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A B S T R A C T

Human enterokinase light chain (hEKL) specifically cleaves the sequence (Asp)4-Lys#X (D4K), making this
a frequently used enzyme for site-specific cleavage of recombinant fusion proteins. However, hEKL

production from Escherichia coli is limited due to intramolecular disulphide bonds. Here, we present
strategies to obtain soluble and active hEKL from E. coli by expressing the hEKL variant C112S fused with
maltose-binding protein (MBP) through D4K and molecular chaperons including GroEL/ES. The fusion
protein self-cleaved in vivo, thereby removing the MBP in the E. coli cells. Thus, the self-cleaved hEKL

variant was released into the culture medium. One-step purification using HisTrapTM chromatography
purified the hEKL variant exhibiting an enzymatic activity of 3.1 � 103 U/mL (9.934 � 105 U/mg). The
approaches presented here greatly simplify the purification of hEKL from E. coli without requiring
refolding processes.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Recombinant fusion technology has been used to enhance the
expression level and solubility of target proteins, and to facilitate
their purification [1,2]. Proteases including Factor Xa, thrombin,
tobacco etch virus (TEV) protease, and enterokinase (EK) are used
for the site-specific cleavage of recombinant tags from fusion
proteins [3–6]. While Factor Xa, thrombin, and TEV protease cleave
inside the recognition site, EK cleaves outside the site, thus it has a
proteolytic activity regardless of the P10 position sequence.

Human EK (hEK) (DDDDK#, D4K#) is produced by cells in the
duodenum and intestinal brush-border [7–9]. EK activates trypsin
by cleavage of trypsinogen [10–12]. hEK consists of an 86 kDa
heavy chain and a 28 kDa light chain that are connected by a single
disulphide bond. The heavy chain contains an intestinal brush-
border membrane-binding motif. The light chain harbours the
classical catalytic triad (chymotrypsin His57, Asp102, and Ser195)
with four intramolecular disulphide bonds. The hEK light chain
(hEKL) can cleave the fusion protein to obtain the authentic form of
the protein [13]. In addition, hEKL is an attractive protease for use

in protein purification due to its broad range of reaction conditions
(pH 4.5–9.5 and temperature 4–45 �C), tolerance against various
detergents, and reusability [10,12].

hEKL has a 10-fold higher catalytic efficiency (kcat/KM) than bEKL

[14,15]. However, several reports show that hEKL is expressed in
inclusion bodies in E. coli [10] that necessitates refolding using
dialysis [16–19], dilution [18,20–22], or on-column methods
[18,23–25].

In this study, we present strategies to produce active hEKL in E.
coli cytoplasm. We report production of soluble, active hEKL with
improved folding efficiency that can be used in-house. To produce
active, cytoplasmic hEKL with the correct disulphide bonds, we
constructed hEKL fused with MBP through the D4K cleavage site
and expressed this in E. coli cells expressing chaperone proteins
(Fig. 1a). A previous report demonstrated expression of soluble and
active MBP-tagged hEKL [26]. However, we found that MBP-hEKL

was unable to self-cleave, indicating an absence of the enzymatic
activity (Figs. S1 and 1b). To test whether removal of MBP could
restore the hEKL activity, an hEKL variant was constructed by
replacing the D4K with the TEV protease recognition site (ENLYFQ).
However, hEKL obtained by TEV cleavage of MBP-hEKLwas still
inactive (data not shown). To investigate whether the loss of
activity resulted from a limited reduction of disulphide bonds or
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hese results demonstrated that MBP fusion enhances the
olubility of hEKL but does not allow its correct folding. We
peculated that hEKL misfolding might result from incorrect
isulphide bonds formed during expression in E. coli.
Therefore, to promote the formation of the correct

isulphide bonds in E.coli-expressed hEKL, we employed three
trategies: (i) use of a trxB�, gor�, ahpC*+mutant expressing
ytoplasmic DsbC (SHuffle strain) for oxidative folding, (ii)
eplacement of the free cysteine with serine (C112S), which
ound to heavy chain, to reduce misfolding, and (iii) co-expression
f molecular chaperones that isomerize disulphide bonds. First,
hen the SHuffle strain was used, self-cleaved hEKL was
uccessfully detected, although at a low level (7.9 % of total
BP-D4K-hEKL), in cells grown at 20 �C (Fig. 1c). Use of the C112S
utated hEKL dramatically improved the ratio of self-cleaved hEKL

o up to �49.5 % in cells grown at 20 �C, which may be caused by
he reduced mispairing of multiple disulphide bonds [12,27].
emarkably, fully self-cleaved hEKL was detected from cell co-
xpressing GroEL/ES and Erv2/PDI grown at 20 �C. In particular, the
ctivity was slightly higher upon GroEL/ES co-expression. Notably,
EKL was not visible in the SDS-PAGE gel even when hEKL activity
as observed. However, as shown in Fig. S3, when inactivated
EKL was produced by TEVp, hEKL was visible in the SDS-PAGE gel.
herefore, we assumed that the visibility of hEKL in the SDS-PAGE
el was influenced by its folding.
We further monitored the time profiles for cell growth and

nzymatic activity of hEKL C112S (Fig. 2a and b). After 27.5 h of
ulture, the cell growth reached the maximum (2.87 OD600) and

We attempted to obtain highly pure hEKL C112S from culture
supernatants. The culture supernatant of E. coli SHuffle expressing
pET-30a-MBP-D4K-hEKL C112S and pACYC-GroEL/ES was loaded on
the affinity chromatography (HisTrapTM) along with 1 mM DTT to
improve the binding efficacy (Fig. 2c). The enzymatic activity was
306 � 0 U/mL and 3085 � 43 U/mL before and after purification,
respectively (Fig. 2d–g). A previous report [11] showed that a low-
yield hEKL (10 %) can be purified from the culture media of P.
pastoris using a two-step purification with several pre-treatment
steps [11]. However, we could purify hEKL at high purity (>99 %)
and yield (>99 %) using a simplified one-step method. Purified
hEKL C112S had affinity to GD4K-na with KM = 0.287 � 0.079 mM,
turnover number Kcat = 6.725 � 104 � 1.230 � 104 s�1, and catalytic
efficiency KM/Kcat = 2.385 � 105 mM�1 s�1.

In conclusion, we could purify soluble and active hEKL at a high
yield using an MBP tag, replacing the free cysteine with serine,
using E. coli strain promoting oxidative folding, co-expressing
molecular chaperone that isomerise disulphide bonds, and
culturing at low temperature. These findings provide strategies
for purification of the complex, multiple disulphide-bonded hEKL

from E. coli.
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ig. 1. The expression and activity analysis of hEKL in flask culture. (a) Construction of MBP-hEKL fusion connected through the EK cleavage sequence. (b) Expression of MBP-
4K-hEKL in E. coli BL21 (DE3) at different temperatures. (c) The expression of hEKL C112S in E. coli SHuffle strain. The blue lane in 1a indicates disulphide bonds. M, Protein
arker; I, Insoluble protein; S, soluble protein; T, Total protein.
hen sharply decreased. At that time, the hEKL activity in the
oluble fraction reached the maximum value (372 U/mL) and then
ecreased to �22 U/mL. In contrast, hEKL in culture supernatants
eached the maximum value (303 U/mL) after 75.5 h of culture.
hese results indicated that hEKL may be released into the
xtracellular fraction by autolysis of cell.
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