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Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important—albeit unknown—mobile signal that is
distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions
in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate.
However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how
KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to
monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrat-
ing transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results
showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overex-
pressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf
longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism
were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism.
Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively,
our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating
cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to
improve plant fitness.

Introduction
As sessile organisms, plants have several adaptive mecha-
nisms allowing them to cope with fluctuating environmental
conditions. Among these, leaf senescence greatly increases
plant fitness, reproduction, and survival by actively recycling

nutrients and energy from old leaves into newly developing
organs or offspring (Yoshida, 2003; Lim et al., 2007).
Naturally, leaf senescence occurs in an age-dependent man-
ner, and its related processes, including chlorophyll degrada-
tion and programmed cell death, are finely tuned by the
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integration of cues from both exogenous stimuli, such as nu-
trient availability and biotic/abiotic stress, and endogenous
developmental signals, including age, reactive oxygen species
(ROS), reproduction transition, and phytohormones (Nam,
1997; Lim et al., 2003; Guo and Gan, 2005; Woo et al., 2013).
Among the phytohormones, abscisic acid (ABA; Zhao et al.,
2016; Mao et al., 2017), ethylene (Koyama, 2014), salicylic
acid (SA; Zhang et al., 2013, 2017), jasmonate (JA; Hu et al.,
2017), and strigolactones (SLs; Woo et al., 2001; Ueda and
Kusaba, 2015) have positive effects on the promotion of leaf
senescence, whereas cytokinin has a well-defined function in
delaying leaf senescence (Zwack and Rashotte, 2013).

The biosynthesis of cytokinins begins with ISOPENTENYL
TRANSFERASE (IPT) genes (Kakimoto, 2001; Takei et al.,
2001; Sakakibara, 2006), encoding rate-limiting enzymes that
catalyze the reaction of adding a prenyl group to ADP/ATP
to produce N6-(D2-isopentenyl) adenine (iP) ribotides. iP
ribotides can subsequently be converted to trans-zeatin (tZ)
type ribotides by the cytochrome P450 enzymes CYP735A1
and CYP735A2 (Takei et al., 2004; Kiba et al., 2013). In the
last step, the LONELY GUY (LOG) protein catalyzes the re-
action that converts cytokinin from an inactive form to an
active form (Kurakawa et al., 2007; Kuroha et al., 2009). In
addition to de novo biosynthesis affecting the final content
of cytokinins, the levels of active cytokinins can be modu-
lated via conjugation to a sugar (Brzobohat�y et al., 1993), as
well as through irreversible cleavage by CYTOKININ
OXIDASEs (CKXs; Werner et al., 2003). The cytokinin signal
transduction pathway is mediated by a two-component-like
system in which the cytokinin receptors Arabidopsis
HISTIDINE KINASEs (AHKs) pass the phosphoryl groups to
AUTHENTIC HISTIDINE PHOSPHOTRANSFERASEs (AHPs)
which passes it to A RESPONSE REGULATOR (RR or ARR;
Hutchison and Kieber, 2002; Hwang et al., 2012; Kieber and
Schaller, 2014). In Arabidopsis, there are two types of ARRs
involved in cytokinin signaling: type-A and type-B ARRs.
Type-B ARR transcription factors are essential for the initial
transcriptional response to cytokinins (Brandstatter and
Kieber, 1998; D’Agostino et al., 2000). By contrast, type-A
ARRs lack a transcriptional regulatory domain and act as
negative-feedback regulators of cytokinin signaling (Hwang
and Sheen, 2001; El-Showk et al., 2013). In addition to ARRs,
CYTOKININ RESPONSE FACTOR (CRF), belonging to the
APETALA2 (AP2) transcription factor family, has been iden-
tified as a novel class of response regulators of cytokinin
(Rashotte et al., 2006).

Delayed leaf senescence mediated by cytokinins has been
studied for many decades (Zwack and Rashotte, 2013).
Pioneering research from Rihmond and Lang (1957) showed
that cytokinin analog kinetin treatment delayed the loss of
chlorophyll and extended leaf life-span in Xanthium pennsyl-
vanicum. Since then, the cytokinin effects on delaying leaf
senescence have been found in many other species (Dyer
and Osborne, 1971; Gan and Amasino, 1996). Another key
evidence supporting the idea that cytokinins delay leaf se-
nescence is a strong negative correlation between cytokinin

amount and leaf senescence progress (Khan et al., 2014).
Transcriptome analysis in Arabidopsis showed that expres-
sion levels of cytokinin biosynthesis genes were dramatically
decreased in senescent leaves (Buchanan-Wollaston et al.,
2005). This phenomenon led to the design of a system in
which the IPT gene is expressed under the promoter of
SENESCENCE ASSOCIATED GENE 12 (SAG12), a reference
gene for characterizing leaf senescence (Gan and Amasino,
1995). This PROSAG12:IPT system has been applied to many
important crop species including rice (Oryza sativa), tomato
(Solanum lycopersicum), alfalfa (Medicago sativa), cauliflower
(Brassica oleracea var. botrytis), wheat (Triticum aestivum),
and cotton (Gossypium hirsutum), all of which showed delay
leaf senescence (McCabe et al., 2001; Lin et al., 2002;
Calderini et al., 2007; Nguyen et al., 2008; Sykorová et al.,
2008; Ma and Liu, 2009; Liu et al., 2012). Besides the effect
of cytokinin contents on leaf senescence, the component of
cytokinin signaling-mediated senescence regulation was
revealed by the identification of the gain-of-function muta-
tion in a histidine kinase cytokinin receptor AHK3, which
showed delay leaf senescence (Kim et al., 2006). Constitutive
activation of AHK3 leads to phosphorylation on the Asp-80
residue of a B-type response regulator ARR2. Similar to the
gain-of-function ahk3 phenotype, overexpression of ARR2
also resulted in delayed leaf senescence during dark-induced
and age-dependent senescence (Kim et al., 2006). Another
type of CRF, CRF6, has been found to negatively regulate
developmental senescence and may have a similar role in re-
sponse to stress (Zwack et al., 2013). It has been proposed
that AHK3-mediated cytokinin signaling activates ARR2
and induces CRF6, resulting in activation of extracellular
invertase (Zwack and Rashotte, 2013), which is essential
for the cytokinin-mediated delay of senescence as it
supplies carbohydrates to sink tissues (Balibrea Lara et al.,
2004).

In contrast to the decreased contents of cytokinin during
leaf senescence, the amount of ABA, SA, and JA is increased
as senescence progresses (Khan et al., 2014). Both ABA and
SA have long been known to play positive roles in leaf se-
nescence (Becker and Apel, 1993; Morris et al., 2000). ABA
can induce plant senescence via regulating the expression of
some SAGs (Weaver et al., 1998). The relationship between
SA and leaf senescence was revealed by analysis of mutants
disrupted in SA catabolism and signaling components, such
as SA3-HYDROXYLASE (S3H; Zhang et al., 2013), PROTEIN
S-AXYLTRANSFERASE14 (PAT14; Zhao et al., 2016),
NONEXPREESSION OF PR GENES1 (NPR1; Yoshimoto et al.,
2009), and PHYTOALEXIN DEFICIENT4 (PAD4; Vogelmann
et al., 2012). All these mutants accumulating high levels of
SA display precocious leaf senescence. Consistent with this,
transcriptome analysis revealed a high degree of overlap in
the transcription patterns between SA treatment and leaf
senescence (Buchanan-Wollaston et al., 2005).

Besides phytohormones, nutrition limitation, especially in
the case of nitrogen, has been shown to aggravate leaf se-
nescence (Diaz et al., 2008; Agüera et al., 2010). As such, leaf
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senescence is understood as indispensable metabolic adjust-
ments for nutrient recycling and remobilization, which
affects both carbon and nitrogen management (Bleecker,
1998). A large number of genes are differentially expressed
during leaf senescence, including genes in nitrate transport,
nitrogen assimilation and remobilization, proteolysis, and
autophagy (Havé et al., 2017), indicating that increased pro-
tein degradation facilitates the recycling of protein reserves
in leaves.

The Arabidopsis cytochrome P450 gene KLU (also known
as CYP78A5) is predicted to produce a mobile molecule that
promotes the growth of floral organs and leaves in a non-
cell-autonomous manner (Anastasiou et al., 2007; Adamski
et al., 2009; Kazama et al., 2010). Given that klu mutants
showed a higher rate of leaf initiation, as well as smaller leaf,
sepal, and petal sizes due to their reduced cell number
(Anastasiou et al., 2007; Wang et al., 2008), KLU was sug-
gested to be a positive regulator of cell proliferation, which
is a process governed by cytokinin. The early transcriptional
response to KLU activity is distinct from that of classical
phytohormones, supporting the idea that KLU belongs to a
separate signaling pathway regulating organ size (Anastasiou
et al., 2007). In Arabidopsis, KLU is expressed in the inner in-
tegument of developing ovules and stimulates cell prolifera-
tion, thereby contributing to seed size (Adamski et al.,
2009). Similarly, the ectopic overexpression of KLU homologs
in a wide variety of plant species, particularly in crops, also
leads to large seed or fruit sizes (Fang et al., 2012;
Chakrabarti et al., 2013; Yang et al., 2013; Ma et al., 2015),
partly because of reduced fertility (Fang et al., 2012). Owing
to its agricultural importance, functional characterization of
KLU has attracted much attention. In this study, we demon-
strated that Arabidopsis KLU plays positive roles in delaying
leaf senescence. The combination of transcriptome analysis
and metabolite profiling revealed that KLU contributes to
leaf longevity by synergistic activation of cytokinins signaling.
A signature metabolic change among wild-type (WT), klu-
mutant, and KLU-overexpressing plants is the accelerated
metabolic flux from glutamate to proline. As proline is a
well-defined protective factor in plants coping with many
stress conditions, the overexpression of KLU was associated
with enhanced resistant to drought tolerance and dark-
triggered leaf senescence. The expression of proline biosyn-
thesis genes increased following both KLU overexpression
and cytokinin treatment. Taken together, our research
reveals the molecular mechanism through which KLU con-
tributes to leaf senescence and drought tolerance.

Results

Transcriptome analysis and hormone measurement
reveal that KLU/KLU-dependent signaling has
complex influences on phytohormones
To systematically elucidate how KLU/KLU-dependent signal-
ing influences cell physiology through interacting with other
phytohormone signaling pathways, a comprehensive multi-

omics analysis was applied to reveal alterations in the tran-
scriptome, phytohormones, and primary metabolites across
WT (Col-0), klu-mutant, and KLU-overexpressing plants
(Figure 1, A). To get an overview of the transcriptomic data,
sample clustering based on the read count matrix was con-
ducted, resulting in two major clusters, one between KLU-
overexpression lines and another between WT and the klu
mutant (Figure 1, B). Principal component analysis (PCA)
based on the count matrix of all genes across three geno-
types showed clear differentiation of the two independent
overexpression lines with WT and the klu mutant, in which
the first principal component (PC1) and PC2 explain
75% and 10% of the variance, respectively (Figure 1, C).
After filtering out the low-read counts, differentially
expressed genes (DEGs) were analyzed by DESeq2 with
adjusted P-value 5 0.05. MA plots showed that a high
number of DEGs were detected when comparing KLU-over-
expression lines with both WT and the klu mutants,
whereas very few DEGs were found between WT and klu
(Figure 1, D, Supplemental Figure S1, A, and Supplemental
Table S1). A total of 3,284 DEGs and 3,434 DEGs were found
between WT and two different 35S:KLU lines, respectively
(Figure 1, E). By contrast, 4,476 DEGs and 4,525 DEGs were
found between the klu mutant and the two KLU-overex-
pression lines, respectively (Figure 1, E). Only 59 DEGs were
identified between WT and klu (Figure 1, E and
Supplemental Figure S1, B). The few number of DEGs be-
tween WT and klu might be caused by functional redun-
dancy in the KLU gene family (Bak et al., 2011; Fang et al.,
2012). Reverse transcription quantitative PCR (RT-qPCR)
revealed that the expression levels of several other members
of this family were increased in the klu mutant, whereas
they were decreased in 35S:KLU1 plants (Supplemental
Figure S1, C). Only three DEGs were found from a total of
�21,000 expressed genes between the two independent
KLU-overexpression lines. Therefore, we chose the common
DEGs that were shared by the two independent KLU-overex-
pression lines compared with WT/klu (named Col-0 versus
OE and klu versus OE, respectively) for later gene ontology
(GO) analysis and kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analysis. Both Col-0 versus OE
DEGs and klu versus OE DEGs showed similar GO terms en-
richment related to systemic acquired resistance, cell death,
and nitrogen compound metabolic process (Supplemental
Figure S2). In KEGG pathway enrichment analysis, both
DEGs shared common pathways pertaining to plant–
pathogen interaction and proteasome, which also can be
traced from GO term analysis (Figure 2, A and B). Following
comparison of KEGG pathway enrichment between Col-0
versus OE DEGs and klu versus OE DEGs, we observed that
phytohormone signaling transduction and carbon metabo-
lism were enriched in klu versus OE DEGs but not in
the Col-0 versus OE DEGs (Figure 2, A and B). Among
the key genes in phytohormone metabolism, transport,
perception, and signaling (Supplemental Tables S2–S9),
many showed altered expression, especially in the
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comparison klu versus OE (Supplemental Figures S3 and S4).
In addition, phytohormone profiling showed that the
major detectable phytohormones were altered in the KLU-

overexpressing line. The tZ of cytokinin, GA4, IAA, and SA
accumulated in the KLU overexpressor, whereas ABA and JA
decreased (Figure 2, C).

Figure 1 Overview of the transcriptome changes. (A) Schematic representation of experimental strategy. The images of rosettes and leaves were
digitally extracted for comparison among the genotypes. (B) A sample hierarchical clustering based on the heatmap of sample–sample distances.
Distance heatmap computed from the count matrix. (C) Principal component plot of the individual samples based on count matrix. These per-
centages do not add up to 100% because there are more dimensions that contain the remaining variance. (D) MA-plot showing log2 fold change
(y-axis) of a particular comparison over the mean of normalized counts (x-axis) for all the samples. Red points indicate adjusted P-value is 50.05.
Points falling out of the window are plotted as triangles pointing either up or down. (E) Number of DEGs in different group samples. Yellow boxes,
up-regulated genes, blue boxes, down-regulated genes.
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Cytokinin signaling is altered following KLU
overexpression
Among the phytohormone changes in the klu mutant and
KLU overexpressors, cytokinin particularly drew our atten-
tion because of the following facts. First, the contents of tZ
of cytokinin were decreased and increased in klu-mutant
and KLU-overexpressor plants, respectively, whereas other

hormones did not show opposite changes between the
mutant and the overexpressor (Figure 2, C). Second, our
transcriptome data and RT-qPCR analysis revealed that
several cytokinin-related genes, including CKX1, CKX4, and
type-A ARRs, were down-regulated in the KLU overexpres-
sors, whereas AHP4 was up-regulated (Figure 3, A and
Supplemental Figure S4, A). Among six functional cytokinin
oxidase genes in Arabidopsis (Kieber and Schaller, 2014),
CKX1 and CKX4 showed significant changes in the compari-
son klu versus OE. Thus, the down-regulation of cytokinin
catabolism genes CKX1 and CKX4 in the 35S:KLU plants
could be one of the reasons for the high level of cytokinins.
Third, consistent with phytohormone profiling results, the
35S:KLU plants also showed hypersensitivity to the tZ-type
cytokinin treatment compared with the WT and the klu
mutants (Figure 3, B).

KLU/KLU-dependent signaling influences leaf aging
We reasoned that either the klu mutant or KLU overexpres-
sors can share some common phenotypic features that have
been revealed in cytokinin signaling-defective mutants. One
of these phenotypic features we observed was leaf senes-
cence; it is well known that an increase in cytokinin con-
tents or the activation of cytokinin signaling greatly
prolongs leaf longevity (Zwack and Rashotte, 2013). The klu
mutant displayed early yellowish leaves in the reproductive
stage compared with WT (Figure 4, A), whereas the leaves
of the 35S:KLU plants showed darker green coloring com-
pared with WT through the whole plant life cycle (Figure 4,
A and Supplemental Figure S5, A). In Arabidopsis, many
early- or delayed-senescence mutants were reported to
show early- or delayed-flowering, respectively (Wingler,
2011). Similarly, the early-senescence klu mutant also
showed early floral transition, small floral organs, and accel-
erating leaf initiation (Supplemental Figure S5, B–F). To ex-
amine leaf senescence phenotypes in detail, phenotypical
examination of the third leaf throughout their life spans
showed that the klu mutant had an early senescence pheno-
type, whereas 35S:KLU plants had greatly delayed leaf senes-
cence (Figure 4, B). The photosynthetic pigment
concentration and photochemical efficiency of photosystem
II (Fv/Fm), two critical physiological markers related to leaf
senescence, were determined in the third leaf at different
growth stages. As shown in Figure 4, C, higher levels of chlo-
rophyll were maintained in 35S:KLU compared with WT and
klu plants, whereas a dramatically decreased chlorophyll
content was observed in the klu mutant at the later stage.
Similarly, there was a significant reduction of Fv/Fm in the
klu mutant compared with WT and 35S:KLU (Figure 4, D).
In addition, the expression of SAG12, a marker gene for leaf
senescence, was increased in the klu mutant at 28 d after
germination (DAG), whereas no detectable transcripts were
found in 35S:KLU plants at the same stage (Figure 4, E).
These results indicate that KLU plays positive roles in leaf
longevity.

Figure 2 KEGG enrichment analysis of DEGs and phytohormone
profiling. (A) KEGG enrichment analysis of DEGs of WT versus OE.
(B) KEGG enrichment analysis of DEGs of klu versus OE. The circle
size of each group scaled from the gene number enriched in each
group, the dot colors indicate log2 fold change of WT/klu compared
with OE. (C) trans-Zeatin (tZ), GA4, IAA, ABA, JA, and SA contents in
the leaves of WT, klu, and 35S:KLU plants at 35 DAG. n = 4–6,
ANOVA, Tukey’s HSD, P 5 0.05.
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Nitrate transport and nitrogen and proline
metabolism are altered in KLU overexpressors
Besides phytohormone signaling pathways, our KEGG path-
way enrichment analysis indicated that the carbon
metabolism-related genes were differentially expressed in the
KLU overexpressors (Figure 2). To reveal the role of KLU in
redistributing nutrient and metabolic flow, we profiled the
primary metabolites by gas chromatography–mass spec-
trometry (GC–MS) to identify changes in metabolite levels
among WT, klu, and 35S:KLU plants during vegetative
growth (Figure 5). To assess secondary effects potentially
caused by the altered leaf senescence (Figure 4), the whole
rosettes were harvested at 35 DAG, the same conditions for
the transcriptome analysis (Figure 1), and two additional
time points (28 and 42 DAG). Furthermore, to examine the
effects of decreased expression of CKXs (Figure 3) on metab-
olite profiles, the ckx1-1 and ckx4-1 mutants (Supplemental
Figure S6), hereafter ckx1 and ckx4, were also analyzed. In to-
tal, 48 primary metabolites were annotated, and subsequent
PCA revealed that the samples were grouped by the harvest-
ing dates (Figure 5, A). Moreover, klu and 35S:KLU plants
were separated by PC1 and PC3 (Figure 5, B), implying that
the differences between klu and 35S:KLU plants were clearer
than those between WT and 35S:KLU plants. Although sev-
eral metabolites, including galactinol and raffinose, contrib-
uted to the separation of the samples during growth, as
indicated in PC2 (Figure 5, A and Supplemental Figure S7,

A), these metabolites did not show significant changes be-
tween klu and 35S:KLU plants (Figure 5, C). Therefore, we fo-
cused on the metabolic changes within the same time
point. Many metabolites showed significant changes among
the lines at 35 DAG (Figure 5, C and Supplemental Figures
S8–S12), whereas several metabolites, such as threonine,
proline, and myo-inositol, showed constitutive accumulation
in 35S:KLU plants compared with the klu mutant
(Supplemental Figure S8). Given than the accumulation pat-
terns of these metabolites during growth were comparable
among the lines (Supplemental Figure S8, B), the overexpres-
sion of KLU might directly affect the biosynthetic and cata-
bolic pathways of these metabolites. Interestingly, sucrose,
glucose, and fructose showed transient accumulation at 35
DAG in 35S:KLU plants compared with the klu mutant,
whereas glucose and fructose contents in the klu mutant in-
creased to similar levels as in 35S:KLU plants at 42 DAG
(Supplemental Figure S12). These results imply that sugar
accumulation during vegetative stages was enhanced by the
overexpression of KLU. The profiles of the ckx mutants were
comparable with that of WT; however, several metabolites,
including amino acids and sugars, accumulated less in the
ckx4 mutant, especially at 42 DAG, albeit to a lesser extent
in the ckx1 mutant (Figure 5, C).

The metabolomic and transcriptomic data were further
integrated to explore metabolic changes, which were associ-
ated with transcriptional changes. The GO category nitrogen

Figure 3 Cytokinin signaling pathway altered in KLU-overexpressors. (A) The expression of the genes associated with cytokinin metabolism, trans-
port, perception, and signaling in klu and 35S:KLU plants analyzed by RNA-sequencing. Asterisks indicate the DEGs (adjusted P-value 5 0.05).
The detailed expression data are available in Supplemental Table S2. (B) Phenotypical response of WT, klu, and 35S:KLU upon 0.1-mM tZ treat-
ment at the stage suggested in the figure. n = 15.
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compound metabolic process was one of the enriched cate-
gories (Supplemental Figure S2), and indeed the genes asso-
ciated with nitrate transport, ammonium transport, and
nitrogen assimilation were differentially expressed in 35S:KLU
plants (Supplemental Figure S13, A–C and Supplemental
Table S10). The altered expression of these genes might be
related to increased levels of arginine and ornithine
(Figure 5, C), which accumulated under nitrogen-limited
conditions (Tschoep et al., 2009). In addition to arginine and
ornithine, their derivative, proline, showed constitutive accu-
mulation in 35S:KLU plants (Figure 5, C), and thus the ex-
pression of the genes associated with proline metabolism
was displayed with the metabolic pathways (Supplemental
Figure S13, D and Supplemental Table S11). The increased
expression of the genes for arginase (ARGAH2) and N-acety-
lornithine deacetylase (NAOD) and those in proline biosyn-
thesis and catabolism, except for ProDH1, might be related
to the accumulation of ornithine and proline, respectively.
Several genes in glutamate metabolism also showed altered
expression in 35S:KLU plants; however, we did not observe
any significant changes in the level of 4-aminobutyric acid
(GABA; Figure 5, C) and could not annotate 2-oxoglutarate
in our chromatograms. Collectively, the genes in nitrate and
ammonium transport, nitrogen assimilation, and proline

metabolism were differentially expressed by the overexpres-
sion of KLU, and this altered gene expression might be asso-
ciated with increased levels of arginine, ornithine, and
proline.

Overexpression of KLU enhances drought tolerance
Previous studies have shown that cytokinin signaling plays
negative roles in drought tolerance (Nishiyama et al., 2011,
2013; Salleh et al., 2016). However, delayed senescence via in-
creased cytokinin contents could enhance drought tolerance
(Rivero et al., 2007). Our phytohormone measurement and
transcriptomic analysis showed increased levels of cytokinins
and activation of cytokinin signaling in KLU-overexpressing
plants. We further examined whether the overexpression
of KLU affected drought tolerance. After drought stress for
7 d, KLU-overexpressing plants showed increased drought-
stress tolerance compared with WT (Figure 6, A). KLU-over-
expressing plants showed greenish leaves, whereas WT and
klu plants exhibited yellowish leaves. Furthermore, the rate
of water loss was lower in KLU-overexpressing plants com-
pared with WT after 150-min dehydration (Figure 6, B).
Consistently, stomatal apertures of 35S:KLU plants were
slightly closed even after incubation in the stomatal opening
buffer, although ABA-responsive stomatal closure was not

Figure 4 The Arabidopsis KLU contributes to leaf longevity. (A) Representative phenotypes of WT, klu, and 35S:KLU plants at different stages. The
stems were removed at the 42-DAG stage. Scale bar, 3 cm. (B) Representative phenotypes of the third leaf of WT, klu, and 35S:KLU plants at differ-
ent stages. Scale bar, 0.5 cm. (C) The chlorophyll contents in the third leaf of WT, klu, and 35S:KLU leaves at different ages. Error bars represent SD

(n = 14). (D) Photochemical efficiency (Fv/Fm) in the third leaf of WT, klu, and 35S:KLU leaves were examined at different ages. Error bars repre-
sent SD (n = 16–20). (E) Expression of the molecular senescence marker gene SAG12 in the third leaf of WT, klu, and 35S:KLU plants at 28 DAG.
Error bars represent SD (n = 3). The Arabidopsis UBIQUITIN 5 was used as internal control. Plant materials were grown under a 16-h light/8-h dark
cycle. Asterisks indicate statistically significant differences when compared with WT by Student’s t test (*P 5 0.05, **P 5 0.01).
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Figure 5 The metabolite profile of KLU-overexpressing lines during vegetative growth. Primary metabolites extracted from aerial parts of plants
grown on soil for 28, 35, and 42 DAG were analyzed by GC–MS. Chromatograms and mass spectra were evaluated using Chroma TOF 1.0 (LECO)
and Tag Finder 4.0 (Luedemann et al., 2012), and 48 metabolites were annotated. Data comprise five or six biological replicates. (A) and (B) PCA
was performed by using R software. The mean points of replicates are indicated by larger symbols. (C) Heat map showing relative accumulation of
each metabolite compared with those in WT plants. For each metabolite, the value of the corresponding WT (28, 35, and 42 DAG) was set to 0.
Different letters denote statistically significant differences (P 5 0.05) within each time point by one-way ANOVA followed by a Tukey’s post hoc
test.
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observed in the overexpressing plants (Supplemental Figure
S14). After growing under drought-stress conditions for 10
d, we re-watered the plants for 4 d and monitored their sur-
vival rates. The 35S:KLU plants showed decreased sensitivity
to drought stress compared with WT, whereas the klu mu-
tant displayed comparable characteristics with WT under
the stress conditions (Figure 6, C and D). In addition, dark-
ness is one of the most potent external stimuli that acceler-
ates leaf senescence (Liebsch and Keech, 2016). 35S:KLU
plants exhibited greatly delayed dark-induced leaf senes-
cence (Figure 6, E), suggesting that the overexpression of
KLU leads to significant tolerance of carbon starvation.
Collectively, these results indicate that KLU overexpression

both affects leaf senescence and has positive effects on
drought-stress tolerance.

Discussion
In land plants, leaf senescence occurs naturally in an age-
dependent manner and is influenced by the integration of
internal and environmental signals, and numerous compo-
nents have been identified in the associated complex regula-
tory mechanisms (Lim et al., 2007; Guo, 2013; Kim et al.,
2016; Yolcu et al., 2018). In this study, our results unveiled
that KLU acts as a negative regulator of leaf senescence,
delaying the progress of leaf senescence via alteration of

Figure 6 Overexpression of KLU contributes to drought tolerance. (A) Overexpression of KLU corresponds with strong drought-stress tolerance.
Twenty-one-day-old seedlings were subjected to drought conditions for 7 d. n = 14. (B) Time-course water loss of the detached whole aerial part
of 21-d-old WT, klu, and 35S:KLU seedlings. Error bars represent SD (n = 12). Student’s t test (*P 5 0.05). (C) 14-d-old seedlings (left) were sub-
jected to drought conditions by withholding water for 10 d and then re-watered. Photographs were taken 4 d after re-watering (right). n = 120.
(D) The survival rate after re-watering in C. Error bars represent SD. Student’s t test (*p 5 0.05). (E) 14-d-old seedlings (left) were subjected to
dark treatment for 7 d and recovered for 2 d under 8-h/16-h dark/light conditions (right). n = 10.
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phytohormone metabolism and signaling (Figure 4 and
Supplemental Figure S5). Transcriptomic analysis suggested
that KLU activates the cytokinin signaling pathway by syner-
gistically controlling cytokinin homeostasis and cytokinin sig-
naling (Figure 3). Furthermore, metabolite profiling together
with transcriptome data revealed that nitrogen assimilation
and proline metabolism were enhanced in KLU-overexpres-
sion lines (Figure 5). We propose that overexpression of KLU
activates cytokinin signaling and proline metabolism, thus
prolonging leaf longevity and enhancing drought-stress toler-
ance (Figure 6).

Biochemically, KLU, belonging to the CYP450 family, has
been predicted to produce a novel growth regulator that
differs from the characterized phytohormones (Anastasiou
et al., 2007). KLU has tremendous effects on plant growth
and development, including in leaf initiation, flowering time,
apical dominance, inflorescence organ, fruit size, and mega-
gametogenesis (Miyoshi et al., 2004; Eriksson et al., 2010).
Recently, a tandem duplication of the tomato KLU gene,
SlKLUH, was shown to be the cause of a quantitative trait
loci (QTL) of fruit weight (Alonge et al., 2020). Arabidopsis
KLU is highly expressed in the shoot apical meristem, and
exhibits quite low expression in the leaves (Zondlo and Irish,
1999). Our transcriptome sequencing analysis also detected
modest expression of KLU in WT (Supplemental Figure 1,
D). Leaf senescence normally occurring in the later repro-
ductive stage is strongly linked with plant developmental
processes (Koyama, 2018). The acceleration of leaf initiation
in the klu mutant might advance the whole development
process. Taking this into account, we could not rule out the
possibility that early leaf senescence observed in the klu mu-
tant was partially due to developmental disorders caused by
the disruption of KLU.

Phytohormones play important roles in leaf senescence
(Goldthwaite, 1987). Cytokinin is one of the well-
characterized phytohormones involved in leaf senescence.
Either high levels of cytokinin contents or increased ARR2
phosphorylation mediated by cytokinin receptor AHK3 ef-
fectively delay leaf senescence (Kim et al., 2006).
Transcriptome sequencing analysis showed that CKX1 and
CKX4, the key enzymes responsible for cytokinin catabolism,
were decreased in KLU-overexpressing plants (Figure 3).
Consistently, phytohormone measurements showed that cy-
tokinin was highly accumulated in KLU-overexpressing
plants, whereas it was slightly decreased in the klu mutant
(Figure 2). It is unlikely that KLU functions in the cytokinin
biosynthetic pathways because CYP735A has been charac-
terized as the enzyme for the conversion of IP-type cytoki-
nin to tZ-type cytokinin (Takei et al., 2004). No detectable
tZ-type cytokinins were found in the loss-of-function
CYP735A mutant, suggesting that CYP735A has no redun-
dant functions with other enzymes in cytokinin biosynthesis
(Kiba et al., 2013). Strikingly, in addition to the increased
level of cytokinin in 35S:KLU plants, several type-A ARR
genes were decreased. Type-A ARRs negatively regulate cyto-
kinin signaling by competing with type-B ARRs for

phosphoryl groups. The decreased expression of type-A ARR
might contribute to activation of the cytokinin signaling
pathway. Generally, type-A ARR genes are induced by cyto-
kinins. The discrepancy between the increased cytokinin
level and down-regulation of type-A ARR genes implies that
KLU uncouples cytokinin perception from its signaling path-
way via unknown mechanisms. Our metabolome data
showed that the metabolite profiles of ckx1 and ckx4 were
distinct from that of KLU-overexpressing plants (Figure 5),
supporting the idea that the phenotypic changes associated
with KLU overexpression are not directly caused by an in-
creased level of tZ. Taken together, our data indicate that
KLU activates cytokinin signaling by coordinately controlling
cytokinin hemostasis and cytokinin-responsive regulators. In
addition to leaf senescence, cytokinins play critical roles in
plant growth and development (Kieber and Schaller, 2018).
In fact, several phenotypic features observed in KLU-overex-
pressing plants appear to be related with the biological func-
tions of cytokinin signaling. On the one hand, the enlarged
seed size of KLU-overexpressing plants, consistent with ele-
vated levels of cytokinin, correlates with increased meristem
size (Su et al., 2011). On the other hand, the increased num-
ber of shoot branches in the klu mutant (Supplemental
Figure S5) is consistent with decreased apical dominance in
those mutants with reduced tZ-type cytokinins (Müller and
Leyser, 2011). Moreover, in accordance with the fact that in-
creased levels of cytokinin has negative effects on nitrogen
assimilation (Kiba et al., 2011), we observed altered expres-
sion of genes involved in nitrate transport, nitrogen assimila-
tion, and proline metabolism in the KLU-overexpressing
lines, as well as the accumulation of proline. Besides cytoki-
nin, auxin has a pivotal role in plant growth and develop-
ment. However, since IAA accumulated in both klu and
KLU-overexpressing plants (Figure 2), IAA is unlikely the
cause of the different leaf senescence phenotypes of klu and
KLU-overexpression plants. By contrast, some auxin biosyn-
thetic genes, such as CYP79B2, displayed opposite expression
patterns between klu and KLU-overexpressing plants
(Supplemental Figure S4). Given that several auxin biosyn-
thetic genes, including CYP79B2, are responsive to cytokinin
(Jones et al., 2010), IAA biosynthesis might be partially af-
fected by altered levels of cytokinin in the klu mutant and
KLU-overexpressing plants.

KLU-overexpressing plants showed enhanced drought-
stress tolerance, decreased water loss, and greater stomatal
closure (Figure 6 and Supplemental Figure S14), whereas ac-
cumulation of the key phytohormone in drought-stress
responses, ABA, was reduced in both klu and KLU-overex-
pressing plants (Figure 2). The decreased levels of ABA
appeared to be consistent with the decreased expression of
the ABA biosynthetic genes NINE-CIS-EPOXYCAROTENOID
DIOXYGENASE 2 (NCED2) and NCED3 and the unchanged
expression of the ABA-responsive genes ABA-RESPONSIVE
ELEMENT BINDING PROTEIN 2 (AREB2) and RESPONSIVE TO
DESICCATION 29B (RD29B) in both klu and KLU-overex-
pressing lines (Supplemental Figure S4). By contrast, the
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expression of an ATP-binding cassette (ABC) transporter of
ABA, ABCG40, was significantly increased in KLU-overex-
pressing plants, implying that the ABCG40-mediated ABA
import in guard cells was enhanced. Collectively, these data
show that the overexpression of KLU might affect local ABA
transport without altering the general enhancement of ABA
responses, likely consistent with the previous report that the
overproduction of cytokinin results in delayed leaf senes-
cence and increased drought-stress tolerance without al-
tered ABA contents (Rivero et al., 2007). Notably, the
expression of type-A ARRs, such as ARR5 and ARR7, was
shown to be decreased in cytokinin-deficient lines that dis-
played enhanced drought- and salt-stress tolerance
(Nishiyama et al., 2011), as in the KLU-overexpressing lines
(Figure 3). Although the role of type-A ARRs in stress signal-
ing pathways is under discussion because of their functional
redundancy and complexity (Wohlbach et al., 2008), cold-
inducible type-A ARRs, including ARR7, appear to have a
negative regulatory role in freezing tolerance (Jeon et al.,
2010). In accordance with the elevated SA level, the biosyn-
thetic gene, ISOCHORISMATE SYNTHASE 1 (ICS1), and the
responsive gene, PATHOGENESIS-RELATED 1 (PR1), showed
increased expression levels in KLU-overexpressing plants
(Supplemental Figure S4). In contrast to the inhibitory effect
of cytokinin on ABA-induced stomatal closure (Tanaka
et al., 2006), cytokinin has been reported to stimulate SA
biosynthesis and signaling (Choi et al., 2010) and SA-
mediated stomatal closure (Arnaud et al., 2017). Therefore,
the increased levels of cytokinin and SA in KLU-overexpress-
ing plants might also reduce water loss by promoting sto-
matal closure. More detailed phytohormone interactions
downstream of KLU will be revealed by further analyses of
lines with knockout mutation of multiple KLU family genes,
thus overcoming their functional redundancy (Supplemental
Figure S1).

Integration of metabolic analysis and transcriptomic analy-
sis enables us to gain insight into the connections and rela-
tionships of different biological layers. Whereas nitrate
uptake and efflux are mediated by the nitrate transporters
expressed in roots, several nitrate transporters, including
NRT1.4, NRT1.11, and NRT1.12, are expressed in shoots. The
leaf petiole is a storage site of nitrate, and NRT1.4 expressed
in the leaf petiole is essential for its storage (Chiu et al.,
2004). NRT1.11 and NRT1.12 expressed in the companion
cells of the major veins are involved in xylem-to-phloem
transfer of nitrate for redistributing nitrate into developing
leaves (Hsu and Tsay, 2013). The decreased expression of
these nitrate transporter genes and glutamine synthetase
(GS or GLN) genes, such as GLN1;4, in the KLU-overexpress-
ing lines (Supplemental Figure S13) might impair nitrate
storage and allocation and nitrogen assimilation for proper
growth and development. Given that the levels of arginine
and ornithine, which accumulated in the shoot under
nitrogen-limited conditions (Tschoep et al., 2009), were in-
creased in the KLU-overexpressing lines (Figure 5), the over-
expression of KLU might partially cause nitrogen deficiency.

Moreover, given that GLUTAMATE DEHYDROGENASE 2
(GDH2) was shown to be induced in response to dark con-
ditions (Miyashita and Good, 2008), similar to as in the
KLU-overexpressing lines compared with the klu mutant
(Supplemental Figure S13), these transcriptional and meta-
bolic changes might be indicative of the carbon- and
nitrogen-limited status of KLU-overexpressing plants. Since
leaf senescence is affected by both endogenous factors, such
as age and phytohormones, and environmental signals, such
as darkness and nutrient supply, the transcriptional and
metabolic changes seemed to be contradictory with the
delayed leaf-senescence phenotypes in KLU-overexpressing
plants (Figure 4). This contradiction might be explained by
increased proline levels accompanied by the up-regulation
of its metabolic genes (Figure 5 and Supplemental Figure
S13). As a stress-induced protectant, proline has unique bio-
logical roles in protecting plants against many abiotic
stresses (Szabados and Savouré, 2010). More importantly,
proline metabolism is involved in ATP synthesis, mainte-
nance of NADP + /NADPH balance, and ROS production
(Liang et al., 2013). Indeed, proline dehydrogenases (ProDHs)
in mitochondria were recently shown to serve in the genera-
tion of glutamate and energy by proline oxidation during
dark-induced leaf senescence (Launay et al., 2019), likely con-
sistent with decreased levels of proline during developmen-
tal leaf senescence (Chrobok et al., 2016), especially in the
base region of leaves during vegetative stages (Watanabe
et al., 2013). Enhanced proline biosynthesis and catabolism
might prevent dark-induced senescence in KLU-overexpress-
ing plants (Figure 6). Proline accumulation in response to
low water potential is partially regulated by ABA (Sharma
and Verslues, 2010), whereas proline accumulation is im-
paired in cytokinin-receptor mutants (Kumar and Verslues,
2015). Thus, the increased proline contents in KLU-overex-
pressing plants might be caused partly by the increased level
of tZ (Figure 2). Because proline level was not changed in
ckx1 or ckx4 (Figure 5), the KLU overexpression appeared to
affect other factors related with proline accumulation, such
as ABA transport. Collectively, proline catabolism, a machin-
ery for nutrient recycling and remobilization during leaf se-
nescence, might be activated as a consequence of proline
accumulation by the increased level of tZ in KLU-overex-
pressing plants, leading to extended leaf longevity. Our work
illustrates the relationship between cytokinin signaling and
proline metabolism and provides experimental evidence for
the potential role of proline in leaf senescence.

Conclusion
In this study, we characterized a function of KLU as a nega-
tive regulator of leaf senescence. The integration of tran-
scriptome sequencing analysis and metabolite profiling
revealed that KLU overexpression activates cytokinin signal-
ing by coordinately repressing cytokinin catabolism genes
and the negative cytokinin response regulatory genes.
Consequently, KLU-overexpression plants showed delayed
leaf senescence. Moreover, we found that both activation of
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the cytokinin signaling pathway and KLU overexpression ac-
celerate proline metabolism. Considering the negative regu-
lation of leaf senescence by KLU and its positive effects on
plant fitness, manipulation of KLU expression levels may be
a powerful strategy to improve agricultural plant
productivity.

Materials and methods

Plant materials and growth conditions
Arabidopsis (Arabidopsis thaliana ecotype Columbia [Col-0])
was used as the WT in this study. The klu mutant
(SALK_024697C) used in this study is the Col-0 background
(Zhao et al., 2018). The T-DNA insertion mutants ckx1-1
(SALK_204043C) and ckx4-1 (SALK_055204C; Bartrina et al.,
2011) were provided by the Nottingham Arabidopsis Stock
Centre. Seeds were surface-sterilized and plated on
Murashige and Skoog (MS) medium (4.3 g/L MS salts, 1%
[w/v] sucrose, pH 5.7–5.8, and 8 g/L agar). After stratifica-
tion at 4�C for 2 d, the plates were move to a growth cabi-
net with 16-h light/8-h dark cycles for 5–7 d. The seedlings
were transferred to soil and grown at 22�C in a phytotron
under an 8-h light (PAR of 120–150 mE m–2 s–1)/16-h dark
cycle unless otherwise noted. For drought tolerance experi-
ments, plant were grown under the same phytotron condi-
tions except that watering was withheld. For the dark
extension treatment, plants were grown under the same
phytotron conditions except that they were covered with a
black box.

Construction of plasmids and generation of
transgenic plants
To construct the 35S:KLU-GFP plasmid, the full-length cod-
ing sequences of KLU were amplified using primers
KLUGWF and KLUGWR, then was cloned into the pDONR-
207 vector (Invitrogen) and introduced into the plant binary
vector pK7FWG2 by LR reaction (Karimi et al., 2002). DNA
constructs were verified by DNA sequencing analysis and
were electroporated into Agrobacterium tumefaciens
GV3101, which was used to transform Col-0 plants by the
floral dip method (Clough and Bent, 1998). Successfully
transformed T1 plants were selected on MS medium con-
taining with 50 mg/L kanamycin.

Assays of leaf senescence and chlorophyll
measurement
Age-dependent leaf senescence was evaluated as reported
previously (Woo et al., 2001). The leaf senescence photo-
graph and chlorophyll measurement were carried out using
the third rosette leaf at each time point as indicated in the
figures. Chlorophyll contents of leaves were measured as de-
scribed previously (Richardson et al., 2002). The photochem-
ical efficiency of photosystem II was measured by the
Imaging-PAMs (Heinz Walz GmbH, Germany) following the
user instructions. All differences between the group were an-
alyzed by Student’s t test.

RNA isolation, transcriptome sequencing, and
reverse transcription quantitative PCR
Total RNA was extracted from aerial organs of individual
plants using TRIzol reagent (Invitrogen) according to the
manufacturer’s instructions. Total RNA (2.5 lg) was treated
with DNase I and used for complementary DNA synthesis
with Thermo Scientific Maxima First Strand cDNA Synthesis
Kit. qPCR experiments were performed with gene-specific
primers (Supplemental Table S12) in the reaction system of
a Power SYBR Green PCR Master Mix kit (Applied
Biosystems) on ABI PRISM 7900HT sequence detection sys-
tem (Applied Biosystems). The Arabidopsis UBIQUITIN 5 or
ACTIN 2 genes were used as internal controls. For transcrip-
tome sequencing, total RNA was extracted from the whole
rosette of three individual plants of each genotype at 35
DAG by Zymo-Spin IIC RNA column (Zymo Research
Europe GmbH). The isolated total RNA was assessed for
quality by Agilent Bioanalyzer. For each sample, 500 ng was
used as input for polyA enrichment followed by fragmenta-
tion and library preparation as recommended by the vendor
(NEBNext Ultra II Directional RNA Library Prep Kit
Illumina). Quality and size distribution of libraries were again
inspected (Agilent Tapestation). Paired end 2 � 150-bp
read-based sequencing was performed on an Illumina
HiSeq3000. The RNA-seq raw reads were mapped to the A.
thaliana genome (build TAIR 10).

Identification of DEGs, and GO and KEGG
enrichment analysis
Differential expression analyses were performed with DESeq2
version 1.36 (Love et al., 2014) in the R environment. The
genes with adjusted P-value less than 0.05 were regarded as
DEGs. For the GO and KEGG enrichment analysis, we fur-
ther filtered the DEGs by choosing the common genes
found in both klu versus 35S:KLU1 and klu versus 35S:KLU2,
named as klu versus OE. Similarly, the Col-0 versus OE are
the DEGs that share both Col-0 versus 35S:KLU1 and Col-0
versus 35S:KLU2. GO and KEGG pathway enrichment analy-
sis was performed using R package clusterProfiler version
3.10 (Yu et al., 2012).

Metabolite measurement by gas chromatography–
mass spectrometry
The whole rosettes of five or six biological replicates for
each genotype were quickly cut and stored in liquid nitro-
gen. Metabolite profiling of these samples was carried out
by gas chromatography–mass spectrometry (ChromaTOF
software, Pegasus driver 1.61; LECO) as described previously
(Lisec et al., 2006). In brief, homogenized samples (�50 mg)
were extracted in 1,400 lL of methanol. Subsequently, 60 mL
of internal standard (0.2 mg ribitol mL–1 water) was added
as a quantification standard. The extraction, derivatization,
standard addition, and sample injection were conducted as
described in Lisec et al. (2006). An autosampler Gerstel
Multi-Purpose system (Gerstel GmbH & Co.KG, Mülheim an
der Ruhr, Germany) used to inject the samples to a chro-
matograph coupled to a time-of-flight mass spectrometer
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(GC–MS) system (Leco Pegasus HT TOF-MS [LECO
Corporation, St. Joseph, MI, USA]). The chromatograms and
mass spectra were evaluated using TagFinder 4.0 software
(Luedemann et al., 2012). Metabolite identification was man-
ually checked by both the mass spectral and retention index
collection of the Golm Metabolome Database (Kopka et al.,
2005). The relative content of metabolites was calculated by
normalization of signal intensity to that of ribitol, which was
added as an internal standard, and by the fresh weight of
the material. All data were also processed using the Xcalibur
4.0 software (Thermo Fisher Scientific, Waltham, MA, USA)
to verify the metabolite identification and annotation.
Identification and annotation of detected peaks followed
the recommendations for reporting metabolite data
(Supplemental DataSet S1; Fernie et al., 2011). Statistical
analyses were performed on MetaboAnalyst 4.0 (https://
www.metaboanalyst.ca/; Chong et al., 2019).

Hormone measurement and exogenous trans-zeatin
treatment
Cytokinins (trans-zeatin), gibberellins (GA1, GA4, and GA3),
indole-3-acetic acid, ABA, SA, jasmonic acid, and the ethyl-
ene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)
were analyzed in mature leaves according to Albacete et al.
(2008) with some modifications (Albacete et al., 2008). Ten
microliters of extracted sample was injected in a Ultra high
performance liquid chromatography (UHPLC)–MS system
consisting of an Accela Series U-HPLC (ThermoFisher
Scientific, Waltham, MA, USA) coupled to an Exactive mass
spectrometer (ThermoFisher Scientific, Waltham, MA, USA)
using a heated electrospray ionization (HESI) interface. Mass
spectra were obtained using the Xcalibur software version
2.2 (ThermoFisher Scientific, Waltham, MA, USA). For quan-
tification of the phytohormones, calibration curves were
constructed for each analyzed component (1, 10, 50, and
100 lg/L) and corrected for 10 lg/L deuterated internal
standards. Recovery percentages ranged between 92% and
95%. To examine responses to trans-zeatin treatment, the
seeds of each genotype were surface-sterilized and plated on
vertical MS plate (10 g/L agar) supplemented with indicated
concentration of trans-zeatin.

Stomatal aperture measurement
Stomatal apertures were examined as described in Fujita
et al. (2009) with minor modifications. Fully expanded leaves
of 6-week-old Arabidopsis plants grown in soil were de-
tached and floated on stomatal opening buffer containing
20-mM KCl, 1-mM CaCl2, and 5-mM 2-(N-morpholino)etha-
nesulfonic acid (MES; pH 6.15, potassium hydroxide [KOH];
Pei et al., 1998) for 2 h to preopen the stomata.
Subsequently, ABA or ethanol (solvent control) was added
to the opening buffer to a final concentration of 5- or
10-mM ABA. After 3 h of incubation, images of the abaxial
epidermis were taken as described in Medeiros et al. (2017).

Accession numbers
The raw RNA-seq data reported in this article have been de-
posited in Gene Expression Omnibus (Barrett et al., 2013),
under accession number GSE128655. Further sequence data
from this article can be found in the GenBank/EMBL data
libraries under accession numbers: KLU (AT1G13710),
CKX1 (AT2G41510), CKX4 (AT4G29740), and SAG12
(AT5G45890).
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changes and the expression of CYP78A5 family genes.

Supplemental Figure S2. GO enrichment analysis.
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tion, and signaling in klu and 35S:KLU plants analyzed by
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overexpression plants.
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