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Modifiable lifestyle factors influence the risk of developing many neurological diseases. These factors have been extensively linked

with blood-based genome-wide DNA methylation, but it is unclear if the signatures from blood translate to the target tissue of

interest—the brain. To investigate this, we apply blood-derived epigenetic predictors of four lifestyle traits to genome-wide DNA

methylation from five post-mortem brain regions and the last blood sample prior to death in 14 individuals in the Lothian Birth

Cohort 1936. Using these matched samples, we found that correlations between blood and brain DNA methylation scores for

smoking, high-density lipoprotein cholesterol, alcohol and body mass index were highly variable across brain regions. Smoking

scores in the dorsolateral prefrontal cortex had the strongest correlations with smoking scores in blood (r¼ 0.5, n¼14, P¼ 0.07)

and smoking behaviour (r¼ 0.56, n¼ 9, P¼0.12). This was also the brain region which exhibited the largest correlations for

DNA methylation at site cg05575921 – the single strongest correlate of smoking in blood—in relation to blood (r¼ 0.61, n¼ 14,

P¼ 0.02) and smoking behaviour (r ¼ �0.65, n¼9, P¼0.06). This suggested a particular vulnerability to smoking-related differ-

ential methylation in this region. Our work contributes to understanding how lifestyle factors affect the brain and suggest that life-

style-related DNA methylation is likely to be both brain region dependent and in many cases poorly proxied for by blood. Though

these pilot data provide a rarely-available opportunity for the comparison of methylation patterns across multiple brain regions

and the blood, due to the limited sample size available our results must be considered as preliminary and should therefore be used

as a basis for further investigation.
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Introduction
DNA methylation (DNAm) is one route by which modifi-

cations to the genome can occur and typically involves

the addition of a methyl group to a cytosine residue on

CG dinucleotides (CpGs).1 Lifestyle traits such as smok-

ing, alcohol intake and body mass index (BMI), as well

as high-density lipoprotein (HDL) cholesterol levels are

known to associate with differential blood DNAm at

CpG sites across the genome.2–8 These lifestyle factors

are associated with a range of brain health outcomes and

neurological diseases,9–14 in addition to brain morphology

differences.15–18 Whereas the DNAm differences are likely

to be a consequence, as opposed to cause, of lifestyle

traits, it is unknown if these patterns are consistent

across the blood and brain. Previous work suggests that

blood is unlikely to reflect the brain reliably for all

CpGs, but that some sites more closely reflect brain

DNAm than others.19–21 Given that the brain is the crit-

ical organ of interest for the pathology of neurological

diseases, characterizing the signature of DNAm resulting

from lifestyle exposures in brain, as well as the extent to

which blood DNAm can proxy for this is therefore

paramount.

Blood-based DNAm predictors have been previously

shown to explain 60% of the variance in self-reported

smoking patterns and �12% of the variance in alcohol,

smoking and BMI when projected into blood DNAm.22

We, therefore, hypothesized that differential methylation

patterns at the CpG sites associated with lifestyle traits in

these blood predictors would be present across the corre-

sponding sites in the brain. To test this, we applied the

described out-of-sample blood-based predictors from our

previous work22 to a pilot dataset consisting of matched

blood and brain samples in 14 individuals from the

Lothian Birth Cohort 1936 (LBC1936). We profiled four

traits: HDL, BMI, alcohol and smoking. The most recent

DNAm measure in blood taken prior to death was

matched with genome-wide DNAm from post-mortem

brain samples across five regions: Brodmann’s areas

BA35 (hippocampus), BA46 (dorsolateral prefrontal cor-

tex), BA24 (anterior cingulate cortex), BA20/21 (inferior

temporal cortex) and BA17 (primary visual cortex).

We first assessed the correspondence between the scores

derived from blood-based lifestyle predictors between the

blood and brain, to characterize how well circulating

DNAm measures of lifestyle traits may translate to the

brain. We then compared the associations between the

predictor scores and the corresponding self-reported or

clinically assessed data available for each lifestyle trait.

DNAm at a single CpG (cg05575921 in the AHRR gene;

the strongest CpG correlate of smoking in blood which is

hypomethylated in response to smoking)23,24 was also

profiled in each of these analyses. This site is a key com-

ponent of the smoking predictor and we hypothesized

that the same hypomethylation observed in blood would

also be evident in the brain. The relationship between

blood-based predictor scores and lifestyle traits is pre-

sented for 499 individuals in the wider LBC1936 group

to illustrate how representative the 14 individuals are of

a larger reference group. The brain regions and study de-

sign are presented in Fig. 1.

Materials and methods

The Lothian Birth Cohort 1936

The LBC1936 (N¼ 1091) is a longitudinal study of

healthy ageing in individuals who reside in Scotland.25,26

Participants completed a childhood intelligence test at age

11 years in 1947 and were then recruited for this cohort

at the mean age of 70 years. They have been followed up

approximately every 3–4 years (currently at the sixth

wave), collecting a series of cognitive, physical, clinical

and social data, along with blood donations that have

been used for genetic, epigenetic, and proteomic measure-

ment. Approximately 15% of individuals in the LBC1936

have consented to post-mortem tissue collection. To date,

brain samples from 14 individuals are available and were
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therefore selected as the brain bank group (n¼ 14) for

the present study.

Participant consent

Written informed consent was obtained from all partici-

pants. Ethical permission for the LBC1936 was obtained

from the Multi-Centre for Scotland (MREC/01/0/56),

Lothian (LREC/2003/2/29) and Scotland A (07/MRE00/

58) Research Ethics Committees. Use of human tissue for

post-mortem studies has been reviewed and approved by

the Edinburgh Brain Bank ethics committee and the

ACCORD medical research ethics committee, AMREC

(ACCORD is the Academic and Clinical Central Office

for Research and Development, a joint office of the

University of Edinburgh and NHS Lothian, ethical ap-

proval number 15-HV-016). Human tissue from the

Edinburgh brain bank was used under the research ethics

committee (REC) approval (16/ES/0084). All experimental

methods were in accordance with the Helsinki

declaration.

Blood DNAm in the LBC1936

DNA from whole blood at 485 512 CpG sites was

assessed using the Illumina Human Methylation 450K

array at the Edinburgh Clinical Research Facility. The

full details of the processing steps have been previously

described.27,28 Raw intensity data were background-cor-

rected and normalized using internal controls. Following

background correction, manual inspection permitted re-

moval of low-quality samples presenting issues relating to

bisulphite conversion, staining signal, inadequate hybrid-

ization or nucleotide extension. Quality control analyses

were performed to remove probes with low detection rate

<95% at P< 0.01. Samples with a low call rate (samples

with <450 000 probes detected at P-values of less than

0.01) were also eliminated. Furthermore, samples were

removed if they had a poor match between genotype and

SNP control probes, or incorrect DNA methylation-pre-

dicted sex. There were a total of 450 276 probes which

remained. Investigators were blinded to participant infor-

mation when assessing DNAm to reduce potential sources

of bias.

Blood DNAm was available for up to 4 waves, meas-

ured over a 10-year period. The most recent blood sam-

ple prior to death was selected and self-report and

clinical information was also taken from the most recent

wave for which it was available. The most recent blood

measurement was performed at wave 3 in seven individu-

als and wave 4 in the remaining seven, with a mean time

between blood sampling and death of 3.2 years (SD 1.6)

in the wave 3 group and 1.6 years (SD 0.94) in the wave

4 group (Supplementary Table 1). In the 14 individuals,

the mean age at blood sampling was 77.9 (SD 1.7) and

the mean age at death was 80.3 (SD 1.6). The blood

DNAm reference group (n¼ 499) was taken from wave 4

of the LBC1936 and the mean age at sampling was

79.3 years (SD 0.62). Lifestyle trait information and

blood DNAm were recorded in a consistent way across

both the brain bank and reference groups.

Brain DNAm processing in the
LBC1936

Brain tissue samples were received from the Edinburgh

Brain Bank. Regions of the brain were dissected after

brains were removed and cut coronally into slices, as per

previous methodology.29 Samples from regions BA46

(dorsolateral prefrontal cortex), BA17 (primary visual

cortex), BA24 (anterior cingulate cortex), BA20-21 [ven-

tral (20) and lateral (21) inferior temporal cortex] and

BA35 (hippocampus) were taken from the cortex and

snap frozen. A tissue selection of �25 mg was processed

for DNA extraction, which was done using the DNeasy

kit (Qiagen). DNAm was measured at the Edinburgh

Clinical Research Facility using Illumina MethylationEPIC

BeadChips. Quality control steps were then performed:

the wateRmelon pfilter() function removed samples in

Figure 1 The application of blood-derived epigenetic

predictors of four lifestyle traits to matched blood and

brain DNA methylation samples in 14 individuals. (A) The

five brain regions examined in 14 individuals with matched DNAm

across brain regions and the last blood sample taken prior to death.

(B) Epigenetic predictors of HDL, BMI, alcohol and smoking

generated in 5087 out-of-sample individuals (McCartney et al.22)

were applied to matched genome-wide blood and brain DNAm.

The cg05575921 site in the AHRR gene locus was also measured

across matched blood and brain samples. Analyses investigated the

correlation between blood and brain measures and the correlation

between the measures and respective lifestyle trait phenotypes

relevant in each case. Figure created with BioRender.com.
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which >1% of probes had a detection P-value of >0.05,

probes with a beadcount of <3 in >5% of samples, and

probes with >1% of samples reaching a detection P-

value of >0.05. Additional SNP probes and cross-hybrid-

ising probes on X and Y chromosomes were removed.30

If a discordance between the methylation-predicted sex

and recorded sex was identified samples were also

removed. Performance of 15 normalization functions was

examined, as per Pidsley et al., with danet selected as the

top-ranking method.31 The normalized data had a total

of 69 samples (14 individuals, across 5 regions, with 1

hippocampal sample unavailable) and 807 163 probes.

DNAm beta values were used in all analyses.

Investigators were blinded to participant information

when assessing DNAm.

Lifestyle trait information in the
LBC1936

Lifestyle trait phenotype measurements were as follows:

Self-reported smoking status (0¼ never smoked,

1¼ former smoker, 2¼ current smoker); alcohol con-

sumption in a usual week (converted into units); BMI

(defined as the ratio of weight in kg divided by height in

m2) and HDL cholesterol (measured in mmol/l). Pack

years smoked was calculated by multiplying the number

of packs of cigarettes smoked per day by the number of

years the individual had smoked for, divided by 20 (ciga-

rettes per pack). If a person reported having never

smoked, their pack years was recorded as 0 and this was

done for both the reference and brain bank groups. Of

the reference group, 37 people had pack years available,

193 did not have information available and the remain-

ing 269 indicated that they were never smokers. Five

individuals were excluded from the pack years trait in

the brain bank group as they did not have information

on the number of packs smoked per day, which is why a

smaller subset were used for analysis of this trait (n¼ 9).

One individual in the brain bank group did not have a

starting age for smoking; however, the mean of the group

starting age was imputed (16 years old). Any other un-

known trait information from the reference group was

not used. Mortality data were obtained through data

linkage to the National Health Service Central Register,

provided by the General Register Office for Scotland

(now National Records of Scotland) and were correct as

of July 2020.

DNAm signature predictor scores
for lifestyle traits

CpG predictor weights for complex traits were generated

and validated through a pipeline described previously.22

Briefly, LASSO penalized regression was used to identify

a linear combination of CpG sites with DNAm levels

that were associated with lifestyle traits. The coefficients/

weights generated for the CpG sites were based on

whole-blood derived samples from 5087 individuals

(mean age ¼ 49, SD ¼ 14) in the Generation Scotland

cohort.32,33 Though Scotland has a historic and sustained

high prevalence of unhealthy lifestyle behaviours such as

smoking and alcohol consumption, with a large propor-

tion of the current population either overweight or

obese,34,35 cohort profiling has found both the

Generation Scotland and Lothian Birth Cohorts to be

healthier and of higher socioeconomic status than the

general population.26,36

Here, the described CpG weights for each trait (taken

from McCartney et al.22 Additional file 1: Tables S1–3

and Table S6) were applied to DNAm at the same CpG

sites in LBC1936 individuals and summed to generate

predictor scores for smoking, HDL, BMI and alcohol for

each individual. Lifestyle trait scores were generated using

DNAm in the blood and five brain regions in the brain

bank group (n¼ 14) and the blood DNAm which was

available in the reference group (n¼ 499). Blood and

brain DNAm samples were restricted to sites included on

the Illumina Human Methylation 450K array, to ensure

comparability across samples. Over 95% of CpG sites in

the predictors were available in both the blood and brain

DNAm for each lifestyle trait score.

Statistical analyses

First, Pearson correlations were applied to measure the

correspondence between the methylation predictors in the

blood and brain. These correlated the lifestyle predictor

scores—generated from the application of blood-derived

CpG predictor weights—between blood and brain, as

well as the DNAm measurements at site cg05575921 be-

tween the blood and brain. Second, Pearson correlations

were used to measure the relationships between brain

and blood DNAm measures of lifestyle traits and the re-

spective lifestyle trait information. Units of alcohol con-

sumed weekly, BMI, HDL cholesterol from blood and

both smoking status and pack years smoked were

included as traits and correlated with the DNAm-based

lifestyle predictor scores. Smoking information was also

correlated with DNAm at site cg05575921. These lifestyle

trait correlations were also performed for the blood-based

predictor scores and cg05575921 measurements in the

reference group from wave 4 of the LBC1936.

As a sensitivity analysis, Spearman correlations were

conducted for every association tested in the described

Pearson correlations. Inter-region Spearman correlations

were also performed for the blood-derived lifestyle pre-

dictor scores applied to brain and for the cg05575921

DNAm measure across the five regions. Though covariate

information was available on the proportion of neurons

in the brain, the brain weight, brain pH and most-mor-

tem interval, power calculations suggested that linear

mixed effects regression analyses in the sample size of 14

individuals were unlikely to be sufficiently powered to de-

tect significant effects (Supplementary Table 2). For this
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reason, no further statistical testing was performed.

Correlations were conducted using the Hmisc library

(Version 4.4–0).37 Inter-region correlation heatmaps were

produced using the ggcorrplot library (Version 0.1.3)38

and correlation plots were produced using the corrplot li-

brary (Version 0.84).39 All analyses were performed using

R (Version 3.6.3).40

Data availability

LBC1936 data are available on request from the Lothian

Birth Cohort Study, University of Edinburgh (simon.cox@

ed.ac.uk). LBC1936 data are not publicly available due

to them containing information that could compromise

participant consent and confidentiality.

Code availability

All R code used in this study is available with open ac-

cess at the following Gitlab repository: https://gitlab.com/

dannigadd/blood-brain-lifestyle-traits. The predictor

weights used in our study and the original code used to

generate them (McCartney et al.22) can also be found at

this location.

Results

Cohort assessment

Summary information for the 14 individuals from the

LBC1936 brain bank subset and the reference group (up

to n¼ 499) is presented in Table 1. The brain bank sub-

set had a higher proportion of males (64%) than the ref-

erence group (50%). Age at death in the brain donor

group ranged from 77.6 to 83.0 years and the mean age

of the reference group was well matched to this group

(77.9 versus 79.3, respectively). The majority of the 14

individuals within the brain bank subset either had been

or were still smokers (86%) at the time of death, which

was a higher proportion than in the reference group

(46%). Most of the 14 individuals (86%) had high HDL

cholesterol (> 1 mmol/l), drank alcohol weekly (92%) and

had mean BMI of 25.5 kg/m2. Five of the individuals did

not have smoking pack years data recorded.

Correlation between blood and
brain measures

Blood-derived epigenetic predictors for lifestyle traits were

applied to the matched blood and brain DNAm samples

in the brain bank group to generate lifestyle trait scores.

DNAm at the smoking-associated CpG site cg05575921

was also considered. The variability across brain regions

in the magnitude of correlations between DNAm predict-

or scores and DNAm at site cg05575921 are illustrated

in Supplementary Fig. 1. The correlations between both

the blood and brain lifestyle scores and the blood and

brain measures of cg05575921 were regionally variable

(Fig. 2). The strongest association between blood and

brain DNAm at site cg05575921 was observed for BA46

(r¼ 0.61, n¼ 14, P¼ 0.02) followed by BA17 (r¼ 0.39,

n¼ 14, P¼ 0.16). Blood smoking scores were most highly

correlated with the BA46 region scores for smoking

(r¼ 0.5, n¼ 14, P¼ 0.07), with weaker associations

observed for BA24 (r¼ 0.29, n¼ 14, P¼ 0.31) and BA35

(r¼ 0.36, n¼ 13, P¼ 0.23). BMI scores were negatively

correlated in regions BA46 (r ¼ �0.72, n¼ 14,

P¼ 0.004) and BA35 (r ¼ �0.46, n¼ 14, P¼ 0.12), sug-

gesting that methylation patterns related to BMI were di-

vergent across blood and brain. The HDL scores were

moderately-correlated between the blood and region

BA20/21 (r¼ 0.55, n¼ 14, P¼ 0.04), with weaker corre-

lations observed for regions BA24 (r¼ 0.38, n¼ 14,

P¼ 0.18) and BA35 (r ¼ �0.32, n¼ 13, P¼ 0.29). Blood

alcohol scores were most highly correlated with BA24

(r¼ 0.35, n¼ 14, P¼ 0.22) and with BA46 (r¼ 0.25,

n¼ 14, P¼ 0.38) alcohol scores. A sensitivity analysis

suggested that the strongest correlations were consistent

across Pearson and Spearman methods. The correlation

coefficients and P-values are presented for both analyses

in Supplementary Table 3.

Table 1 Summary information for the brain bank sub-

set (n¼ 14) and reference cohort (n¼ 499). Phenotypic,

lifestyle and clinical information is provided for both

groups

Characteristics Study group Reference group

N 5 14 N 5 499

n (%) Mean

(SD)

n (%) Mean

(SD)

Sex

Female 5 (36%) 248 (50%)

Male 9 (64%) 251 (50%)

Age at blood sample

(years)

77.9 (1.7) 79.3 (0.6)

Smoking status

Current 5 (36%) 19 (4%)

Former 7 (50%) 211 (42%)

Never 2 (14%) 269 (54%)

Pack years smoked 53 (40) 4 (15)

Unknown 5 193

Alcohol units per week 14 (15) 11 (11)

Unknown 141

Body mass index (kg/m2) 25.5 (5.1) 27.3 (4.5)

Unknown 1

HDL cholesterol (mmol/l) 1.49 (0.4) 1.48 (0.4)

Unknown 16

Brain pH 6.1 (0.2)

Time to death (years) 2.4 (1.5)

Age at death (years) 80.3 (1.6)

ApoE genotype

E2/E3 1 (7%)

E3/E3 9 (64%)

E3/E4 4 (29%)
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Correlation of blood and brain

measures with lifestyle traits

The lifestyle trait scores generated by applying blood-

derived epigenetic predictors to brain and blood samples

and the DNAm measures at site cg05575921 were then

correlated with clinical and self-reported lifestyle pheno-

types (Fig. 3).

As expected, in the reference cohort we observed

hypomethylation in blood DNAm levels of cg05575921

associated with pack years smoked (r ¼ �0.31,

n¼ 306, P¼ 4.7 � 10�8). This trend was mirrored by

the negative association found for blood DNAm at

cg05575921 in the brain bank subset (r ¼ �0.55,

n¼ 9, P¼ 0.11). Similar patterns were observed in

some but not all brain regions. The strongest associ-

ation for cg05575921 in brain with pack years was

found for region BA46 (r ¼ �0.65, n¼ 9, P¼ 0.06),

followed by a weaker correlation in BA35 (r ¼ �0.22,

n¼ 8, P¼ 0.59). BA20/21 had an opposite trend to that

expected in blood (r¼ 0.2, n¼ 9, P¼ 0.61). Methylation in

all other brain regions showed much weaker associations

with the pack years phenotype (jrj � 0.1).

Regarding the lifestyle predictor scores, all trait scores

in the blood samples from the brain bank subset were

reflective of the wider reference cohort in terms of direc-

tion and approximate magnitude (jrj between 0.35 and

0.65), except BMI for which the brain bank group (r ¼
�0.14, n¼ 14, P¼ 0.68) was not representative of the

reference group (r¼ 0.41, n¼ 498, P< 0.05). As with

the results for cg05575921, BA46 was the region for

which smoking scores were most highly correlated with

pack years smoked (r¼ 0.56, n¼ 9, P¼ 0.12). To a less-

er extent BA17 (r¼ 0.22, n¼ 9, P¼ 0.56) and BA35

Figure 2 Correlations for (A) site cg05575921 (dark blue) and blood-derived lifestyle trait predictor scores for (B) smoking, (C) HDL, (D)

alcohol and (E) BMI traits applied to the blood and brain (light blue). Relationships between brain DNAm and blood DNAm are shown for each

brain region and measure. Each point represents one individual. Pearson correlation coefficients are annotated in each case. All individuals had

both blood and brain samples available (n¼ 14), apart from one individual for which no BA35 hippocampal sample was available (n¼ 13). The

solid blue line represents the linear regression slope; shaded areas represent 95% confidence intervals.
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(r¼ 0.24, n¼ 8, P¼ 0.56) smoking scores were also cor-

related with pack years. HDL brain scores correlated

with HDL trait information strongly in BA17 (r¼ 0.62,

n¼ 14, P¼ 0.02), whereas BA35 (r¼ 0.21, n¼ 14,

P¼ 0.49) had a weaker association and a negative trend

was observed for BA46 (r ¼ �0.4, n¼ 14, P¼ 0.16).

Alcohol signatures showed the strongest trends in

regions BA17 (r ¼ �0.55, n¼ 14, P¼ 0.04) and BA20/

21 (r ¼ �0.41, n¼ 14, P¼ 0.15), in the opposite direc-

tion to that found in blood. BMI signature scores in

BA17 were negatively correlated with BMI information

(r ¼ �0.3, n¼ 14, P¼ 0.3) in a trend opposite to the

LBC reference group and BA20/21 also had a positive

correlation with BMI (r¼ 0.27, n¼ 14, P¼ 0.35). The

remaining regions did not show any notable correlations

with BMI trait information (jrj � 0.1). A sensitivity ana-

lysis comparing Pearson and Spearman methods found

that, though there was variability across the methods,

the top associations were consistent (Supplementary

Table 4). Correlations between smoking measures and

smoking status are also available in this file.

Discussion
Through the application of blood-derived epigenetic predic-

tors of four lifestyle traits to whole-genome DNA methyla-

tion in matched blood and brain samples, we uncover

regional variability in how well blood-derived scores may

be able to proxy for brain-based scores. Though our results

highlight disparities between the blood and the brain, we

did find evidence to suggest that the blood-derived predic-

tors of lifestyle traits may translate to specific regions. The

dorsolateral prefrontal cortex (BA46) was identified as a re-

gion of interest for the smoking trait and showed relation-

ships in our analyses using the epigenetic predictor of

smoking and the CpG site cg05575921 – the single stron-

gest known correlate of smoking across the epigenome. We

Figure 3 Lifestyle trait correlations with the blood DNAm measures from the reference group (up to n 5 499) and the blood

and brain measures for the brain bank group (n 5 14). Correlations for blood measures are shown in red, with cg05575921 DNAm in

dark blue and lifestyle trait scores generated from the application of blood-derived lifestyle predictors to brain in light blue. (A) DNAm at site

cg05575921 is correlated with pack years smoked for the reference (n¼ 306) and brain bank (n¼ 9) groups. Correlations are then provided for

each group between lifestyle trait scores for (B) smoking, (C) HDL, (D) alcohol and (E) BMI, against relevant lifestyle trait information. HDL is

measured in mmol/l. Alcohol is measured in average units per week. Each point represents one individual. Pearson correlation coefficients are

annotated in each case. All individuals had both blood and brain samples available (n¼ 14), apart from one individual for which no BA35

hippocampal sample was available. The solid blue line represents the linear regression slope; shaded areas represent 95% confidence intervals.

Lifestyle epigenetics applied to blood and brain BRAIN COMMUNICATIONS 2021: Page 7 of 11 | 7

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab082#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab082#supplementary-data


present these preliminary findings as a contribution to the

ongoing, important question of how circulating DNAm

measures are able to reflect methylation in brain tissue.

The pilot dataset used in this study provided a rarely-

accessible resource to compare genome-wide methylation

specific to each of the five brain regions against matched

blood methylation in the same individuals. Given that the

generation of epigenetic predictors requires large training

datasets, it was not feasible to generate lifestyle predictors

derived from brain DNAm in this study, but we hypothe-

sized that CpG sites from the blood predictors of lifestyle

traits would be concordant in their methylation patterns

in the brain. We tested this by applying blood-derived

CpG predictor weights to the matched blood and brain

samples. This context is central to the interpretation of

our results, which suggest that lifestyle-related methyla-

tion in some brain regions is more highly correlated with

blood than others. The variability we found across brain

regions may be due to two possibilities: (i) lifestyle traits

may have a stronger influence on DNAm in the regions

which were well-correlated, or (ii) poorly correlated

regions may have CpGs influenced by lifestyle traits

which are unique to the brain and therefore not captured

through the blood predictors.

Previous studies have found that many sites in the gen-

ome are poorly correlated between the blood and brain

with further variability across brain regions.19–21 The

cg05575921 site has been shown to correlate between

blood and adipose tissue,41 suggesting that it may have a

discernible trace across circulating measures and tissues;

however, in most brain regions we did not observe strong

correlations at this site both in relation to blood or

smoking traits. Generally, there were weak correlations

between the lifestyle predictors across blood and brain

samples and in relation to lifestyle traits for many

regions. Though the effects of lifestyle on brain DNAm

directly are relatively unknown, in the LBC1936 sample,

the blood-based DNAm predictor for smoking used in

the present study has been shown to associate with brain

morphology differences.16 There is also evidence linking

in utero exposure to smoking and alcohol use disorders

to brain DNAm alterations.42,43 Blood lipids have also

been causally associated with DNAm differences in circu-

lating cells,44 though it is unknown whether this is true

of lipids and brain DNAm. Taken together, these studies

suggest that our findings may be due to possibility (ii),

that there could be CpG sites related to lifestyle traits

which are unique to the brain and may not be captured

in the present study.

The dorsolateral prefrontal cortex (BA46) smoking pre-

dictor score and methylation at site cg05575921 were

well-correlated with both the equivalent measures in

blood and smoking trait information. A previous study

found that of four regions, DNAm at cg05575921 in

blood was most highly correlated with cg05575921 in

the prefrontal cortex (r¼ 0.28, P¼ 0.02) in matched sam-

ples in 74 individuals.20 Though this correlation is

somewhat weaker than that observed in our study, it sug-

gests that possibility (i) may be correct; there may be a

particularly strong influence of smoking on differential

DNAm in regions such as BA46. This possibility is fur-

ther supported by studies that have pinpointed the frontal

cortex as a region that is particularly vulnerable to the

effects of smoking on brain morphology.15,45 One of the

discussed studies was able to show that smoking had

unique statistical contributions to brain morphology

when modelling against many other vascular risk factors

(VRFs) in a large population (N¼ 9722)45; these findings

indicate that there some brain areas may be more suscep-

tible to smoking. As vascular risk factors (such as smok-

ing) associate with various adverse outcomes including

cognitive ageing and dementia,46–49 areas such as BA46

may be more susceptible to ageing and effects that under-

pin cognitive function, as they show the strongest vascu-

lar risk factor-related coupling in blood and brain. A

larger sample with more detailed regional sampling across

the brain will be required to investigate DNAm differen-

ces in relation to this.

Though our brain bank sample was particularly

enriched for smoking and alcohols traits, we anticipate

our results generalizing to similar populations due to the

representative nature of the large healthy ageing cohort

used to train lifestyle predictors.36 The weights that we

used for BMI and smoking have also been projected into

an independent cohort.50 An important caveat is the rela-

tively homogeneous Scottish ancestries of both cohorts in

this study, which may limit translation of our findings to

other ethnic backgrounds. There may also be selection

biases which exist within the cohorts, as they are consid-

ered to be of higher socioeconomic status than the gen-

eral population.26,36 The LBC1936 group were born in

1936 and there are socioeconomic and cultural trends in

their lifestyles that must be taken into consideration;

many may have worked in factories or in shipbuilding

yards, exposing them to high levels of respiratory pollu-

tants and poorer socioeconomic status in this era was

related to behaviours such as smoking.51,52 Associations

between childhood intelligence and a range of comorbid-

ities in this group have also been shown to be partially

attenuated by smoking.51 However, we anticipate that

the generally poor correlations between lifestyle trait pre-

dictors which we observe across the blood and brain

would also be seen in other cohorts with reduced expo-

sures to the lifestyle factors studied here.

There are a number of limitations to our study. First,

there were only 14 individuals with matched samples in

the LBC1936 brain bank. As discussed, the lack of brain

DNAm samples meant that it was not possible to create

lifestyle predictors in brain tissue. Recent work has gener-

ated predictors for ageing in cortical samples, providing

evidence that, though imperfect, there is a concordance

between predictors generated in blood and brain.53

Future work should seek to determine if this is the case

for lifestyle predictors. The limited sample size also meant
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that though we had information on covariates such as

the post-mortem interval between death and brain

DNAm sampling, regression analyses were not feasible

due to insufficient power. Though confounders may have

influenced our results, the effect of post-mortem interval

is still debated.54,55 Second, the blood-based BMI DNAm

signatures of the 14 individuals were not reflective of the

wider reference group and are therefore limited in their

interpretability. Third, differences have been observed in

DNAm levels from the same blood samples when meas-

ured by different arrays.56 Here, the EPIC array was

used to generate DNAm measures in both the Generation

Scotland cohort used to train predictor weights (after

being subset to sites overlapping with the 450K array)

and in the brain DNAm subset of 14 individuals. The

EPIC-derived DNAm predictors correlated well with the

lifestyle traits when applied to the blood-based LBC1936

samples, which were all assessed on the 450K array.

Fourth, many current or former smokers had not

reported pack years information and there was variability

in the strength of correlations across smoking pheno-

types. Though trends for the smoking status trait were

generally weaker than those observed for pack years, this

difference may be reflective of the longitudinal nature of

smoking that pack years captures. Finally, whereas all

participants were free from neurodegenerative conditions

at the study recruitment at age 70, the absence of clinical

data on subsequent diagnoses means that we cannot rule

out the possibility that these results are partly driven by

disease-specific DNAm profiles in the brain. Several stud-

ies have found differential DNAm at regions such as the

hippocampus in those with Alzheimer’s disease pathology,

suggesting that DNAm alterations may result from the

pathological changes seen before symptoms arise.57,58

Growing sample donations and ongoing clinical ascertain-

ment will partly address these limitations in future work.

Conclusion
In this study, we characterize variability in how well

blood-derived epigenetic measures of lifestyle traits correl-

ate when applied across a rarely-available pilot dataset

consisting of matched blood and brain samples. We find

variability in the alignment between blood and brain life-

style predictor scores across brain regions, with the most

notable relationships found between the dorsolateral pre-

frontal cortex (BA46) and smoking-related measures.

Though our work relies on the application of blood-

based signatures of lifestyle traits to brain tissue and is

limited by low sample size, it nonetheless provides a pre-

liminary insight into whether circulating DNAm proxies

may reflect the epigenetic effects of lifestyle traits in the

brain. This is critical given the known associations be-

tween modifiable lifestyle factors with both neurological

disease risk and brain health outcomes.

Supplementary material
Supplementary material is available at Brain

Communications online.
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