
success [49]. Using gradient boosting with 100 estimators and a learning rate of 0.1,
multiple training iterations are performed during which additional regression trees are added
to an ensemble. Each added tree reduces the least squares loss from the previous iteration.
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We incorporate gradient boosting with regression trees for the independent and joint
prediction steps of the process shown in Fig. 4.

During the joint prediction step, we employ joint predictors to improve predictive accuracy.
These joint predictors are pseudo-independent in the sense that each regressor predicts the
output for a single clinical score but has independent-predictor outputs from all of the other
regressors available as part of the input feature vector to make a more-informed prediction.
The feature vector to predict clinical score /now consists of demographic features y 4
behaviorome features y¢,and s, inferred supplemental clinical scores ., and inferred

target clinical scores ;. for all variables other than i. Joint prediction offers advantages

when the variables being predicted are related — one score may be easier to predict than
another, and its inferred value can improve prediction for the related variable.

IV. EXPERIMENTAL RESULTS

We evaluate the ability of the machine learning regression algorithm to predict clinical
scores from the extracted behaviorome by computing Pearson’s correlation between the
predicted and actual values. We compare the results using smart home behavior markers,
smartwatch behavior markers, and a fusion of the two. Additionally, we compare the results
generated by independent predictors with those generated by joint predictions. All results are
generated from a leave-one-subject-out validation. Results are summarized in Table 6.

Correlations ranging from r=0.019 (TICS, joint prediction based on smart home behavior
markers) to r=0.962 (RBANS, joint prediction based on smartwatch features) result from
the proposed prediction method. The highest-performing prediction strategy for each clinical
score is a joint inference method. In fact, the average correlation over all behavior marker
combinations for independent predictors is a small correlation (r=0.298) while the average
for joint predictors is a moderate correlation (r=0.601).

The results provide evidence that digital behavior markers from both smart home sensors
and smartwatch sensors are predictive of clinical scores. The sensor modality that provides
the largest predictive performance varies by category. Interestingly, a fusion of markers from
both the smart home and the smartwatch does not consistently yield the highest predictive
performance. While gradient boosting performs better than a random forest regressor and a
regression tree classifier (which average r=0.592 and r= 0.499, respectively, for joint
prediction based on a fusion of behavior markers), the learner still appears to struggle with
the high-dimensional space. Dimensionality reduction techniques can be further explored in
future work, although reducing the dimensionality with PCA (number of components = 21)
reduces the predictive performance to = 0.259.

V. CONCLUSION

In this study, we assess the ability of multi-modal sensor data to provide digital behavior
markers that are predictive of clinical health states. To do this, we describe a method of
collecting sensor data, automatically labeling the data with activity labels, and extracting
features that form a person’s behaviorome. We built a behaviorome for each person in our

IEEE Access. Author manuscript; available in PMC 2021 May 19.
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study from a combination of smart home and smartwatch data. Using a gradient boosting
regression algorithm, the method predicts clinical scores with moderate or high correlation
for WTAR, RBANS, FAS, TUG. These scores include measures of cognitive and mobility-
based health. The model also predicts scores with moderate correlation for DEX and ADLC,
which are self-report measures of independent functioning. We further provide evidence that
performing joint prediction for a large set of clinically-related variables boosts predictive
performance.

Limitations of this work include the small sample size of 21 healthy older adults. Future
studies will involve participants exhibiting a range of health conditions to examine the
ability to further differentiate between diagnosis groups. Continued analysis may also shed
light on the types of sensor modalities that are most predictive of specific clinical scores. We
will also adapt the approach described here to track and predict changes in health status over
time.
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FIGURE 1.

Distribution of study participants based on years of education, race, age, gender, and the
number of preexisting conditions in these categories: neurological disability, head injury, and
experiencing changes in memory performance.
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FIGURE 2.
Projection of clinical variables onto a 4D space (3D geometric space and color). The project

illustrates the distribution and variance of collected clinical information for the participant
sample.
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FIGURE 3.
Circadian cycle strengths gleaned using a periodogram. The graph plots strengths of cycle

sizes ranging from 0 to 34 hours.
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Joint
Prediction

Gradient Boosting
regressor

The joint inference process. Demographic variables and digital behavior markers are initially
used to predict values for the target clinical scores and supplemental clinical scores, in an
independent inference step. During joint inference, the predicted clinical scores for all
variables except i are combined with demographic features and the behaviorome to predict
the value of clinical score i. Dotted lines indicate variables that are used for both rounds.
Dashed lines indicate features that are used as ground truth only during training.
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TABLE 1.

Targeted clinical scores.
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Measure

Construct Assessed

Wechsler Test of Adult Reading (WTAR)

Premorbid verbal intellectual abilities

Telephone Interview of Cognitive Status (TICS)

Global cognitive status

Repeatable Battery of Neuropsychological Status (RBANS)

General neurocognitive status

F-A-S Test (FAS)

Executive friction

Timed Up and Go Test (TUG)

Functional mobility

Dysexecutive questionnaire (DEX)

Self-reported everyday executive dysfunction

Alzheimer’s disease Cooperative Study Activities of Daily Living Inventory
(ADCS-ADL)

Self-reported everyday activity ability and functional
independence
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Extracted features for one window of sensor data.
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TABLE 2.

Ambient Sensors

Mobile Sensors

time of day (hour, seconds past midnight), day of the week

window duration
time elapsed since previous sensor reading

dominant (most common) sensor in current / previous window

last sensor / location to generate reading, location of last motion
sensor

window complexity (entropy of numbers of readings for each
sensor) number of changes in location

number of sensors generating readings
number of readings for each sensor

time elapsed for each sensor since previous reading

max, min, sum, mean, median, mean/median abs value, standard deviation,
mean/median abs deviation of sensor values, moments, mean and variance
of

Fourier Transformed sensor values

coefficient of variation, skewness, kurtosis, signal energy, log signal
energy, power

sensor value autocorrelation
correlations between axes for multidimensional sensors

absolute value of successive values, time between peaks heading change
rate, stop rate, overall trajectory

location type

normalized distance / direction from person’s mean location, distance
traveled

location within most-frequented locations by time of day

Activities: Bed-toilet transition, Cook, Eat, Enter home, Leave
home, Personal hygiene, Relax, Sleep, Wash dishes, Work

Activities. Chores, Eat, Entertainment, Errands, Exercise, Hobby, Hygiene,
Relax, School, Sleep, Travel, Work
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TABLE 3.

Home-AR activity recognition results based on leave-one-home-out testing. Performance metrics are average
precision, recall, and f1-score.

Precision Recall FI Score

0.86 0.85 0.85
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TABLE 4.

Mobile-AR activity recognition results based on leave-one-subject-out testing. Performance metrics are
average precision, recall, and f1-score.

Precision Recall FI Score

0.94 0.87 0.86

IEEE Access. Author manuscript; available in PMC 2021 May 19.
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