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Abstract

This review provides an update on the neurocognitive phenotype of pediatric obstructive sleep 

apnea (OSA). Pediatric OSA is associated with neurocognitive deficits involving memory, 

learning, and executive functioning. Adenotonsillectomy (AT) is presently accepted as the first line 

surgical treatment for pediatric OSA, but the executive function deficits do not resolve post-
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surgery, and the timeline for recovery remains unknown. This finding suggests that pediatric OSA 

potentially causes irreversible damage to multiple areas of the brain. The focus of this review is the 

hippocampus, one of the 2 major sites of postnatal neurogenesis, where new neurons are formed 

and integrated into existing circuitry and the mammalian center of learning/memory functions. 

Here, we review the clinical phenotype of pediatric OSA, and then discuss existing studies of OSA 

on different cell types in the hippocampus during critical periods of development. This will set the 

stage for future study using preclinical models to understand the pathogenesis of persistent 

neurocognitive dysfunction in pediatric OSA.
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Introduction

Obstructive sleep apnea (OSA) is characterized by repeated episodes of partial or complete 

airway obstruction, circadian dysrhythmias, and sleep fragmentation. Several types of 

neurocognitive deficits have been described based on the child’s age and disease severity 1,2. 

The pathogenesis of these changes, as well as why the neurocognitive changes in the 

pediatric population remain persistent despite treatment is a fundamental gap in our 

understanding of pediatric OSA 3,4. We briefly describe the neurocognitive phenotype 

followed the effect of intermittent hypoxia on individual cell types in the hippocampus.

Methods

We searched PubMed and Cochrane databases for English language studies with the 

following keywords: Pediatric OSA, intermittent hypoxia, hippocampus, neural progenitors, 

ANPs, neural stem cells (NSCs), immature and mature neurons published from 2010-2020 

along with relevant references within those articles. Emphasis was given to randomized 

clinical trials, and original controlled research studies along with articles/journals that are 

frequently studied by clinicians and scientists.

Overview of OSA

OSA is characterized by cyclical hypoxia/normoxia that induces reactive oxygen species 

(ROS) and oxidative stress 5. Intermittent hypoxemia causes arousal from REM sleep with 

hypoxic hypercapnia being the most potent stimulus6. Sleep becomes fragmented, leading to 

daytime somnolence. Furthermore, the blood brain barrier (BBB), gray matter volume, and 

cerebral blood flow (CBF) are altered. The BBB becomes more permeable, gray matter 

volumes are decreased, and CBF fluctuates leading to a number of pathogenic changes 7 

(Figure 1). Systemic inflammation8 and sympathetic excitation 9 are additional hallmark 

features.

While direct data in pediatric OSA is lacking, changes in the BBB during periods of chronic 

inflammation have been implicated in sleep and neurodegenerative disorders in the adult 

population10. There are several contrasts between pediatric and adult OSA with regards to 
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the CNS features of the disease including symptomatology and areas of brain involved 

(Table 1).

Hypercarbia

Arterial PCO2 rises during the apneic/hypopneic episodes in adult OSA19. Unfortunately, 

CO2 levels are often not measured or are not reported in many studies on pediatric OSA20. 

From sparse data available, higher baseline PCO2 levels in pediatric OSA correlated with 

persistent OSA following adenotonsillectomy 21. But even with very severe pediatric OSA, 

the elevation in CO2 is small and remains there for short periods of time in the context of 

total sleep time21. Therefore, we focus on chronic intermittent hypoxia rather than the 

hypercarbia, which in the context of current data appears to attenuate or has no effect on the 

nature of CNS injury.

Clinical Neurocognitive Phenotype of Pediatric OSA

Numerous studies in the pediatric OSA population have focused specifically on the CNS. 

Most of these studies are on school-aged children (5 years or older) with SDB/mild 

OSA22–24. Although changes secondary to OSA have been described in several areas of the 

brain, the hippocampal changes are the focus of this paper as it is the mammalian center of 

memory, learning, and early emotional behavior.25 Any changes early in the process of rapid 

neuronal growth have significant effects later in life26, partially explaining why even mild 

OSA in children can manifest with learning or cognitive deficits. Also, significant clinical 

deficits take time to come to the attention of parents or teachers as learning and memory 

integration is an ongoing process, 27. What mediates ongoing learning and memory deficits 

post-AT remains unclear28, and a preclinical model of the disease is urgently required. Given 

that early learning and memory are hippocampally mediated in the young29, the remainder 

of this article will focus on pre-clinical studies in the hippocampus, specifically the effects of 

hypoxia on the various cell types.

Adult disease affects several key brain areas through both local mechanisms and effect on 

vasculature. The effect of these factors on brain areas in the pediatric population remain 

unknown, however there are changes in sleep spindles. Neurocognitive morbidity is seen in 

both populations. For example, with dementia, as seen in the adult population, there is 

improvement in cognitive metrics after CPAP therapy. In children however, there are not 

notable increases in learning memory function after intervention.

Hippocampus

The hippocampus is one of two neurogenic niches for postnatal mammalian neurogenesis 30, 

a dynamic throughout the lifespan 31 and has numerous functions including the generation 

of new memories, learning, and pattern separation which are a function of newborn neurons 
32. The neural stem cells (NSCs) reside in the sub granular zone (SGZ) of the dentate gyrus 

and give rise to amplifying neural progenitors (ANPs), which rapidly divide and eventually 

give rise to neuroblasts. Neuroblasts demonstrate high rates of apoptosis 33 and those that 

survive differentiate into immature neurons and subsequently mature neurons, which 

integrate into the hippocampal circuitry 34 (Figure 2).
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They influence both regional physiology and the functional connectivity of the hippocampus 

with more distant brain regions, such as the prefrontal cortex, amygdala, and other structures 

within the limbic system.35 Pattern separation, which is a critical function of the 

hippocampus, facilitates temporal event discrimination, spatial processing, and short-term 

memory storage 36.

The role of Reactive oxygen species

Reactive Oxygen Species (ROS) are generated during oxidative metabolism in mitochondria 

and consist of, amongst others, hydrogen peroxide, radical and non-radical oxygen species. 

Excess ROS formation, which occurs in OSA37, leads to oxidative stress damage(Figure 3).

ROS have a dual role in that they are vital to cell repair and longevity 38, via both effects on 

transcription and synaptic activity. ROS effect transcription of several key gene mediators 

leading to several local and systemic effects. Acute intermittent hypoxia also does not lead 

to neuroinflammation 39. However, continuous exposure is detrimental to CA-1 neurons in 

the hippocampus, which are selectively vulnerable to hypoxia in adult rodent models of 

OSA40. CA-1 neurons show delayed injury pattern with impaired cellular metabolism41, 

from mitochondrial dysfunction42 as well as endoplasmic reticulum (ER) stress43,44.

Preclinical Rodent Models of Adult OSA

There have been two model types described for adult OSA. The first is the intermittent 

hypoxia model. This model demonstrated that after intermittent cyclical hypoxia for 14 days, 

adult rats demonstrated deficits in the Morris Water Maze Task (MWM)40. This test 

interrogates spatial memory which is a hippocampal function, and postmortem studies 

demonstrated CA-1 deficits. Follow up studies have revealed abnormalities in dentate gyrus 

(DG) function as well45. This exact model was replicated in younger rats46, utilizing a 

moderate-severe clinical phenotype, which are not the children in whom neurobehavioral 

deficits are typically seen. The second model is the tracheal balloon occlusion model, which 

utilizes a surgically implanted tracheal balloon with intermittent inflation47. This model 

results in hypoxia and hypercarbia as seen in OSA. The latter model has not been 

neurobehaviorally validated. To date, there is no preclinical model recapitulating the 

neurocognitive phenotype of pediatric OSA. This has at least partially been due to a lack of 

validated learning and memory paradigms in neonatal mice. For example, MWM is not 

technically feasible due to hypothermia risk, and object recognition is not validated for use 

in this age group48. Accordingly, to enable further study of pediatric OSA, an age-

appropriate animal model is necessary.

Oxygen tension in the rodent neonatal hippocampus

Hippocampal O2 levels are far lower than the alveolar oxygen levels of 21% (room air/

normoxia) 49 however remain exquisitely vulnerable to hypoxic injury 50. In the 

hippocampus normoxia is 8%, mild hypoxia is 5-8%, moderate hypoxia is oxygen at 1-5%, 

and less than 1% is severe hypoxia. Pimonidazole HCl labelling of hypoxic cells 

demonstrated that much of the SGZ lies within hypoxic zones which is believed to be less 

than 20 mm Hg51. Relative hypoxia in vitro (<5%) drives proliferation of neural progenitor 

and precursor cells51,52 (Figure 4).
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However, once these cells migrate away from hypoxic zones usually due to differentiation 

they seem to lose the hypoxic “protections” and are more susceptible to apoptosis 53–55. All 

the studies were performed using continuous hypoxic conditions; the effects of intermittent 

hypoxia on early stem cell growth remains unknown. These findings demonstrate that 

oxygen balance within the dentate gyrus is tightly regulated and a small change in either 

direction has a profound effect on NSC behavior 56. This balance is at least partially 

mediated by uncoupling protein 2(UP2), which effected mitochondrial-ER connections in 

the rodent cortex and hippocampus57, as well as by nitric oxide(NO) for perivascular cells58.

HIF-α is central to the cellular response to hypoxia59. HIF-α protects against hypoxic insult 

and allows for injury attenuation60. HIF-α inactivation causes impaired neurogenesis and 

learning deficits61 even in the absence of hypoxia. Under hypoxic conditions, HIF-α 
promotes NSC proliferation62. This is through HIF-α effect on numerous mechanisms/

canonical pathways including p53, Notch, Wnt/beta-catenin, and Oct4 63–67.

Hypoxic Effect on Neural Progenitors

Santilli et al. 68demonstrated that severe hypoxia encouraged early ANP production from 

NSCs as compared to normoxic conditions. The same study showed that continuous in-vitro 

mild hypoxia drives self-renewal of NSCs. Similarly, deFillipis 69 demonstrated in vitro that 

mild hypoxia encouraged ANP production from NSCs whereas severe hypoxia facilitated 

apoptosis and quiescence. Chronic continuous hypoxia facilitates the survival and 

proliferation of progenitor cells [49]. In Notch knockout mice, the survival effect is not 

present, demonstrating that Notch1, at least in part, may mediate progenitor survival [85]. 

Furthermore, although hypoxic preconditioning increases differentiation of NSCs70 , the 

presence of co-existing hypertension had no added effect on the differentiation 71, 

suggesting that change in CBF/small vessel disease contributes minimally to the behavior of 

NSCs. Even perivascular placement, with greater access to blood supply did not seem to 

confer any survival advantage65.

ANPs have a precipitous drop in population after an acute hypoxic ischemic insult 72. 

However, self-renewal begins after a brief dip in the progenitor pool 73. Chronic severe 

hypoxia, however, appears to produce the opposite effect, decreasing the pool of ANPs, 

which in turn decreases the number of neuroblasts and immature/mature neurons as a 

downstream effect 74.

Intermittent hypoxia leads to an increase in progenitors; however, with a lower number of 

newborn neurons compared to normoxia in adult murine OSA models 45. Intermittent 
hypobaric hypoxia also increases the number of progenitors and newborn neurons in the 

adult rodent hippocampus 75, again suggesting that changes in oxygen tension and baricity 

(pressure) within a small range can cause large shifts in the progenitor pool. Given the 

sensitivity of the progenitor pool to minor O2 tension differences, work is required on the 

effect of IH on the progenitor pool in the young.

Hypoxic Effect on Neuroblasts

Neuroblasts are exquisitely vulnerable to hypoxic injury76. It has been demonstrated that 

immature but committed neuroblasts die after an acute hypoxic insult, followed by 
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proliferation of ANPs that eventually replace the lost neuroblast pool 76 Because progenitors 

divide rapidly, a fast turnover of the neuroblasts can rescue the damage from the hypoxic 

injury 77. Therefore, despite the sensitivity of certain neuroblast populations to hypoxic 

injury, there are multiple mechanisms by which this population is able to repopulate78.

Hypoxic Effect on Immature Neurons

The mechanisms of injury and death of immature neurons is age-dependent and changes 

from apoptosis in young mammals to necrosis in older mammals 79. Both GABA and 

glycine have been noted to be critical mediators 80, as well as Notch81. Neuronal death can 

be attenuated with iron chelators and free radical scavengers 82, suggesting that ROSs are 

involved 83. The window of maximal damage is in postnatal days 2-5 in mice (corresponding 

to birth to 6 months age window in humans) 8485. Mild hypothermia has been demonstrated 

to be somewhat protective after intermittent hypoxia at this stage 86.

Hypoxic Effect on Mature Neurons

Chatzi et al 53 used adult mice to test for the effects of hypoxia on newborn neurons. They 

demonstrated that these cells vacillate between continuous low-oxygen-tension 

environments, which promote early precursor proliferation, and continuous higher-oxygen-

tension environments, which may be deleterious for newborn neurons. Taken together, these 

data suggest that oxygen tension is a critical component of newborn neuron fate and that the 

balance between hypoxia and normoxia is carefully maintained for newborn neurons 68,81 

Given that integration into the hippocampal circuit is a competitive process, and not all 

newborn neurons are guaranteed survival benefit87, oxygen tension being a key mediator of 

survival. This further suggests that any disruption in oxygen tension may have effects not 

only on the neuronal differentiation process, but also their ability to contribute to 

hippocampal circuitry and function.

CA-3 neurons are more resistant to hypoxia vs CA-1 neurons, postulated to be due to Ca+2 

mediation, 40 although the mechanisms are multifactorial41. Multiple mechanisms of 

hippocampal neuronal alterations have been suggested including c-AMP-protein kinase A 

signaling and CREB-mediated gene transcription [80]. Furthermore, glutamate mediates 

CA-1 neuronal apoptosis to hypoxia in guinea pig apnea models 88. Magnetic resonance 

spectroscopy (MRS) has also demonstrated that N-acetyl-aspartate (NAA, neuronal integrity 

biomarker) and choline (membrane turnover) were decreased in rodents exposed to 

intermittent hypoxia from P2-P12 [83]. This effect was validated in humans, where change 

in choline levels in the midbrain were correlated with an increased in excitotoxic biomarkers 

including glutamate89. Cofilin, an actin-binding protein which disassembles actin filaments, 

mediates dendritic spine loss and decreased hippocampal neuronal plasticity in CA-1 

neurons 90. Elevated cofilin activity from sleep deprivation is caused by cAMP-degrading 

phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Inhibition 

of cofilin activity prevented spine loss and increased plasticity. Overall, there is a clear 

decline in the number of mature neurons after hypoxic insult, depending on degree and 

duration of hypoxemia 91. While adult OSA models have demonstrated disorganization of 

CA-1 neuron architecture after IH exposure85, the pediatric neuronal changes remain 

unknown.
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Hypoxic Effect on Glial Cells

Glial cells (astrocytes, oligodendrocytes, and microglia) have scavenging and 

neuroprotective functions. Astrocytes have been found to be relatively more resistant to 

hypoxia than are microglia, through multiple mechanisms 92.

Astrocytes

Intermittent hypoxia in rats produces hippocampal astrocytosis with a high rate of neuronal 

cell death; however, chronic hypoxia increases both neuronal survival and expression of 

S100β (secreted by astrocytes or by injured neurons) 93 as compared to acute hypoxia. 

NADPH oxidase(Nox), a mammalian enzyme involved in both astrocytic and microglial 

phagocytic burst 94, has been demonstrated to be putative to several processes including 

hypoxia/reoxygenation injury, carbonylation, and pro-inflammatory states95. NADPH has 

been demonstrated to be involved in the pathogenesis of the neurocognitive deficit seen in 

adult OSA 96. A postulated mechanism is due to upregulation of CHOP (CCAAT enhancer 

binding homologous protein), which mediates HIF-α, Nox 2, oxidative and apoptosis 

markers97. Hypoxia also stimulates astrocyte expression of aquaporin 4 (AQ4), which leads 

to local edema 98. Aquaporin 1 is also increased in areas of high content of astrocytes, 

suggesting that cytotoxic edema is central to pathogenesis in OSA 99.

At least a part of astrocytes’ initial tolerance to hypoxia is conferred by upregulation of 

glucose transport and uptake in both astrocytes and mature neurons 100, postulated to be due 

to osmotic and electrochemical gradients101 and altered transport of other ions such as Na+ 

and neurotransmitters including glutamate across the cell junctions102. However, altering 

RAGE (receptor for advanced glycosylation end products) and nuclear factor kappa b (NF-

kB), which are involved in converting astrocytes into a pro-inflammatory phenotype, 

reduced the neurocognitive deficit in adult male mice 103. Taken together, these suggest that 

astrocytic function is central to continued neuronal survival and health in OSA.

Oligodendrocytes

Oligodendrocytes myelinate axons and are found only in the CNS. After intermittent 

hypoxic exposure in neonatal rats, pathological findings include decreased oligodendrocyte 

markers 104. Several myelin proteins (MBP, PLP, MAG, and CNPase) were also down-

regulated after exposure to intermittent hypoxia, suggesting arrest of oligodendrocyte 

maturation 105. Oligodendrocytes have also been demonstrated to be a key player in memory 

consolidation in mammals106. Therefore, any arrest or injury would not only affect motor 

function, but memory as well.

Microglia

Microglia mediate central nervous system ROS through NADPH oxidase, mitochondria, and 

excitatory neurotransmitters 107. Given the neurocognitive damage from OSA is at least 

partially mediated through ROS, there is a yet to be elucidated role for microglia in the 

pathogenesis of OSA induced neurocognitive dysfunction. Since microglia are also involved 

in synaptic pruning, perturbations in microglial activity have been postulated in several 

psychiatric disorders108. Suppression of microglia activation after sleep deprivation has been 
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demonstrated to lead to improvement in adult neurogenesis and spatial memory109.The 

implication is that microglial activation is a key player in sleep deprivation based 

neurocognitive dysfunction.

Furthermore, TLR4, MAPK, transcription factors, and epigenetic factors all have been 

suggested to contribute to microglial activation 110. In animal models, the injection of LPS 

in stressed rats, but not unstressed rats, activate the pro-inflammatory microglial phenotype, 

leading directly to cell injury 111. This finding suggests that the interplay of oxidative stress 

and other environmental factors including ROS may be central to the pathogenesis of 

neurocognitive change, especially in the young 112. In summary, glial cells play critical roles 

in the post-hypoxic neuronal injury models; however, much remains to be elucidated about 

their function, especially in the pediatric population.

Conclusion:

Intermittent hypoxia in the young may have long lasting neurocognitive effects. These 

changes, while affecting multiple areas of the brain, are more pronounced in the 

hippocampus, which is the mammalian center for early learning and memory. These changes 

can be attributed to several constitutive changes in hippocampal cell types and function. 

Given the connections between the hippocampus and other areas of the brain, the changes 

can be more widespread. While the clinical reversibility of these changes is unknown, there 

is an urgent need for a preclinical model to further study this common disorder of childhood.
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Abbreviations:

ANP (amplified nuclear progenitors)

AT (adenotonsillectomy)

BBB (blood brain barrier)

CBF (cerebral blood flow)

CIHH (chronic intermittent hypoxia and hypercarbia)

CNS (central nervous system)

OSA (obstructive sleep Apnea)

ROS (reactive oxygen species)

SES (socioeconomic status)

REM (rapid eye movement)

NREM (non-rapid eye movement)
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SGZ (sub granular zone)

NSC (neural stem cells)
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Figure 1: 
Demonstrates the multifactorial effects of arousal and somnolence on memory and learning. 

There are multiple pathological mechanisms that are affected, leading to multipathway 

effects on several organ systems, including the CNS. These effects lead to a variety of 

clinical presentations. The classical adult presentation of OSA is with daytime somnolence, 

whereas in pediatric OSA a number of children present with problems in the school 

environment. Reproduced with permission from: Beebe DW, Gozal D. J Sleep Res 

2002;11(1):1-16.
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Figure 2: 
Various cell types and the effect of hypoxia on these cell types in the mammalian 

hippocampus. Hypoxia has different effects at different parts of the neurogenic cascade, and 

promotes apoptosis beyond the NSC stage. The morphology of each cell type under 

intermittent hypoxia has not been studied.Therefore, while varying levels of hypoxia may 

effect different areas of the cascade differently, the effects of intermittent hypoxia, with 

consequent ROS formation has not been elucidated. There could be differences in number, 

morphology, and function, all of which need to interrogated to properly understand how the 

mammalian hippocampus responds to intermittent hypoxia.
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Figure 3: 
The interplay between ROS, HIF-α, Superoxide dismutase (SOD), haemoxygenase 2(HO2), 

and pathophysiological changes including sympathetic nervous system activation. HIF-α has 

downstream effects on several other pathways as well. The effects of ROS in the context of 

the pediatric OSA, specifically with regards to the intermittent hypoxia stimulus, remain 

unknown. There is a convergence on the end-point of both SNS/adrenal medulla activation, 

which leads to a higher level of circulating catecholamines in these patients. This has been 

one of the postulated mechanisms of hypertension in both pediatric and adult OSA. AM: 

Adrenal Medulla, SNS: sympathetic nervous system, Nox2 (NAPDH oxidase 2), PKG: 

Protein Kinase G, PKC: Protein Kinase C. With permission113
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Figure 4: 
The effects of various levels of hypoxia on progenitor cell behavior. Severe continuous 

hypoxia seems to facilitate astrocytic transformation, whereas moderate hypoxia promotes 

precocious differentiation.Since self-renewal is important in the maintenance of the stem cell 

pool, both forms of hypoxia cause depletion of the progenitor pool leading to a net loss of 

available NSCs. The long term effect of progenitor pool depletion on lifelong learning and 

memory is not well understood. Xie Y, Lowery W. Methods 2018 with permission.
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Table 1:

Brain areas, postulated mechanisms, and reversibility of neurocognitive dysfunction.

Adult Pediatric

Areas of Brain involved    • Right Middle Frontal Lobe Gyrus11

  • Posterior cingulate gyrus
  • Left inferior frontal gyrus12

  • Bilateral hippocampi13

   • Bilateral hippocampi, Right frontal cortex14

Pathogenesis of 
neurocognitive 
dysfunction

   • Small vessel disease15

  • CBF changes
  • Systemic inflammation16

   • Oxidative Stress
  • Sleep Spindle Changes 17

Reversibility with therapy    • Improvement in most cognitive domains after CPAP    • Improvement in behavior after surgery, but 
persistence in executive function deficits3,18
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