Table 3.
Performance metrics used in the evaluation of machine learning models.
Performance metric | Definition | Number of studies |
---|---|---|
Accuracy | 174 | |
Sensitivity (recall) | 110 | |
Specificity (TNR) | 94 | |
AUC | The two-dimensional area under the Receiver Operating Characteristic (ROC) curve | 60 |
MCC | 9 | |
Precision (PPV) | 31 | |
NPV | 8 | |
F1 score | 25 | |
Others (7 kappa; 4 error rate; 3 EER; 1 MSE; 1 LOR; 1 confusion matrix; 1 cross validation score; 1 YI; 1 FPR; 1 FNR; 1 G-mean; 1 PE; 5 combination of metrics) |
N/A | 28 |
TNR, true negative rate; AUC, Area under the ROC Curve; MCC, Matthews correlation coefficient; PPV, positive predictive value; NPV, negative predictive value; EER, equal error rate; MSE, mean squared error; LOR, log odds ratio; YI, Youden's Index; FPR, false positive rate; FNR, false negative rate; PE, probability excess.