Skip to main content
. 2021 May 19;16(5):e0251629. doi: 10.1371/journal.pone.0251629

Table 13. Multiple regression, French-German, word-like pseudowords.

Model 1 Model 2
(Intercept) 0.01(0.16) −0.11(0.47)
Language −0.01(0.23) −0.08(0.28)
Length −0.04(0.15)
Syllables count 0.09(0.29)
Baseword Frequency −0.01(0.13)
Orthographic N −0.07(0.12)
Phonological N −0.09(0.13)
Body N −0.24(0.14)
Bigram Frequency −0.04(0.14)
R2 0.00 0.07
Adj. R2 −0.01 −0.03
Num. obs. 80 80
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1128 0.4660 -0.24 0.8093
Language -0.0764 0.2780 -0.28 0.7841
Length -0.0421 0.1541 -0.27 0.7856
Syllables count 0.0916 0.2885 0.32 0.7519
Baseword Frequency -0.0069 0.1280 -0.05 0.9571
Orthographic N -0.0665 0.1183 -0.56 0.5758
Phonological N -0.0949 0.1306 -0.73 0.4698
Body N -0.2436 0.1444 -1.69 0.0960
Bigram Frequency -0.0442 0.1386 -0.32 0.7507

***p < 0.001;

**p < 0.01;

*p < 0.05