Skip to main content
. 2021 May 6;13:633752. doi: 10.3389/fnagi.2021.633752

Table 3.

Performance metrics used in the evaluation of machine learning models.

Performance metric Definition Number of studies
Accuracy TP+TNTP+TN+FP+FN 174
Sensitivity (recall) TPTP+FN 110
Specificity (TNR) TNTN+FP 94
AUC The two-dimensional area under the Receiver Operating Characteristic (ROC) curve 60
MCC TP×TN-FP×FN(TP+FP)(TP+FN)(TN+FP)(TN+FN) 9
Precision (PPV) TPTP+FP 31
NPV TNTN+FN 8
F1 score 2× precision×recallprecision+recall 25
Others
(7 kappa; 4 error rate; 3 EER; 1 MSE; 1 LOR; 1 confusion matrix; 1 cross validation score; 1 YI; 1 FPR; 1 FNR; 1 G-mean; 1 PE; 5 combination of metrics)
N/A 28

TNR, true negative rate; AUC, Area under the ROC Curve; MCC, Matthews correlation coefficient; PPV, positive predictive value; NPV, negative predictive value; EER, equal error rate; MSE, mean squared error; LOR, log odds ratio; YI, Youden's Index; FPR, false positive rate; FNR, false negative rate; PE, probability excess.