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Abstract

Advances in machine learning and low-cost, ubiquitous sensors offer a practical method for 

understanding the predictive relationship between behavior and health. In this study, we analyze 

this relationship by building a behaviorome, or set of digital behavior markers, from a fusion of 

data collected from ambient and wearable sensors. We then use the behaviorome to predict clinical 

scores for a sample of n = 21 participants based on continuous data collected from smart homes 

and smartwatches and automatically labeled with corresponding activity and location types. To 

further investigate the relationship between domains, including participant demographics, self-

report and external observation-based health scores, and behavior markers, we propose a joint 

inference technique that improves predictive performance for these types of high-dimensional 

spaces. For our participant sample, we observe correlations ranging from small to large for the 

clinical scores. We also observe an improvement in predictive performance when multiple sensor 

modalities are used and when joint inference is employed.
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I. INTRODUCTION

Care providers, patients, families, and researchers all struggle to understand human health 

and its influences. Until recently, theories that connect behavior and health were based on 

self-report, which can suffer from retrospective memory limitations [1], or experimenter 

observations, which can introduce confounds and unintended bias [2]. Because we can now 

collect continuous behavior and health data in an ecologically-valid manner, we can leverage 

substantial evidence to support or contradict these theories. Despite the tremendous potential 

of emerging technologies to monitor and assess health and behavior, many of them are 

constrained to operate in controlled environments, laboratory settings, and clinics.
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We hypothesize that multi-modal sensor data collected in uncontrolled settings can be 

harnessed to predictively connect health and behavior. Such time series data consist of 

sensor state information along with a timestamp for when the state change occurred. Using 

activity recognition and machine learning, we will investigate whether clinical scores can be 

predicted from time series data. If successful, such predictions can provide unprecedented, 

naturalistic insight into a person’s health status and the relationship between behavior and 

health. They will allow caregivers to track and predict health trajectories over time, which 

may be particularly valuable for individuals going through rehabilitation or experiencing 

cognitive decline. Sensor-based continual assessment of daily physical and behavior 

patterns, combined with predicted clinical scores, provides insights that cannot be gleaned 

from spending a few minutes in a doctor’s office or clinic.

The specific research contributions we make in this paper are the following. First, we 

describe methods of labeling ambient sensor and wearable sensor data in real time with 

corresponding activity labels. Second, we introduce methods to extract a behaviorome, or set 

of digital behavior markers, from activity-labeled time series data. Third, we investigate the 

predictability of clinical scores from a person’s behaviorome. In this investigation, we 

collect continuous smart home and smartwatch data for n = 21 healthy older adults while 

they perform their normal daily routines. Finally, we introduce a method to enhance clinical 

score predictability by leveraging the relationships between multiple target variables.

II. RELATED WORK

Sensor data hold the potential to give researchers substantial information about a person’s 

behavior as well as health. While sensors have become low cost, wireless, and deployable in 

real-world settings, researchers have found no single “silver bullet” sensor that provides all 

the necessary insight into a person’s health and behavior. However, researchers have made 

progress in linking features of individual sensor modalities with specific health 

characteristics. Here we review recent advances in analyzing time series sensor data to gain 

insights for automated health assessment.

Our study combines behavior markers from wearable sensors and ambient sensors. Other 

sensors could be considered for this task as well, such as video, audio, phone, and biometric, 

to name a few. We restrict our analysis to sensors which are commercially available, easily 

deployable, and able to handle a variety of environment conditions. Within these constraints, 

researchers have made considerable progress in performing health assessment from sensor 

data. One such sensor platform is provided by wearable and mobile sensors. Wearable 

sensors typically quantify aspects of movement. These sensors may be embedded into 

inertial measurement units (IMUs) or included on commercial phones and watches which 

collect acceleration and angular velocity data.

In one study, Mancini et al. [3] analyzed wearable data to analyze movement parameters 

when a person performed turning motions. Customized wearable devices collected angular 

velocities. These velocities were shown to be predictive of falls and of cognitive function as 

determined by Clinical Dementia Rating scores. In other work, Adler et al. [4] collected data 

from a commercial smartphone to predict schizophrenia-related psychotic relapse using a 
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neural network. They extracted features from movement-based sensors but also included app 

use, phone calls, and inferred sleep times. In addition to these features, Wang et al. [5] also 

inferred movement category (e.g., walking, in a vehicle) and computed an index that 

estimates the regularity of a person’s daily schedule from phone-based sensors. They used 

this information to infer symptoms of depression as indicated by in-the-moment Patient 

Health Questionnaire-4 (PHQ-4). Huckins et al. [6] utilized a similar set of features to 

predict PHQ-4-detected anxiety among college students at the beginning of the COVID-19 

pandemic. Focusing on a different health domain, Newland et al. [7] analyzed movement 

data collected from wearable sensors to infer clinical scores that are specific for assessing 

symptoms of multiple sclerosis.

In other studies, researchers utilized information from wearable sensors to infer a behavior 

or health marker that is consistent with a larger health condition. For example, Fiorini et al. 
[8] analyzed statistical features from wearable accelerometer and angular velocity readings 

to measure a person’s auditory sustained attention. This measure, in turn, provided insights 

on the person’s cognitive function and thus the impact of cognitive training on cognitive 

function. Fallahzadeh et al. [9] collected movement and location information on 

smartphones to predict and promote medication adherence. They extracted statistical 

features from movement-based sensors, labeled data with corresponding activities 

categories, and used this information to infer whether a patient would be adherent to their 

medication schedule at the prescribed time based on their activity context.

Wearable sensors are particularly insightful at analyzing and inferring movement-based 

parameters that help to determine a person’s health status. In particular, Ravichandran et al. 
[10] surveyed and compared the effectiveness of alternative commercial accelerometer-based 

devices for detecting sleep stages and durations. Fallmann and Chen [11] also surveyed 

approaches to detect and analyze sleep stages from wearable sensor data, focusing on 

research advances. Lee et al. [12] analyzed smartphone motion sensors to measure walking 

movements of healthy individuals and an individual with back pain. In particular, they 

calculated the variation of rotation about three axes and found that the participant with back 

pain demonstrated a wider range of variations, indicating a diminished level of walking 

balance.

The above studies primarily analyze movement sensors to provide insights on health status 

and behavior parameters that impact health status. However, some recent work provides 

evidence that location information can also be gathered from mobile devices and generalized 

among individuals. Lin and Hsu [13] introduced multiple generalizable location features, 

including heading change rate, distance covered, and velocity change rate. They also 

suggested clustering location readings to detect person-specific frequented spots. 

Boukhechba et al. [14] employed this strategy to identify significant locations. They used 

this information together with phone call frequency to predict a person’s social anxiety.

Similar to these reviewed studies, we extract features from both movement and location 

information provided by wearable devices. Wearable devices offer other data modalities as 

well. These include phone usage, heart rate, and even audio and video data. These data 

sources offer valuable behavior and health features. For example, Tseng et al. [15] found that 
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they could predict a person’s inhibitory control based solely on phone usage statistics. To 

enable longitudinal data collection without additional hardware and participant involvement, 

we do not incorporate these additional wearable information sources into the analysis.

Ambient sensors that are embedded into physical environments complement wearable 

sensors by localizing a person within the building. This information, combined with 

environment state readings, can be used to longitudinally track complex activity patterns. As 

in the case of analyzing wearable sensors, researchers have devised methods to extract 

features from longitudinal ambient sensor data that provide insights on behavior patterns. 

For example, Austin et al. [16] inferred behavior parameters from passive infrared motion 

sensors. The parameters include time spent out of the home, indoor walking speed, and time 

spent sleeping. From these features, they were able to predict loneliness among older adults. 

Akl et al. [17] also analyzed ambient motion sensor data to calculate times that individuals 

spent in rooms of the house. Based on this information, they were able to infer a person’s 

cognitive health as indicated by Mini-Mental State Examination and Clinical Dementia 

Rating scores. Dawadi et al. [18] similarly extracted features from motion and door sensors. 

From these features, they inferred activity categories and mapped activity features (duration 

and time of day) onto clinical cognitive health indicators including the Repeatable Battery of 

Neuropsychological Status and Timed Up and Go scores. Aramendi et al. [19] collected 

similar activity features over multiple years to predict these scores as well as scores on a 

self-report measure of instrumental activities of daily living (IADL-C).

Fritz et al. [20] collected similar features from ambient sensors as the previous studies. In 

this case, however, the features were used to detect pain episodes for participants with 

chronic health conditions. Skubic et al. [21] also collected data in naturalistic settings to 

identify possible health events. Unlike the previous studies, they analyzed video data 

together with ambient sensors, and created rules to identify anomalies from extracted 

features that increased the possibility of detecting events requiring intervention. In our study, 

we include features collected from motion, door, light, and temperature ambient sensors. As 

indicated by these prior studies, such sensors can be used to recognize activities and in turn 

provide insights on health status.

In all of these prior works, as in this current study, the goal of the technology is monitoring 

behavior over time, in the wild, to perform health assessment. In contrast to prior work, this 

study extracts a large set of behavior markers from both wearable and ambient sensor data. 

Because sensor platforms provide distinct insights in these routines, we hypothesize that the 

fused information will provide a more comprehensive picture of behavior patterns and thus 

improve predictive performance over a range of clinical health scores. Additionally, we 

introduce a method to predict multiple health scores in a way that boosts the prediction of 

each health parameter. These insights can be used to better understand the impact of 

behavior on health and to inform the continued design of assessment measures.
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III. METHODS

A. DATA COLLECTION

In this paper, we analyze smart home data collected from 21 healthy older adult volunteers 

(16 female, 5 male). The mean age was 69 (SD 10.9) and the distribution of demographics is 

shown in Fig. 1. All participants were recruited through community advertisements or 

referral from physicians and local community agencies. Before they were selected for the 

study, participants completed a health screening interview and the Telephone Interview of 

Cognitive Status [22] over the phone. The interview allowed experimenters to rule out 

exclusion criteria. In particular, we enrolled participants who were at least 45 years of age 

and did not indicate a possibility of dementia or lack of insight that could lead to unreliable 

self-report data (TICS ≥ 26). The data were collected as part of a larger study focused on 

developing and validating methods for health assessment and intervention that utilize 

continuously-collected sensor data in naturalistic, real-world settings. The parent study does 

not target specific distributions of education levels, age, gender, or race.

We equipped the homes of these study participants with a CASAS “smart home in a box” 

[23]. Each CASAS smart home apartment contains ambient sensors, consisting of passive 

infrared motion/light sensors attached to the ceilings and door/temperature sensors attached 

to external doors and commonly-used cabinets. In participant homes, experimenters install 

approximately two sensors per room with adhesive strips that can be removed at the end of 

data collection. Data can be collected from these sensors for long periods of time while 

requiring no extra tasks from the participants, and the efficacy of these sensors to capture 

activity patterns and indicate health status has been demonstrated in prior work [19], [24], 

[25]. The CASAS sensors generate timestamped readings whenever the sensed state changes 

(e.g., still to motion, door closed to open). We collected 1 month of ambient sensor data for 

each participant. A 1-month data collection period was chosen to ensure that routine 

behavior patterns that occur on a daily, weekly, or monthly basis would be observed. This 

study was approved by the Washington State University Institutional Review Board.

During the same month, we also collected continuous smartwatch data for each participant. 

Participants wore the watch continuously while data were collected at 1Hz. To provide 

continuous data collection, participants wore one watch during the day while charging a 

second watch, then wore the other watch at night while charging the first. This sample rate 

was selected to ensure that data could be collected continuously during the day without 

draining the battery. Consistent with prior studies [3]–[8], smartwatch data consist of 

timestamped readings for 3D accelerometer, 3D gyroscope, course, and speed. We 

additionally collected location data. As suggested in earlier work [13], [14], raw location 

coordinates were not included in the models because of the privacy risk and because they do 

not generalize well to new participants. Instead, we employ an open street map to map each 

coordinate onto a location type (home, road, work, other).

Prior activity recognition and health assessment research offers evidence that movement-

based sensors including accelerometers and gyroscopes provide insight on behavior patterns 

“in the wild” [26]–[28]. Many of these previous efforts analyze movement-based activities 

such as walking, lying down, and exercising. Recognizing more complex activities such as 
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working and shopping relies on additional information, because the movements associated 

with sitting in front of a television at home will be similar to the movements associated with 

sitting in a meeting at work. We incorporate location information to aid in detecting and 

distinguishing these more complex activities.

We also calculated person-specific location parameters including mean location and the top 

three most-frequented location regions by time of day (morning, afternoon, evening, night). 

For some participants, there were periods of time during transition between watches where 

smartwatch data were missing (mean minutes of missing readings/day = 5.59, s.d. = 5.33). 

We imputed the missing values using random forest regression with 100 trees. The features 

employed for imputation-based prediction are the previous readings from all sensors leading 

up to the missing time and readings for the missing sensor occurring at the same time of day 

(number of minutes past midnight) for the seven prior days for which readings are available. 

In the case of ambient sensor data from smart homes, no data were missing. These data 

collection environments require no actions on the part of participants. Because batteries for 

each sensor last for more than a year without a need for recharge, data collection did not 

experience any interruptions in the smart homes.

Finally, a neuropsychologist team collected self-report information for each participant and 

administered a battery of clinical assessments. We include a total of 129 self-report answers 

to health-related items and clinical parameters for analysis. Baseline self-report questions 

primarily assessed everyday health-related behaviors (e.g., level of engagement in physical 

exercise, educational community activities) based on a Likert Scale. We also collected self-

report answers and performance on a cognitive n-back test [29] during data collection using 

an ecological momentary assessment (EMA) app. EMA self-report questions assessed in-

the-moment functioning, socialization, physical and mental activity, fatigue, and mood. For 

the purposes of this work, these scores were averaged across the data collection period. The 

neurocognitive measures assessed performance across varying cognitive domains (e.g., 

memory, executive function, attention).

We selected 7 clinical scores as target variables for the prediction models. The target scores 

are summarized in Table 1. These scores were chosen because they reflect cognitive or 

mobility health and exhibited a sufficient variance (>0.1 after normalization to a [0, 1] 

range) among the participants. The first such score is provided by the Wechsler Test of Adult 

Reading (WTAR) [30]. The WTAR estimates intellectual functioning, IQ, by having 

participants read aloud a list of 50 words with irregular pronunciations. This assesses 

knowledge and reading skills that are acquired over time as the test does not rely on standard 

pronunciation rules. The Telephone Interview of Cognitive Status (TICS) [22] offers a 

cognitive screening measure that can be linked directly to the widely-used Mini-Mental 

State Examination (MMSE). Unlike the MMSE, the TICS can be administrated over the 

phone. In this test, cognitive function is assessed by having participants complete an 11-item 

brief screening test over the phone by completing tasks such as “count backwards by 7 from 

100”. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) 

[31] characterizes abnormal cognitive decline. Participants complete 12 subsets that assess 

the cognitive domains of attention, language, visuospatial/constructional abilities, and 

delayed memory. The F-A-S (FAS) [32] measures executive function. Participants are given 
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one minute to list as many words as they can that begin with the letters “F”, “A”, or “S”. The 

Timed Up and Go (TUG) Test [33] is a widely-employed method of evaluating basic 

mobility maneuvers and has also been shown to offer indicators of cognitive and functional 

abilities [34].

We also include two measures of functional abilities. These exhibit lower variance among 

the normalized values (0.01 for DEX, 0.07 for ADCS-ADL) among participants. However, 

they provide insight on how behavior patterns reflect standardized clinical assessment 

methods and vice versa. The first of these tests is the Dysexecutive Functioning 

Questionnaire (DEX) [35]. DEX asks participants to rate 20 items that are designed to assess 

everyday manifestations of difficulties consistent with common executive difficulties. These 

are emotion and personality changes, motivational changes, behavioral changes, and 

cognitive changes. Each item is scored on a 5-point Likert scale. The last targeted clinical 

score is generated by the Alzheimer’s disease Cooperative Study Instrumental protocol. In 

this inventory, ADCS-ADL.([36], participants rate their ability (ranging from full 

independence to full dependence) to complete 6 basic activities of daily living (e.g., eating) 

and 16 instrumental activities of daily living (e.g., cooking) over the prior 4-week period. 

The remaining clinical parameters are used as supplemental clinical variables in the analysis. 

Fig. 2 shows the distribution of the target clinical scores projected using Principal 

Components Analysis onto a 4D space.

B. ACTIVITY RECOGNITION

We define a behaviorome as a set of digital behavior markers. The markers are more 

comprehensive if the set includes details of time spent on activities that are common and 

often included in clinical assessments. To include this information, we need a method that 

will automatically label sensor data with corresponding activity labels.

We have previously designed machine learning algorithms that label each ambient or 

wearable sensor reading with a corresponding activity label, referred to as Mobile-AR and 

Home-AR [37].1 Researchers have designed numerous methods for human activity 

recognition from smart home sensors [37]–[40] and mobile sensors [41]–[46]. However, 

most methods operate in controlled laboratory conditions and no previously-reported work 

has investigated labeling and modeling activities from both ambient and wearable sensor 

data. The Mobile-AR and Home-AR algorithms, in contrast, label activities in real-time for 

data collected in noisy, complex, realistic settings. Both algorithms employ a random forest 

with 100 trees to map a window of sensor readings to a corresponding activity label. The 

window size for ambient sensor readings is 30 readings (they do not arrive at equally-spaced 

time intervals) and for wearable sensor readings is 5 seconds. These window sizes have 

demonstrated success for activity recognition in earlier studies [25], [37], [47].

Each ambient sensor is identified based on its location and its type. Sensor locations are 

defined by regions of the home (bathroom, bedroom, dining room, entry, hall, kitchen, living 

room, office, other) and type (motion, door, temperature, light). These designators allow us 

1Code for Mobile-AR and Home-AR is available at https://github.com/WSU-CASAS/AL and https://github.com/WSU-CASAS/AL-
Smarthome.
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to build models that generalize to new home settings without a need for floorplan 

information or a way to map sensor identifiers in one home to sensor identifiers in other 

homes. In the case of wearable data, Mobile-AR applies a Butterworth low-pass filter with a 

cutoff of 0.3Hz to sensor readings before extracting features to remove signal noise. The 

features extracted for each sensor modality are listed in Table 2, together with the activity 

categories that are automatically recognized for each modality.

As shown in Table 2, the learned activities are distinct for the different sensor platforms. 

Activity models are created from prior studies in which ground truth labels were provided 

for training. Activity categories were selected in those cases based on the types of activities 

that could be readily detected by the corresponding type of sensor. Many of the activity 

labels represent pre-defined activities of daily living (ADLs), while other labels are based on 

common behavior patterns.

The participants in the study we report here did not provide any ground truth activity labels 

for each smart home data or smartwatch data. As a result, we rely on pre-trained models to 

accurately provide activity information. Because the accuracy of the labels will impact the 

reliability of the extracted behaviorome, we evaluated the pre-trained models for their 

predictive performance on the activities listed in Table 2.

We started by performing a leave-one-house-out performance analysis for Home-AR. The 

evaluation is based on 94 homes containing a total of 22,602,331 sensor reading sequences 

with corresponding ground truth activity labels. Table 3 summarizes the performance results 

for Home-AR. Similarly, we evaluate Mobile-AR using leave-one-subject-out evaluation for 

250 individuals who provided activity labels for a total of 1,485,438 sensor reading 

sequences. Table 4 summarizes the performance results for Mobile-AR. For both platforms, 

activity recognition performs at an f1 score of 0.85 or higher. This provides some evidence 

supporting inclusion of activity labels in the behaviorome that we describe in the next 

section.

C. CREATING A BEHAVIOROME

Using the activity-labeled time series data, we compute and compile digital behavior 

markers, which become the person’s behaviorome. The set of digital behavior markers 

includes a set of behavior markers for each day and each hour of the day to describe 

observed behavior within that time period. From this information, we then additionally 

extract a set of overall behavior markers.2

The daily, hourly, and overall behavior markers are summarized in Table 5. As this table 

indicates, statistical summaries are gathered for each separate (daily, hourly) time period as 

well as for the entire data collection time period. In the case of smartwatch data, additional 

sensor data were available that were not labeled with the primary activity categories listed in 

Table 2. For some earlier studies, participants were asked to provide any appropriate activity 

label. Many of these diverse labels only appeared for a few participants, represented 

specialized activities, or indicated a person’s location context rather than an activity 

2Code to extract digital behavior markers is available at https://github.com/WSU-CASAS/DM.
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category. However, these extra labels can be valuable in building a behaviorome. Therefore, 

we train additional one-class random forest classifiers to recognize whether a person’s 

current context belongs to one of these categories. For all learning tasks, the class 

distributions are imbalanced. To address this challenge, we weight each training point. 

Weights are inversely proportionate to the corresponding class relative frequency in the 

training data. As shown in Table 5, the set of behavior markers includes time spent in one of 

these specialized activities. The one-class categories are: airplane, art, bathe, beach, biking, 

bus, car, chores, church, computer, cook, dress, drink, entertainment, groom, hobby, lunch, 

movie, music, relax, restaurant, school, service, shop, socialize, and sport.

Furthermore, the overall behavior markers contain information about a person’s behavior 

routine as a whole, as observed over the entire data collection period. These include 

computation of a set of regularity indicators and circadian rhythm values. A regularity index 

is calculated using the hourly data and compares the uniformity of a person’s schedule. This 

index is calculated for a within-week measure to compare days with a week, within-weekday 

measure to specifically determine the regularity of a Monday-through-Friday schedule, and 

between weeks to determine if there is a longer-term uniformity of schedule. The indices are 

calculated based on total acceleration, total rotation, and total distance traveled values. To 

calculate a regularity index, the data are first scaled to the range [−0.5, 0.5]. As introduced 

by Wang et al. [5], the regularity index comparing days a and b is defined as:

RIa, b∑t = 1
T xtaxtb

T (1)

For our analysis, T = 24 hours and xta represents the scaled value for hour t of day a.

Finally, we compute values that reflect the circadian rhythm of a person’s routine. The 

computation is applied only to the markers extracted for hourly time periods and is 

computed based on total acceleration, total rotation, and distanced traveled during the 

corresponding time period. To quantify circadian rhythm strength, we estimate a power 

spectral density using a periodogram. Based on Fourier analysis, the spectral energy of each 

frequency can be calculated using Equation 2.

R = 2
N ∑i = 1

N xicos 2πjti
N

2
+ 2

N ∑i = 1
N xisin 2πjti

N
2

(2)

In Equation 2, N represents the number of samples in the time series, xi represents the value 

of the measured variable at time i, and the spectral energy is computed for a particular 

frequency, j. We calculate the spectral energy for a range of possible frequencies, resulting in 

a periodogram. This periodogram generates values to a set of possible cycle lengths. The 

computed circadian rhythm is then represented by the normalized periodogram-derived 

value for a 24-hour cycle [48].

Fig. 3 illustrates a periodogram that was constructed using sensor data collected from one 

smart home (the graph contains separate plots for each week of data collection). In the case 

of this home, the sensor data most strongly support a 24-hour cycle length. In the next 
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section, we will examine whether a behaviorome constructed from these features can predict 

the clinical state of participants in our study.

D. JOINT INFERENCE OF CLINICAL SCORES

The goal of this work is to predict clinical scores from a sensor-derived behaviorome. We 

hypothesize that these digital behavior markers provide an indication of a person’s health 

status and thus offer the ability to predict clinical assessment scores. We further postulate 

that the relationship between multiple assessment measures that are typically collected can 

boost the predictive performance, by leveraging the relationship.

Fig. 4 illustrates the joint inference process. The intuition is that demographic and sensor 

information is used to infer values for each clinical parameter. In a second step, demographic 

and sensor information is combined with the inferred clinical parameters values (from step 

one) to predict values for each clinical parameter. If our hypothesis is valid, the inferred 

values from step two (joint inference) will result in greater predictive accuracy than the 

inferred values from step one (independent inference).

The independent predictor is our baseline clinical score predictor. As the name suggests, this 

predictor ignores the relational structure of the scores, and makes predictions using only 

information from the demographics and behaviorome. Here, the term “demographic” is 

broadly used to indicate the population sector and the health background of the person (e.g., 

substance abuse, high blood pressure). No clinical variables are used to predict values for 

other clinical variables.

More formally, the independent predictor is trained as follows. For each subject, we collect 

demographic features ψd, extract the digital behavior features ψsh and ψsw listed in Table 5, 

and gather ground truth scores for the target clinical scores ψtc listed in Table 1 as well as 

supplemental clinical scores ψsc described in Section IIIA. We train an independent 

regressor Πi for each target and supplemental clinical score i. To do this, we collect the 

combined features as input xi and the ground truth predictions as output yi. We feed the 

aggregate set of input/output pairs, xi, yi i = 1
N  as training examples to a regression learner 

that seeks to minimize loss function L. For this problem, the non-negative loss function 

L(x, y) ∈ ℜ+ is the loss associated with labeling a particular input x ∈ ℜ+ as output y ∈ ℜI

when the true output is y ∈ ℜI (normalized mean absolute error).

Our inference goal is to return a function/predictor whose outputs have low expected loss, or 

correspondingly yield high predictive performance. Random forest performs well for 

complex problems, such as Home-AR and Mobile-AR. However, the clinical score 

prediction problem exhibits even higher dimensionality. The independent predictor utilizes 

1,038 features (86 demographic features and 952 behavior features). The joint predictor 

utilizes these 1,038 features plus 7 target clinical scores and 129 supplemental clinical 

scores. For very high-dimensional spaces, gradient boosting has demonstrated consistent 

success [49]. Using gradient boosting with 100 estimators and a learning rate of 0.1, 

multiple training iterations are performed during which additional regression trees are added 

to an ensemble. Each added tree reduces the least squares loss from the previous iteration. 
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We incorporate gradient boosting with regression trees for the independent and joint 

prediction steps of the process shown in Fig. 4.

During the joint prediction step, we employ joint predictors to improve predictive accuracy. 

These joint predictors are pseudo-independent in the sense that each regressor predicts the 

output for a single clinical score but has independent-predictor outputs from all of the other 

regressors available as part of the input feature vector to make a more-informed prediction. 

The feature vector to predict clinical score i now consists of demographic features ψd, 

behaviorome features ψsh and ψsw, inferred supplemental clinical scores ψsc, and inferred 

target clinical scores ψtc for all variables other than i. Joint prediction offers advantages 

when the variables being predicted are related – one score may be easier to predict than 

another, and its inferred value can improve prediction for the related variable.

IV. EXPERIMENTAL RESULTS

We evaluate the ability of the machine learning regression algorithm to predict clinical 

scores from the extracted behaviorome by computing Pearson’s correlation between the 

predicted and actual values. We compare the results using smart home behavior markers, 

smartwatch behavior markers, and a fusion of the two. Additionally, we compare the results 

generated by independent predictors with those generated by joint predictions. All results are 

generated from a leave-one-subject-out validation. Results are summarized in Table 6.

Correlations ranging from r = 0.019 (TICS, joint prediction based on smart home behavior 

markers) to r = 0.962 (RBANS, joint prediction based on smartwatch features) result from 

the proposed prediction method. The highest-performing prediction strategy for each clinical 

score is a joint inference method. In fact, the average correlation over all behavior marker 

combinations for independent predictors is a small correlation (r = 0.298) while the average 

for joint predictors is a moderate correlation (r = 0.601).

The results provide evidence that digital behavior markers from both smart home sensors 

and smartwatch sensors are predictive of clinical scores. The sensor modality that provides 

the largest predictive performance varies by category. Interestingly, a fusion of markers from 

both the smart home and the smartwatch does not consistently yield the highest predictive 

performance. While gradient boosting performs better than a random forest regressor and a 

regression tree classifier (which average r = 0.592 and r = 0.499, respectively, for joint 

prediction based on a fusion of behavior markers), the learner still appears to struggle with 

the high-dimensional space. Dimensionality reduction techniques can be further explored in 

future work, although reducing the dimensionality with PCA (number of components = 21) 

reduces the predictive performance to r = 0.259.

V. CONCLUSION

In this study, we assess the ability of multi-modal sensor data to provide digital behavior 

markers that are predictive of clinical health states. To do this, we describe a method of 

collecting sensor data, automatically labeling the data with activity labels, and extracting 

features that form a person’s behaviorome. We built a behaviorome for each person in our 
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study from a combination of smart home and smartwatch data. Using a gradient boosting 

regression algorithm, the method predicts clinical scores with moderate or high correlation 

for WTAR, RBANS, FAS, TUG. These scores include measures of cognitive and mobility-

based health. The model also predicts scores with moderate correlation for DEX and ADLC, 

which are self-report measures of independent functioning. We further provide evidence that 

performing joint prediction for a large set of clinically-related variables boosts predictive 

performance.

Limitations of this work include the small sample size of 21 healthy older adults. Future 

studies will involve participants exhibiting a range of health conditions to examine the 

ability to further differentiate between diagnosis groups. Continued analysis may also shed 

light on the types of sensor modalities that are most predictive of specific clinical scores. We 

will also adapt the approach described here to track and predict changes in health status over 

time.
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FIGURE 1. 
Distribution of study participants based on years of education, race, age, gender, and the 

number of preexisting conditions in these categories: neurological disability, head injury, and 

experiencing changes in memory performance.
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FIGURE 2. 
Projection of clinical variables onto a 4D space (3D geometric space and color). The project 

illustrates the distribution and variance of collected clinical information for the participant 

sample.
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FIGURE 3. 
Circadian cycle strengths gleaned using a periodogram. The graph plots strengths of cycle 

sizes ranging from 0 to 34 hours.
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FIGURE 4. 
The joint inference process. Demographic variables and digital behavior markers are initially 

used to predict values for the target clinical scores and supplemental clinical scores, in an 

independent inference step. During joint inference, the predicted clinical scores for all 

variables except i are combined with demographic features and the behaviorome to predict 

the value of clinical score i. Dotted lines indicate variables that are used for both rounds. 

Dashed lines indicate features that are used as ground truth only during training.
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TABLE 1.

Targeted clinical scores.

Measure Construct Assessed

Wechsler Test of Adult Reading (WTAR) Premorbid verbal intellectual abilities

Telephone Interview of Cognitive Status (TICS) Global cognitive status

Repeatable Battery of Neuropsychological Status (RBANS) General neurocognitive status

F-A-S Test (FAS) Executive friction

Timed Up and Go Test (TUG) Functional mobility

Dysexecutive questionnaire (DEX) Self-reported everyday executive dysfunction

Alzheimer’s disease Cooperative Study Activities of Daily Living Inventory 
(ADCS-ADL)

Self-reported everyday activity ability and functional 
independence
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TABLE 2.

Extracted features for one window of sensor data.

Ambient Sensors Mobile Sensors

time of day (hour, seconds past midnight), day of the week
max, min, sum, mean, median, mean/median abs value, standard deviation, 
mean/median abs deviation of sensor values, moments, mean and variance 
of

window duration Fourier Transformed sensor values

time elapsed since previous sensor reading coefficient of variation, skewness, kurtosis, signal energy, log signal 
energy, power

dominant (most common) sensor in current / previous window sensor value autocorrelation

last sensor / location to generate reading, location of last motion 
sensor correlations between axes for multidimensional sensors

window complexity (entropy of numbers of readings for each 
sensor) number of changes in location

absolute value of successive values, time between peaks heading change 
rate, stop rate, overall trajectory

number of sensors generating readings location type

number of readings for each sensor normalized distance / direction from person’s mean location, distance 
traveled

time elapsed for each sensor since previous reading location within most-frequented locations by time of day

Activities: Bed-toilet transition, Cook, Eat, Enter home, Leave 
home, Personal hygiene, Relax, Sleep, Wash dishes, Work

Activities: Chores, Eat, Entertainment, Errands, Exercise, Hobby, Hygiene, 
Relax, School, Sleep, Travel, Work
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TABLE 3.

Home-AR activity recognition results based on leave-one-home-out testing. Performance metrics are average 

precision, recall, and f1-score.

Precision Recall FI Score

0.86 0.85 0.85
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TABLE 4.

Mobile-AR activity recognition results based on leave-one-subject-out testing. Performance metrics are 

average precision, recall, and f1-score.

Precision Recall FI Score

0.94 0.87 0.86
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