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Abstract
Female fertility is inversely correlated with maternal age due to a depletion of the oo-
cyte pool and a reduction in oocyte developmental competence. Few studies have ad-
dressed the effect of maternal age on the human mature oocyte (MII) transcriptome, 
which is established during oocyte growth and maturation, however, the pathways 
involved remain unclear. Here, we characterize and compare the transcriptomes of 
a large cohort of fully grown germinal vesicle stage (GV) and in vitro matured (IVM-
MII) oocytes from women of varying reproductive age. First, we identified two clus-
ters of cells reflecting the oocyte maturation stage (GV and IVM-MII) with 4445 and 
324 putative marker genes, respectively. Furthermore, we identified genes for which 
transcript representation either progressively increased or decreased with age. Our 
results indicate that the transcriptome is more affected by age in IVM-MII oocytes 
(1219 genes) than in GV oocytes (596 genes). In particular, we found that transcripts 
of genes involved in chromosome segregation and RNA splicing significantly increased 
representation with age, while genes related to mitochondrial activity showed a lower 
representation. Gene regulatory network analysis facilitated the identification of po-
tential upstream master regulators of the genes involved in those biological functions. 
Our analysis suggests that advanced maternal age does not globally affect the oocyte 
transcriptome at GV or IVM-MII stages. Nonetheless, hundreds of genes displayed 
altered transcript representation, particularly in IVM-MII oocytes, which might con-
tribute to the age-related quality decline in human oocytes.
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1  |  INTRODUC TION

Throughout recent decades, maternal age at the birth of the first 
child has significantly increased (Matthews & Hamilton, 2009). 
Consequently, assisted reproductive techniques are used with in-
creasing frequency in women older than 35, as natural fertility de-
creases significantly beyond this age (Howles et al., 2006). There are 
two reasons for this decline in fertility; the depletion of the oocyte 
pool over time and a reduction in oocyte quality, which leads to 
increased incidence of aneuploidies, lower embryo developmental 
rates and increased pregnancy loss (Nagaoka et al., 2012).

During foetal development, oocytes initiate meiosis and arrest at 
the diplotene stage of prophase I. At this stage, oocytes present a 
characteristic nucleus called germinal vesicle (GV) and remain quies-
cent for several years. Subsequently, throughout a woman's repro-
ductive lifespan, oocyte growth, and maturation are triggered. On a 
monthly basis, in response to a luteinizing hormone (LH) surge, the 
dominant oocyte will resume meiosis reaching the nuclear maturation 
stage of metaphase II (MII) and be ovulated. At the end of oogene-
sis, it is imperative for the oocyte to have reached the cytoplasmic 
and nuclear maturity required to support embryonic development 
upon fertilization. Several factors are known to impair oocyte quality 
and thus their developmental potential, including age and body mass 
index (BMI).

Many biological pathways have been postulated to be respon-
sible for the age-related oocyte quality drop (Nagaoka et al., 2012); 
for example, mitochondria-related defects (Almansa-Ordonez et al., 
2020) and epigenetic changes affecting gene expression (Chamani 
& Keefe, 2019). In addition, another very important factor is the 
increased incidence of embryo aneuploidies with maternal age. 
During meiotic arrest, the linkage between chromatids is maintained 
by crossovers and proteins such as cohesins. Studies in mouse and 
human suggest that age-related chromosome segregation errors 
could be due to gradual loss of cohesion and kinetochore compac-
tion (Burkhardt et al., 2016; Gruhn et al., 2019; Smoak et al., 2016; 
Zielinska et al., 2019) and altered microtubule dynamics, which 
lead to aberrant spindle assembly and therefore to non-disjunction 
events (Nakagawa & FitzHarris, 2017). In mice, it has been shown 
that cohesin and centromeric proteins are incorporated into meiot-
ically arrested chromosomes early during development and remain 
there without significant turnover until oocyte maturation much 
later in life (Burkhardt et al., 2016; Smoak et al., 2016). However, in 
oocytes of other species like starfish, centromeric nucleosomes are 
continuously replenished during meiotic arrest (Swartz et al., 2019). 
Therefore, it remains unclear to which degree proteins important for 
chromosome cohesion and centromere identity are turned over in 
human oocytes, which can remain in meiotic arrest for decades.

In addition to age, an abnormal BMI also has an effect on oocyte 
quality. This is reflected by the number of oocytes retrieved, fertiliza-
tion rate, embryo quality, pregnancy rate and miscarriage percent-
age (Brower et al., 2013; Machtinger et al., 2012; Shah et al., 2011). 
Similarly to aged oocytes, Machtinger et al. observed that oocytes 
from obese women presented aberrant spindles and misalignment of 

chromosomes. However, some discrepancies exist among published 
data and the underlying biological relation between BMI and impaired 
capacity of reproduction is still missing. A deeper understanding of the 
mechanisms driving the decline of oocyte quality with age and abnor-
mal BMI is therefore needed. In particular, it remains elusive to which 
extent the transcriptome plays a role in human oocyte ageing and BMI-
related infertility.

Several studies have been performed in human oocytes using 
microarray analysis (reviewed in Labrecque & Sirard, 2014). Single-
cell RNA sequencing (scRNA-seq) techniques developed over the 
last decade are among the leading tools for exploring tissue hetero-
geneity at a cellular level (Svensson et al., 2018). These techniques 
facilitate the identification of transcriptional differences between 
cells that would remain undetectable with conventional bulk RNA 
sequencing. More recent studies have therefore applied scRNA-seq 
to analyse age-related differences in the transcriptome of MII oo-
cytes or the impact of in vitro maturation in GV oocytes from young 
vs. advanced maternal age women, by analysing the transcriptome 
in GVs and IVM-MII oocytes (Reyes et al., 2017; Zhang et al., 2020). 
The main pitfall has been the low number of oocytes used in these 
studies.

Here, we apply scRNA-seq analysis on the poly(A)-RNA tran-
scriptome of a large number of (n = 72) single human GV oocytes 
obtained during ovum pick-up after ovarian stimulation of women 
ranging from 18 to 43 years of age. Additionally, applying an experi-
mental in vitro maturation protocol towards the MII stage, we iden-
tified differences in the representation of RNAs related to specific 
biological processes (chromosome segregation, cell cycle regulation, 
mitochondrial function and RNA metabolism) that were correlated 
with women's age or BMI. Furthermore, we found, through network 
analysis, potential master regulators involved in reproductive age-
ing. Therefore, our data suggest that RNA-turnover might play an in-
structive role in oocyte ageing thereby advancing our understanding 
of the reproductive ageing process.

2  |  RESULTS

The main goal of this study was to investigate changes in transcrip-
tome associated with oocyte ageing. For that purpose, we collected 
GV oocytes from 37 women within an age range of 18–43 years and 
either subjected them directly at the GV stage (n = 40), or after in 
vitro maturation to IVM-MII stage (n  =  32), to single-oocyte RNA 
sequencing using the Smart-seq2 protocol (Picelli et al., 2013) 
(Figure 1a,b, Table S1, Figures S1 and S2).

2.1  |  Oocytes cluster according to maturation stage

Firstly, we aimed to elucidate which parameter had the biggest 
impact on the oocyte transcriptome when performing unbiased 
clustering of our single oocyte expression data. Dimensionality re-
duction analysis by tSNE along with graph-based clustering using 



    |  3 of 18LLONCH et al.

the Louvain algorithm revealed two groups of oocytes, with mat-
uration stage being the differentiating feature between clusters 
(Figure 1c). In order to identify transcripts specifically enriched 
at each maturation stage, we considered those genes with a fold 
change (FC) > |2| and p-value < 0.01 as differentially expressed genes 
(DEGs). Thereby, we found 4445 transcripts overrepresented in GV 
oocytes (out of 11,603 ± 373 SEM detected genes in GVs) and 324 
transcripts overrepresented in IVM-MII oocytes (out of 8586 ± 435 
SEM detected genes in IVM-MIIs) (Figure 1d,e, Table S2, Figure S3). 
The top 10 genes (according to p-value) identified to be differen-
tially represented in GV or IVM-MII oocytes are listed in Table 1. 
Interestingly, of the genes we identified as overrepresented in each 
maturation stage at the RNA level, some have also been previously 
found to be stage-specific GV (TDRKH) and MII (WEE2, DNMT1) 
protein markers by single-cell proteomics (Figure S3) (Virant-Klun 
et al., 2016). This suggests that the differences we observed in RNA 
representation are also reflected at the protein level for these men-
tioned genes. Deeper proteomic investigations would be required 
to see whether this is also the case for the other overrepresented 
transcripts in each maturation stage.

We then performed gene ontology (GO) term enrichment anal-
ysis on the overrepresented genes to compare the transcriptomes 
between GV stage and IVM-MII stage (Figure 1f). Within the list of 
genes with increased transcript representation in GV oocytes, we 
found GO terms related to mitochondrial gene expression (e.g. many 
genes constituting the large and small mitochondrial ribosomes such 
as MRPL27 and MRPS22). On the other hand, genes with a higher 
transcript representation in IVM-MII oocytes belonged to GO terms 
related to chromosome condensation (e.g. CENPK, ADD3) and 
microtubule-organizing centre (e.g. CETN3, KIF3A) (Table S3).

In summary, unsupervised clustering of our data identified mat-
uration stage as the main differentiator between oocytes. We iden-
tified DEGs for GV and IVM-MII oocytes and revealed GO pathways 
enriched for each stage.

2.2  |  Transcript representation changes with age 
for specific gene groups

With maturation stage being the main variable distinguishing our 
two cell clusters (Figure 1c), we decided to perform dimensionality 
reduction analysis by tSNE and clustering on each one (GV and IVM-
MII) separately to determine whether age (i.e. <35 vs. >35  years) 
could be a differentiating feature within each maturation stage. 
However, this analysis did not reveal separate age-related clusters 
within GV oocytes or IVM-MII oocytes (Figure 2a). Furthermore, 
neither the number of poly(A)-RNA molecules nor of expressed 
genes detected per oocyte significantly changed with age (Figure 
S2), providing additional evidence that the oocyte transcriptomes 
did not change globally with age.

Next, as oocyte quality declines with age, we sought to iden-
tify specific genes, of which RNA representation would increase or 
decrease in an age-dependent manner. Therefore, we performed 

correlation tests between gene expression and age independently 
for GV and IVM-MII oocytes. For each detected gene, we obtained 
a Pearson correlation value (R) and a p-value. The genes that pre-
sented an absolute correlation value equal or over 0.3 (R ≥ |0.3|) and 
a p-value below 0.05 were considered as genes for which transcript 
representation correlated either positively (increased) or negatively 
(decreased) with age (Table S4). Following these criteria, we iden-
tified a total of 596 genes with altered RNA representation during 
ageing within the GV population and 1219 genes within the IVM-
MII population. In Table 2, the top 5 genes with increased/decreased 
RNA representation within the GV/IVM-MII population are listed. In 
Figure 2b, we show an example of each category.

We then created Venn diagrams in order to visualize the degree 
to which the genes whose RNA representation positively or nega-
tively correlated with age overlapped between GV and IVM-MII 
oocytes (Figure 2c). To our surprise, we found very little overlap 
between the 424 genes in GV oocytes and the 731 genes in IVM-
MII oocytes whose RNA representation increased with age, with 
only 21 genes increasing both in GV and IVM-MII oocytes. Likewise, 
from the 172 and 488 genes with age-related decreased transcript 
representation in GV and IVM-MII, respectively, only 8 overlapped. 
This suggests that age affects the transcript representation predom-
inantly of different genes in GV and IVM-MII oocytes. Among the 
few genes whose RNA representation increased with age in both 
GV and IVM-MII oocytes, we found FAM210B, a mitochondrial fac-
tor that has been associated with human ovarian cancer (Sun et al., 
2017). Further examples were TERB1, which encodes a meiosis-
specific telomere-associated protein involved in attaching the mei-
otic telomere to the inner nuclear membrane, and RFC1, encoding 
a subunit of the replication factor C, a DNA polymerase accessory 
protein required for DNA replication and repair and that might also 
play a role in telomere stability. None of these three genes varied 
significantly in RNA representation between GV and IVM-MII stage, 
suggesting that their age-related increase in RNA levels was already 
present at the GV stage and was maintained through the in vitro 
maturation step to the IVM-MII stage. Among the genes whose RNA 
levels decreased with age in both GV and IVM-MII stages, we found 
ND1, which is involved in electron transport in the mitochondrial re-
spiratory chain.

After this preliminary analysis, the genes present in the correla-
tion lists (Table S4) were further analysed using clusterProfiler (Yu 
et al., 2012). We looked for enriched GO terms in the lists of genes 
whose transcript representation increased with age separately from 
those whose transcript representation decreased with age. When 
analysing the GV stage oocytes we did not find any particular GO 
term significantly enriched (p  <  0.05) after adjusting the p-values 
(FDR method), neither in the set of genes increasing in RNA repre-
sentation with age nor in the ones decreasing. In contrast, in the GO 
term enrichment analysis performed on genes whose transcript rep-
resentation changed with age on the IVM-MII stage oocytes, we did 
find significantly enriched GO terms (FDR, p < 0.05) (Figure 2d, left 
panels). The most enriched GO terms we found within the genes that 
increased in transcript representation with age were predominantly 
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related to chromosome segregation. To name some key examples, 
the cohesin loading and release factors NIPBL and WAPL, the co-
hesin SMC3, the condensin SMC4, the double-strand break repair 
factor SMC5, the synaptonemal complex member SYCP2 and the 
centromeric proteins CENPC, CENPE, CENPF, CENPM and INCENP 
were all increased at the RNA level with age in our IVM-MII oocytes 
(Table S5, Figure 2d). On the other hand, the most enriched GO 
terms for the set of genes presenting lower transcript representa-
tion with age were mostly related to mitochondrial function (Table 
S5, Figure 2d).

In order to assess to which degree overrepresented genes in 
GV or IVM-MII oocytes also changed in RNA representation with 
age, we intersected stage and age markers through Venn diagrams 
(Figure S4). We observed that only a small proportion of transcripts 
differentially represented with maturation stage changed with age 
and that the majority of transcripts changing with age were not mat-
uration stage markers (22% for GV and 3% for IVM-MII).

Overall, in our data set over 1700 genes changed in transcript 
representation in correlation with women's age. In general, the ma-
jority of transcripts changing with age were not overrepresented 

TA B L E  1 Top 10 genes identified as GV or MII markers, ranked according to p-values

Gene name Description avg_log2FC p-value

Top 10 transcripts overrepresented in GVs

TRIM13 Tripartite Motif Containing 13 5.846389779 1.67E−32

CSTB Cystatin B 5.317731081 2.85E−29

RPL39L Ribosomal protein L39 Like 5.294740083 3.55E−29

GTF3C6 General Transcription Factor IIIC Subunit 6 4.286292808 1.81E−28

OSER1 Oxidative Stress Responsive Serine Rich 1 5.256582491 2.14E−28

PAIP2 Poly(A) Binding Protein Interacting Protein 2 3.120456569 9.31E−27

GEMIN6 Gem Nuclear Organelle Associated Protein 6 4.417622279 1.01E−26

ANAPC13 Anaphase Promoting Complex Subunit 13 4.807780144 1.64E−26

CTD.2201l18.1 3.913549439 2.76E−26

ZFAND2A Zinc Finger AN1-Type Containing 2A 3.868706352 2.73E−25

Top 10 transcripts overrepresented in IVM-MIIs

BCL2L10 BCL2 Like 10, apoptosis regulator 2.217812201 3.76E−18

ZNF280C Zinc Finger Protein 280C 2.303678722 9.87E−15

LIN7C Lin-7 Homolog C, Crumbs Cell Polarity Complex Component 3.011566409 1.04E−13

TMEM128 Transmembrane Protein 128 2.162524441 1.94E−13

B3GNT2 UDP-GlcNAc:BetaGal Beta-1,3-N-Acetylglucosaminyltransferase 2 1.640027602 6.51E−13

MED30 Mediator Complex Subunit 30 2.191037289 4.67E−12

OOEP Oocyte Expressed Protein 1.233834045 2.48E−11

PAXIP1 PAX Interacting Protein 1 1.573832651 1.32E−11

ZNF738 Zinc Finger Protein 738 2.300681536 9.24E−12

KLHL28 Kelch Like Family Member 28 2.017362891 1.64E−11

Note: The rest of maturation stage markers and their corresponding p-values can be found in Table S2.

F I G U R E  1 Single-cell transcriptome profiling of human oocytes. (a) Schematic representation of the experimental design. Briefly, 37 
women were recruited. The mean woman age was 28.8 years (SD = 7.7, range 18–43), and from each woman we included between 1–4 
GV oocytes. GV oocytes were analysed directly as GV (n = 40) right after denudation or, after 30 h in G2TM medium, as in vitro matured 
metaphase II (IVM-MII, n = 32) oocytes. Their transcriptome was compared by single-cell RNA-sequencing analysis (Smart-seq2). (b) 
Exemplary pictures of a germinal vesicle (i) and a IVM-MII (ii) oocyte included in the study. Scale bar = 100 µm. (c) Oocytes cluster according 
to their maturation stage. (d) Differentially expressed genes between the GV and the IVM-MII groups are represented in red. Labels 
correspond to the top10 differentially expressed genes in each category after filtering for fold change 2 (avg_log2FC > 1) and sorting 
markers according to their p-value (cutoff = 0.01). Total number of variables: 12,431. (e) Example of two GV markers (RPL39L: Ribosomal 
Protein L39-Like; PAIP2: Poly(A) binding protein Interacting Protein 2) and two IVM-MII markers (MED30: MEDiator complex subunit 30; 
PAXIP1: PAX Interacting Protein 1). (f) Gene Ontology enrichment analysis of each maturation stage. The top 5 activated GO terms are 
shown. p-values were adjusted using the FDR method. GeneRatio: number of genes related to the GO term/total number of significant 
genes. GV: Germinal Vesicle; IVM-MII: in vitro matured metaphase II, PB: Polar Body
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transcripts in a specific maturation stage, supporting the idea that 
ageing does not affect overall cell identity (Wang et al., 2020). 
Instead, age has an impact on the transcript representation of spe-
cific groups of genes related to chromosome segregation and mito-
chondrial function, which have been implicated in the age-related 
oocyte quality decline (Almansa-Ordonez et al., 2020; Nagaoka 
et al., 2012).

2.3  |  Upstream master regulators differ between 
up- and downregulated genes

IVM-MII stage is where we found more changes in transcript repre-
sentation correlated with age and significantly enriched GO terms. 
In order to identify potential interactions between the transcripts 
that are altered with age within this maturation stage, we performed 
a gene regulatory network analysis. As input, we gave an expres-
sion matrix including genes whose RNA representation changed 
with age within the IVM-MII stage oocytes. Moreover, we used a 
list of described human transcription factors (Lambert et al., 2018) 
as potential regulators of the network. When plotting the results 
(Figure 3a, Table S6) we took into account the terms obtained from 
the previous GO term analysis (Figure 2d). From the regulatory net-
work analysis, it became clear that the potential upstream master 
regulators for each of the GO terms were different. We observed 
GC-Rich Promoter Binding Protein 1 (GPBP1) and RLF zing finger 
(RLF) as potential regulators of genes related to ‘chromosome seg-
regation’ while basonuclin 1 (BNC1), thyroid hormone receptor beta 
(THRB) and transcription termination factor 1 (TTF1) appeared to be 
mostly regulating genes related to ‘mitochondrial inner membrane’. 
Moreover, the DNA and RNA binding protein SON, which is a splic-
ing factor belonging to the ‘RNA splicing’ GO term, also appeared as 
one of the main regulators of the network. The expression dynam-
ics of the mentioned potential master regulators mostly followed 
the tendency of the genes within the GO term they regulate. For 
example, GBPB1 and RLF, showed an increased RNA representation 
with age, as did the genes present in the GO term ‘chromosome seg-
regation’ (Figure 3b). In the case of the potential upstream master 
regulators of the GO term ‘mitochondrial inner membrane’ identified 
within the genes decreasing in transcript representation with age, 
BNC1 and THRB followed the same dynamics, while TTF1 behaved 
the opposite (Figure 3b).

In addition to transcription factors, other groups of proteins such as 
those involved in RNA stability or RNA processing might also play a role 
in regulation of gene expression and RNA abundance. For that reason, 

we decided to perform a network analysis where we allowed all genes 
of the network (not only transcription factors) to be potential regulators 
(Figure S5a, Table S6). Interestingly, the main nodes we obtained in this 
analysis mostly differed from the ones described above, except for SON 
and RLF. Among the main regulators, we found in this round of anal-
ysis were genes involved in transcriptional regulation (CLOCK, DHX9, 
ZKSCAN5 and UHRF1), genes related to RNA regulation (SON, EDC3), 
genes related to DNA damage response (PDCD5) and genes that reg-
ulate centrosome and mitotic spindle integrity (HAUS7) or that might 
influence mitochondrial activity (VDAC3). The expression dynamics of 
the genes in relation to age is shown in Figure S5b.

Altogether we have hereby identified a number of potential 
master regulators, which could determine the observed RNA rep-
resentation changes of specific groups of genes in relation to age in 
IVM-MII oocytes.

2.4  |  Impact of body mass index (BMI) on human 
oocyte transcriptome

Both obesity (Machtinger et al., 2012; Shah et al., 2011) and under-
weight (Brower et al., 2013) in women have been associated with 
poor oocyte quality and reproductive outcome. Taking advantage of 
the availability of BMI information from each woman included in our 
study, we analysed whether this factor could also influence human 
oocyte quality at the transcriptome level. Our sample set included 
oocytes from women mostly within the normal [BMI = 18.8–24.9] 
and overweight [BMI = 25–30] range, plus 1 underweight woman 
[BMI = 17] and 1 obese woman [BMI = 32]). As we did for age, we 
considered BMI as a continuous variable and looked at the correla-
tion between BMI and antral follicular count (AFC) as well as BMI 
and gene expression. Our data set did not show any correlation be-
tween BMI and AFC (Figure 4a; R = 0.053, p-value = 0.64).

In terms of gene expression, we analysed GV- and IVM-MII-stage 
oocytes independently. As opposed to age, BMI influenced transcript 
representation in GV oocytes more than it did for IVM-MII oocytes. 
In GV oocytes, we found a total of 1436 genes whose transcript rep-
resentation correlated with BMI, mostly positively (79.4%, Figure 4b, 
Table S7). For IVM-MII oocytes, a total of 567 genes were found to 
change in transcript representation with BMI. Approximately half of 
the genes (300) positively correlated with BMI while the other half 
(267) correlated negatively. As was the case for RNA representation 
changes associated with age (Figure 2c), in this instance we observed 
almost no overlap between genes whose RNA representation changed 
in GV or IVM-MII oocytes in relation to BMI (Figure 4b).

F I G U R E  2 Analysis of gene expression correlation with age. (a) Cluster analysis of oocytes at each maturation stage, GV and IVM-MII, 
independently. (b) Examples of genes that correlate with age. NNT and UBE2Q2P1 are genes found in the GV set of oocytes, while NOL8 
and PIN1 were identified within the IVM-MII oocyte population. (c) Venn diagrams showing the overlap between genes changing RNA 
levels with age in GV and IVM-MII oocytes. In green, genes whose RNAs abundance increased with age, in red the number of genes whose 
RNAs abundance decreased with age. (d) Gene ontology analysis of genes that change with age in IVM-MII oocytes (left) and examples of 
how expression levels of genes in some of the most significant GO terms (indicated by arrows) vary with age (right). Upper panel: genes 
belonging to the GO term ‘chromosome segregation’ for which expression increases with age. Lower panel: genes belonging to the GO term 
‘mitochondrial inner membrane’ for which expression decreases with age
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Gene ontology analysis revealed no specific term enriched within 
the lists of genes correlating with BMI in IVM-MII oocytes. For GV 
oocytes, the list of genes increasing in transcript representation 

with rising BMI was enriched in GO terms like ‘mitochondrial inner 
membrane’, ‘catalytic activity, acting on RNA’, ‘anaphase-promoting 
complex-dependent catabolic process’ and ‘establishment of (planar/

TA B L E  2 Top 5 genes (according to R-value) with increased/decreased RNA representation in function of age identified within the GV/
IVM-MII population independently

Gene name Description R value p-value

Top 5 GV up

ENSG00000278292 Ret Finger Protein Like 4A Pseudogene 6 0.6294745 5.09827E−05

UBE2Q2P1 Ubiquitin Conjugation Enzyme E2 Q2 Pseudogene 1 0.58455502 0.000226527

WFIKKN2 WAP, Follistatin/Kazal, Immunoglobulin, Kunitz And Netrin Domain 
Containing 2

0.58369917 0.000232566

LINC02022 Long Intergenic Non-Protein Coding RNA 2022 0.57281807 0.000322912

ENSG00000227240 lncRNA, new transcript 0.000322912 0.000339781

Top 5 GV down

NNT Nicotinamide Nucleotide Transhydrogenase −0.5872276 0.000208561

DCK Deoxycytidine Kinase −0.5281484 0.001110088

KAT8 Lysine Acetyltransferase 8 −0.5205088 0.001348543

RGS18 Regulator Of G Protein Signaling 18 −0.4935282 0.002589092

ARHGEF26 Rho Guanine Nucleotide Exchange Factor 26 −0.4934728 0.002592426

Top 5 IVM-MII up

NOL8 Nucleolar Protein 8 0.672405618 3.42412E−05

TNIK TRAF2 And NCK Interacting Kinase 0.661684117 5.04619E−05

ESCO2 Establishment Of Sister Chromatid Cohesion N-Acetyltransferase 2 0.650871928 7.3487E−05

AFDN Afadin, Adherens Junction Formation Factor 0.638270876 0.000111848

TPR Translocated Promoter Region, Nuclear Basket Protein 0.634740326 0.0001254

Top 5 IVM-MII down

PIN1 Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 −0.632135194 0.00013632

SERF2 Small EDRK-Rich Factor 2 −0.621504263 0.000190188

C12orf75 Chromosome 12 Open Reading Frame 75 −0.620631179 0.000195356

TLR5 Toll Like Receptor 5 −0.605605391 0.000306149

KIAA1671 Uncharacterized Protein KIAA1671 −0.588558598 0.000496349

Gene name Description

R value p-value

GV IVM-MII GV
IVM-
MII

Examples of genes with increased transcript representation with age

FAM201B Family With Sequence 
Similarity 210 
Member B

0.36 0.44 0.03 0.01

TERB1 Telomere Repeat 
Binding Bouquet 
Formation Protein 1

0.36 0.38 0.03 0.03

RFC1 Replication Factor C 
Subunit 1

0.42 0.45 0.01 0.01

Examples of genes with decreased transcript representation with age

ND1 Mitochondrially 
Encoded NADH: 
Ubiquinone 
Oxidoreductase 
Core Subunit 1

−0.35 −0.47 0.04 0.01

Note: The rest of genes, together with the R and p-values can be found in Table S4.
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tissue) polarity’ among others (Figure 4c, Table S8). For RNAs that 
decreased in representation with rising BMI in GVs, GO term analysis 
revealed terms mostly related to regulation of RNA metabolism and 
RNA splicing.

Overall, BMI affected oocyte transcript levels of specific pathways 
especially in GV oocytes, which potentially could be related to the de-
cline in oocyte quality and fertility in women with abnormal BMI.

3  |  DISCUSSION

3.1  |  This study in light of previous work

In this study, we have investigated the effect of age on oo-
cyte quality at the transcriptome level. We have used Smart-
seq2 (Picelli et al., 2013) single-cell RNA sequencing instead of 

microarrays or bulk RNA-seq protocols commonly used in pre-
vious studies. Moreover, while comparable recent studies ana-
lysed only a small number of oocytes (Hendrickson et al., 2017; 
Reyes et al., 2017; Zhang et al., 2020), our data set includes a 
large number of single oocytes (n  =  72) from a large cohort of 
women, thereby increasing our statistical power in comparison 
to previous studies.

The design of our study allowed us to compare the transcrip-
tomes of single oocytes obtained at OPU (oocyte pick-up) time from 
women of a wide-ranging age-span (n  =  37, 18–43  years) at two 
stages, GV and in vitro matured (IVM-MII). Besides the identifica-
tion of maturation stage-specific transcripts, our data set allowed 
us to analyse age-related oocyte quality decline over time rather 
than comparing oocytes above or below an arbitrary age threshold. 
In addition, we used our dataset to identify transcriptomic changes 
associated with BMI.

F I G U R E  3 Gene regulatory network analysis. (a) Cytoscape plots from the top 2500 regulatory links among genes found to correlate 
with age in IVM-MII oocytes. A list of known human transcription factors was given as an input to Genie3 to be used as potential regulators 
of the network. In green are genes belonging to two of the GO terms enriched in genes whose RNA levels increase with age, ‘RNA splicing’ 
(light green) and ‘chromosome segregation’ (dark green). SRPK1 and IK belong to both of these GO terms, and therefore they are plotted in 
between. In red are genes for which RNA levels decrease with age belonging to the enriched GO term ‘mitochondrial inner membrane’. (b) 
Expression dynamics of the potential master regulators of genes that correlate with age in IVM-MII oocytes
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F I G U R E  4 Analysis of gene expression correlation with BMI. (a) Correlation plot between AFC and BMI. (b) Venn diagrams showing the 
number of genes whose amount of RNA correlates with BMI in GV and IVM-MII oocytes. In green, genes whose RNA abundance increases 
with BMI, in red the number of genes whose RNA abundance decreases with BMI. (c) Gene ontology analysis of genes that correlate with 
BMI in GV oocytes (left) and examples of how expression levels of genes in some of the most significant GO terms (demarcated by arrow) 
vary with age (right). Upper panel: genes for which expression increases with BMI. Lower panel: genes for which expression decreases with 
BMI
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3.2  |  Maturation stage is the main differentiator of 
oocyte transcriptomes

In our analysis, oocyte maturation stage emerged as the main 
driver of transcriptomic variability. During growth, oocytes are 
transcriptionally active and once they reach the end of their 
growth phase (fully grown GVs), oocytes become transcriptionally 
inactive to complete their nuclear maturation (MIIs) (De La Fuente 
& Eppig, 2001). In mouse oocytes, it has been observed that dur-
ing maturation from GV to MII stage, transcripts are degraded 
at large scale and only transcripts related to pathways essential 
for the unique MII characteristics are selectively protected from 
degradation (Su et al., 2007). Hence, it is not surprising that we 
detected a higher number of genes with increased transcript rep-
resentation within the GV population (4445) in comparison with 
IVM-MII oocytes (324). Furthermore, we observed in GV oocytes 
GO terms enriched for transcripts related to mitochondrial func-
tion and translation (Figure 1f, Table S3). This suggests a degra-
dation of transcripts related to those biological processes during 
maturation, in line with a reduction of protein synthesis and en-
ergy production in IVM-MII oocytes as previously described in 
mice (Su et al., 2007).

On the other hand, considering the transcriptional silencing and 
specific transcript degradation from GV to MII stage, we were sur-
prised to find a number of genes (324) with higher transcript repre-
sentation in IVM-MII oocytes than in GVs. A plausible explanation 
for this result might be related to the poly(A)-tail length of the de-
tected transcripts. Studies performed in Drosophila (Lim et al., 2016), 
Xenopus (Fox et al., 1989) and mouse oocytes (Takei et al., 2020; 
Yang et al., 2020) have shown a global increase in the poly(A) tail 
length of mRNAs during oocyte maturation. Some of these mRNAs 
will keep a long poly(A) tail while others will go through a process 
of deadenylation at the final oocyte maturation stages (Yang et al., 
2020). mRNAs with longer poly(A) tails are preferentially detected 
in oligo-dT-based sequencing libraries (Yang et al., 2020), such as the 
one used in this study. Therefore, the transcripts we saw overrep-
resented in the IVM-MII population in comparison with GVs could 
be reflecting transcripts that had their poly(A) tail elongated during 
in vitro maturation. It has been shown in a number of model organ-
isms such as flies, frogs, fish and mice that transcripts with elongated 
poly(A) tails are more stable and more efficiently translated during 
oogenesis and encode for proteins important for oocyte maturation 
and early embryonic development (Lim et al., 2016; Subtelny et al., 
2014; Takei et al., 2020; Yang et al., 2020). Consistent with this, 
we observed in our GO term analysis an enrichment of transcripts 
related to chromosome condensation in IVM-MII oocytes, in line 
with the establishment of metaphase chromosomes at MII stage. 
Altogether, our data are in concordance with the selective degrada-
tion of GV-specific RNA molecules and also the poly(A) tail elonga-
tion and protection from degradation of MII-specific transcripts as 
previously described in model organisms. These processes therefore 
appear to be conserved during oocyte maturation between humans 
and other species.

3.3  |  Transcripts affected by age are related to 
oxidative stress, mitochondrial function, chromosome 
segregation and RNA metabolism pathways

We observed that the transcriptomes of IVM-MII oocytes were 
more affected by age than those of GV oocytes, based on the num-
ber of genes with increased or decreased RNA representation. This 
trend has been also previously observed in mouse oocytes (Pan 
et al., 2008). Furthermore, we observed that the genes whose tran-
script representation changed with age differed between GV and 
IVM-MII oocytes. A similar observation has been made in a study 
where age-related changes in the transcriptome of immature non-
human primate oocytes spanning from primordial to antral follicles 
were assessed (Wang et al., 2020). In that case, genes differentially 
expressed with age were found to be oocyte growth stage-specific. 
We acknowledge the differences in Wang's study and ours regard-
ing the material analysed: in vivo developing immature oocytes from 
cynomolgus monkeys obtained after whole ovary dissociation vs. 
human oocytes obtained after an ovarian stimulation protocol and 
in vitro maturation. Nonetheless, the fact that in both cases ageing 
affects distinct stages of oocyte development differently is worth 
noticing.

However, we found it surprising that genes with altered tran-
script representation with age were rarely overlapping between GVs 
and IVM-MIIs, since minimal transcription is taking place between 
both stages (De La Fuente & Eppig, 2001). In fact, our sampling con-
sists of obtaining GVs from women of different ages and in vitro 
maturing a part of them to MII oocytes. Therefore, we expected that 
age-related altered transcript representation in GVs would be car-
ried along to IVM-MII oocytes. Part of the discrepancies observed 
in altered transcript representation between GVs and IVM-MIIs 
might stem from the in vitro maturation process itself. More impor-
tantly, while age-related transcriptome alterations in GVs could be 
transcription-based, changes in transcript representation in IVM-
MII oocytes would occur mostly on a post-transcriptional level, 
thereby affecting different transcripts in IVM-MIIs than in GVs. 
This would be consistent with the dramatic transcriptome remod-
elling by transcript-specific degradation and polyadenylation path-
ways during oocyte maturation observed across species (Lim et al., 
2016; Su et al., 2007; Subtelny et al., 2014; Yang et al., 2020), which 
would impact specifically transcripts in MII oocytes if aberrant with 
age. It is noteworthy that we observed a decrease in the transcript 
representation for polyadenylation element binding protein CPEB2 
with age in IVM-MII oocytes. CPEB2 is a potential regulator of cy-
toplasmic RNA polyadenylation during oogenesis and is important 
for porcine oocyte meiotic maturation to MII stage and early em-
bryogenesis (Prochazkova et al., 2018). As cytoplasmic polyadenyla-
tion is known to regulate stability and translation of maternal-effect 
mRNAs for protein production during oogenesis (Susor & Kubelka, 
2017) decrease of CPEB2 transcript with age might be related to the 
impaired quality of old IVM-MII oocytes. Indeed, it has been recently 
shown that altered translation of specific transcripts is a contribut-
ing factor to the age-related quality decline in mouse oocytes (del 
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Llano et al., 2020). Further studies will be needed to assess the role 
of CPEB2 in human oocytes.

We did not find specific GO terms enriched within the group of 
genes presenting altered transcript representation with age in GV 
oocytes. Nevertheless, among the transcripts which decreased in 
representation in GVs with age, we found the glutathione peroxidase 
GPX1, which protects cells against oxidative damage. Interestingly, 
GPX1 transcript has been shown to decrease with age in immature 
non-human primate oocytes contained within primary follicles, al-
though it did not change in oocytes from antral follicles as in our case 
(Wang et al., 2020). Additionally, we also found PRDX1 to decrease 
in transcript representation with age within the IVM-MII population. 
PRDX1 belongs to the peroxiredoxin family of antioxidant genes, has 
been suggested to play an antioxidant protective role and to be a pu-
tative marker for developmental competence in cow oocytes (Romar 
et al., 2011). Therefore, we found genes related to oxidative stress 
protection to decrease in transcript representation with age, in both 
GV oocytes (GPX1) and IVM-MII oocytes (PRDX1). Indeed, with age, 
an increase of oxidative molecules and a decrease in the expression 
of oxidation protective genes occurs—a phenomenon known as the 
‘oxidative stress theory of ageing’ (Liguori et al., 2018). A decrease in 
the expression of genes responsible for protecting against oxidative 
stress has been previously observed as a general feature of ageing 
in mouse, non-human primate and human oocytes (Lim & Luderer, 
2011; Reyes et al., 2017; Wang et al., 2020), and it is now also re-
flected in our data set. Altogether, these data indicate that ageing 
also leads to increased oxidative stress in human oocytes, which 
might in turn translate into poor oocyte quality.

For IVM-MII oocytes, gene ontology analysis on transcripts 
changing with age revealed terms mainly related to chromosome seg-
regation, cell cycle regulation, mitochondrial function and RNA metab-
olism. All of these biological processes have been previously reported 
to be altered with age in the human oocyte (Almansa-Ordonez et al., 
2020; Grøndahl et al., 2010; Steuerwald et al., 2007). In fact, if we take 
a closer look at the entire list of GO terms enriched in the set of genes 
either with increased or decreased RNA representation with age, we 
detect both discrepancies and concordances with what has been pre-
viously published. For example, ‘DNA repair’ was found to be enriched 
in old MII human oocytes (Grøndahl et al., 2010), and we also found 
‘regulation of DNA repair’ among our GO terms enriched in transcripts 
increasing in representation with age. Another example is the GO term 
‘mitochondrial membrane’, which was also found to be downregulated 
in older oocytes (Steuerwald et al., 2007). Nonetheless, in the same 
publication the GO term ‘cell cycle checkpoint’ was found to be down-
regulated in older oocytes, while we found it in the set of genes with 
increased RNA representation with age.

Advanced maternal age has been shown to be directly related 
to an increased rate of aneuploidies, with cohesin loss and cen-
tromeric abnormalities being the most studied underlying causes 
(Burkhardt et al., 2016; Gruhn et al., 2019; Smoak et al., 2016; 
Tachibana-Konwalski et al., 2010; Zielinska et al., 2019). Strikingly, 
in our data, among the top hits of biological processes affected by 
maternal age in IVM-MII oocytes were chromosome and chromatid 

segregation-related terms (Table S5). Our results therefore point 
towards the hypothesis that not only protein stability of key chro-
mosomal factors but also abnormal changes at the RNA level of 
those genes might contribute to the increased aneuploidy rate with 
advanced maternal age. Indeed, Fragouli and colleagues described a 
link between transcriptomic alterations of genes involved in biolog-
ical processes such as spindle assembly or chromosome alignment 
and aneuploidy of oocytes (Fragouli et al., 2010). However, the in-
crease in transcript representation of the genes belonging to the GO 
term ‘chromosome segregation’ in our study was very modest, rarely 
exceeding 50%. This is important to consider as it could suggest a 
minimal biological effect. Alternatively, this brings us back to the 
hypothesis of a potential bias in detection of transcripts with long 
poly(A) tails, which are preferentially retained and translated in oo-
cytes (Yang et al., 2020). This could suggest that abnormal protein 
levels of chromosomal factors in aged oocytes might trigger com-
pensatory mechanisms including increased polyadenylation of those 
transcripts for further translation. In support of this hypothesis, a 
recent study profiling the translatome of ageing mouse oocytes iden-
tified transcripts related to meiotic spindle formation and chromo-
some alignment as misregulated during translation (del Llano et al., 
2020).

Taken together, our results point out that transcripts related 
to chromosome segregation, cell cycle regulation, mitochondrial 
function and RNA metabolism are altered in human oocytes during 
ageing. Moreover, it remains to be shown to which degree small 
changes in transcript representation directly impact oocyte quality 
or are alternatively a consequence of bigger alterations at the post-
transcriptional level during late stages of oocyte maturation.

3.4  |  Identification of potential master 
regulators of age-related changes in oocyte 
transcriptome by network analysis

In order to identify master regulators of the pathways affected by 
age, we took a network analysis approach (Huynh-Thu et al., 2010) 
using a list of human transcription factors (Lambert et al., 2018) as 
potential regulators of the network. Among the potential upstream 
regulators in IVM-MII-stage oocytes, we identified the zinc finger 
transcription factor BNC1. It is expressed in germ cells of both ova-
ries and testes and plays a role in the regulation of rRNA transcrip-
tion (Zhang et al., 2007). Specifically, BNC1 is expressed in oocytes 
present within secondary follicles and in ovulated oocytes and its 
deficiency has been associated with premature ovarian failure. 
Furthermore, knock-down of BNC1 in human oocytes leads to im-
paired meiotic maturation and a decrease of the oocyte-derived 
proteins BMP15 and p-AKT (Zhang et al., 2018). Considering that 
we observe BNC1 transcript representation to decrease with age 
in IVM-MII oocytes, this could provide a link between ageing and 
impaired meiotic maturation. Furthermore, in mouse oocytes Bnc1 
knock-down leads to impaired RNA polymerase I and II transcrip-
tion, altered oocyte morphology and a failure of embryos to develop 
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beyond the 2-cell stage resulting in female subfertility (Ma et al., 
2006).

Another potential master regulator that we identified in our gene 
regulatory network analysis is SON. This gene encodes an RNA bind-
ing protein, which promotes pre-mRNA splicing, specially of tran-
scripts presenting weak splice sites and transcripts related to cell 
cycle and DNA repair (Lu et al., 2014). Interestingly, SON not only 
belongs to the GO term ‘RNA splicing’, which is found among genes 
with increased transcript levels with age, but we also identified it 
as a potential regulator of RNA splicing-related genes. This is in line 
with extensive autoregulatory cross-talk within the splicing machin-
ery (Papasaikas et al., 2015). In a study comparing failed-to-mature 
oocytes with IVM-MII oocytes transcriptome, RNA splicing was one 
of the main altered pathways, suggesting that impairments in RNA 
splicing can constitute a major roadblock for oocyte maturation (Li 
et al., 2020). Therefore, our results suggest that alterations in the 
RNA splicing machinery might lead to difficulties in oocyte matura-
tion with ageing, and therefore, contribute to the observed oocyte 
quality decline.

3.5  |  Transcriptomic changes associated with BMI

In addition to age, BMI is a key driver affecting oocyte quality 
and female reproductive fitness (Brower et al., 2013; Machtinger 
et al., 2012; Shah et al., 2011). Among the enriched GO terms for 
RNAs increasing with BMI in GV oocytes, we found ‘anaphase-
promoting complex-dependent catabolic process’, which in-
cludes the anaphase-promoting complex subunits ANAPC11 and 
ANAPC15, as well as AURKA (Aurora kinase A), which is impor-
tant for microtubule nucleation during meiotic spindle assembly 
in mouse oocytes (Namgoong & Kim, 2018; Saskova et al., 2008; 
Solc et al., 2012). This could explain previously reported spindle 
abnormalities in oocytes from obese women (Machtinger et al., 
2012).

In addition, RNA splicing and other GO terms related to RNA me-
tabolism/dynamics were not only influenced by age in our dataset, 
but also by BMI in GV stage oocytes, where we observed a decrease 
in RNA levels for genes associated with these pathways. An example 
is the downregulation of CNOT1 (CCR4-NOT Transcription Complex 
Subunit 1) with increasing BMI, a scaffolding unit of the CCR4-NOT 
complex, which is involved in RNA-deadenylation, RNA degradation 
and translational repression (Shirai et al., 2014). The CCR4-NOT 
complex has been implicated in the selective deadenylation and deg-
radation of transcripts during meiotic maturation in mouse oocytes 
and the disruption of the CNOT6L subunit of the CCR4-NOT com-
plex caused defects in microtubule-chromosome organization and 
resulted in meiotic arrest (Sha et al., 2018; Vieux & Clarke, 2018). 
This indicates that RNA regulation plays an important role at the later 
stages of oocyte maturation. Alterations in the transcripts related to 
these pathways may contribute to impaired meiotic maturation re-
sulting in reduced oocyte developmental competence.

3.6  |  Conclusion

In this study, we have shown that age as well as BMI affect key path-
ways at the RNA level, which are involved in oocyte maturation and 
function such as chromosome segregation, mitochondria, RNA me-
tabolism and translation. While many age-related oocyte defects, as 
for example chromosome segregation errors, have been attributed 
to low protein turnover of centromeric or cohesin associated fac-
tors during meiotic arrest, it has been less appreciated that as well 
the transcripts related to these pathways are misregulated during 
oocyte ageing. Maturing oocytes go through a dramatic rewiring 
of gene expression dynamics, which includes phases of global tran-
scriptional and translational repression and selective RNA polyade-
nylation and RNA degradation (Clarke, 2018; De La Fuente, 2018). 
Our results suggest that some of the effects of advanced maternal 
age as well as abnormal BMI on oocyte quality and developmental 
competence, could be driven by alterations at the RNA level.

In summary, we provide with this study a high-resolution analysis 
of the pathways affected at the RNA level in correlation with age and 
BMI in GV and IVM-MII oocytes. Besides advancing our knowledge 
on the underpinnings of the age-  and BMI-related oocyte quality 
decline, we deliver a rich resource for the field, guiding further in-
vestigations and potential diagnostic or therapeutic developments 
related to oocyte quality.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Ethical approval

Approval to conduct this study was obtained from the Ethics 
Committee for Clinical Research (CEIm) of Clinica Eugin before the 
beginning. All women included in the study gave their written in-
formed consent prior to inclusion.

4.2  |  Study population

A total of 37 women (n  =  25 oocyte donors and n  =  12 patients) 
were prospectively included in the study from January 2018 until 
June 2019. Inclusion criteria for patients undergoing IVF/ICSI with 
own oocytes encompassed advanced maternal age and male factor 
infertility. Patients with medical conditions involving survivors of 
cancer, chronic infection (HIV, Hepatitis C) or endometriosis stage 
IV were excluded from the study. All women had a body mass index 
(BMI) < 33, normal karyotype and no systemic or reproductive condi-
tions, such as endometriosis. Oocytes from only one cycle of ovarian 
stimulation per woman were included. For single-oocyte RNA-seq 
analysis, 72 oocytes were collected; 40 of them were included in the 
study as GV, while 32 were included as MII after in vitro maturation 
(IVM-MII). The average women age was 28.8 ± 7.7 (range 18–43), 
with a mean ovarian reserve (measured by antral follicle count; AFC) 
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of 22.1 ± 10.7 (range 4–46). The characteristics of the ovum pick-up 
for each participant are shown in Table S1.

4.3  |  Ovarian stimulation, oocyte retrieval and 
in vitro maturation

Women were stimulated with highly purified urinary hMG 
(Menopur®, Ferring, Spain) or follitropin alpha (Gonal®, Merck-
Serono, Spain), with daily injections of 150–300  IU (Blazquez 
et al., 2014). A GnRH antagonist (0.25  mg of Cetrorelix acetate, 
Cetrotide®, Merck Serono, Spain) was administered daily from day 
6 of stimulation (for donors) or from when a follicle of 14  mm or 
estradiol ≥400 pg/ml was detected (for patients) (Olivennes et al., 
1996). In the case of donors, when 3 or more follicles of ≥18 mm 
of diameter were observed, final oocyte maturation was triggered 
with 0.2 mg of triptorelin (Decapeptyl®, Ipsen Pharma, Spain). In 
the case of patients, when 3 follicles of ≥17 mm of diameter were 
observed, final oocyte maturation was triggered with 250  µg of 
alpha-choriogonadotropin (Ovitrelle®, MERCK) or 0.3 mg of trip-
torelin (Decapeptyl®, Ipsen Pharma, Spain). Oocyte retrieval was 
performed 36 h later by ultrasound-guided transvaginal follicular as-
piration. Oocytes were denuded 30 min after pick-up by exposure to 
80  IU/ml hyaluronidase (Hyase-10x, Vitrolife, Sweden) in G-MOPS 
medium (Vitrolife, Sweden), followed by gentle pipetting. Once de-
nuded, oocytes were scored for polar body presence and immature 
GV was either processed immediately as GV or further cultured in 
vitro in 50 μl of G2-PLUS (Vitrolife, Sweden) medium in a humidi-
fied atmosphere of 6% CO2/94% at 37°C for 30 h, when they were 
checked again for polar body presence and processed.

4.4  |  Single-cell RNA sequencing

Full-length single-cell RNA-seq libraries were prepared using the 
Smart-seq2 protocol (Picelli et al., 2013) with minor modifications. 
Briefly, oocytes were dezoned with Pronase (Roche Diagnostics, 
Spain), and individually placed in 2.3 µl of a lysis buffer contain-
ing 0.2% Triton-X100 (T8787, Sigma) and 1 U/µl RNAse inhibitor 
(N8080119, Applied Biosystem), and stored at −80°C until use. 
Reverse transcription was performed using SuperScript II (Thermo 
Fisher Scientific) in the presence of 1 μM oligo-dT30 VN (IDT), 1 μM 
template-switching oligonucleotides (QIAGEN) and 1 M betaine. It 
is important to note that cDNA conversion was performed using 
oligo-dTs, which could potentially introduce a bias towards long-
tail mRNAs. The robustness of our data and significance of our 
results is not compromised by this fact. cDNA was amplified using 
the KAPA Hifi Hotstart ReadyMix (Kapa Biosystems) and IS PCR 
primer (IDT), with 20 cycles of amplification. Following purifica-
tion with Agencourt Ampure XP beads (Beckmann Coulter), prod-
uct size distribution and quantity were assessed on a Bioanalyzer 
using a High Sensitivity DNA Kit (Agilent Technologies). A total 

of 140 pg of the amplified cDNA were fragmented using Nextera 
XT (Illumina) and amplified with Nextera XT indexes (Illumina). 
Products of each of the 96-well plate were pooled and purified 
twice with Agencourt Ampure XP beads (Beckmann Coulter). 
Final libraries were quantified and checked for fragment size dis-
tribution using a Bioanalyzer High Sensitivity DNA Kit (Agilent 
Technologies). Pooled sequencing of Nextera libraries was carried 
out using a HiSeq4000 (Illumina) to an average sequencing depth 
of >1 million reads per cell. Sequencing was carried out as paired-
end (PE75) reads with library indexes corresponding to cell bar-
codes (Unique dual indexing).

4.5  |  Data analysis

4.5.1  |  scRNA-seq initial processing

Raw sequencing data were obtained from the Smart-seq2 protocol 
as described elsewhere (Guillaumet-Adkins et al., 2017) with minor 
modifications. Briefly, initial quality check on the FASTA files was 
carried out with FastQC quality control suite. Samples that reached 
quality standards were processed to deconvolute reads and assign 
them to a single cell by demultiplexing according to pool barcodes. 
PolyT reads were removed. Sequencing reads were mapped with 
the STAR v2.5.4b RNA aligner (Dobin et al., 2013) with default pa-
rameters, and the reference genome was Gencode release 32 (as-
sembly GRCh38.p13). Gene quantification was carried out using 
UMI to account for amplification biases (allowing an edit distance 
up to two nucleotides in UMI comparisons). Only unambiguously 
mapped reads were considered (Guillaumet-Adkins et al., 2017). 
Mapped reads were assigned to genes when they overlapped with 
exons. Only oocytes with ≥1000 UMIs, ≥10,000 reads, and ≤30% 
mitochondrial transcripts (35 GVs and 31 IVM-MIIs) were included 
for further analysis (Figure S1). These metrics were considered 
jointly to ensure that the discarded cells with high mitochondrial 
expression were not metabolically active, but instead low quality 
damaged cells. UMI counts were normalized using Seurat's (Butler 
et al., 2018; Stuart et al., 2019) SCTransform pipeline, a model-
ling framework for the normalization and variance stabilization 
of molecular count data from scRNA-seq (Hafemeister & Satija, 
2019), which finds sharper biological differences and avoids most 
technical/confounding factors compared with Seurat's standard 
pipeline.

4.5.2  |  scRNA-seq clustering and differential 
expression analysis of maturation stages

To cluster the oocytes, we (i) performed a principal component anal-
ysis (PCA) using the scaled and normalized 3000 most highly vari-
able genes, (ii) used the top 20 principal components (PCs) and the 
FindNeighbors function to create a k-nearest neighbour graph based 
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on the lower-dimensional embedding and (iii) clustered the cells with 
the FindClusters function using the default parameters, including 
the resolution set to 0.8. To visualize the data set, we used a non-
linear dimensionality reduction technique, t-distributed Stochastic 
Neighbor Embedding (tSNE), on the top 20 PCs and setting the per-
plexity hyperparameter to 15. To find the cluster markers, in our case 
corresponding to the maturation stage, the function FindAllMarkers 
was applied, using the ‘MAST’ test (Finak et al., 2015) and setting the 
parameters min.pct and logfc.threshold to 0 and only.pos to TRUE. 
This analysis was performed using the Seurat R package (Butler et al., 
2018; Stuart et al., 2019).

Differentially expressed genes (DEG) presenting an average 
fold change over 2 between GV and IVM-MII oocytes and a p-
value smaller than 0.01 were considered as significant matura-
tion stage markers. EnhancedVolcano R package (Blighe et al., 
2019) was used for the visualization of the gene's significance and 
log2FC (lnFC values obtained from the function FindAllMarkers 
were transformed to log2FC using the formula log2FC  =  lnFC/
ln(2)), the names of the top 10 markers per each maturation stage 
are plotted.

4.5.3  |  Analysis of gene expression correlation 
with age

Analysis of gene expression correlation with age was performed 
using pearson correlation by means of the cor.test function. This 
analysis was carried out independently for GV stage oocytes and 
IVM-MII stage oocytes. Genes presenting a correlation value 
(R) > =|0.3| and a p-value <0.05 were considered significantly cor-
related with maturation stage. Plots of gene expression levels 
correlating with age were obtained using the ggplot2 R package 
(Wickham, 2016).

Venn diagrams used to evaluate how many genes correlating 
with age were shared between the GV stage oocytes and the IVM-
MII stage oocytes were plotted using the VennDiagram R package 
(Chen & Boutros, 2011). Lists of the genes positively (increasing RNA 
representation with age) or negatively (decreasing RNA representa-
tion with age) correlating with age in GVs and IVM-MIIs were used 
as an input. Proportional Venn diagrams to intersect maturation 
stage markers with genes, for which RNA levels change with age 
have been generated with the Eulerr R package. (Micallef & Rodgers, 
2014; Wilkinson, 2012).

4.5.4  |  Gene ontology analysis

GO term enrichment analysis was performed using the enrichGO 
function from the ClusterProfiler R package (Shannon et al., 2003; 
Yu et al., 2012). The entire list of maturation stage markers (GV and 
IVM-MII independently), filtered for a significant p-value <0.01 and 
a fold change (FC)  >  |2|, was used as an input. GO terms with an 

adjusted p-value (FDR method) below 0.05 were considered signifi-
cant. For GO term enrichment analysis of the genes correlating with 
age, the function was run four times: genes that positively correlate 
with age in GVs, genes that negatively correlate with age in GVs and 
the same for IVM-MIIs. Again, GO terms with an adjusted p-value 
lower than 0.05 were considered as significant.

4.5.5  |  Gene regulatory network analysis

Gene regulatory networks were analysed using the Genie3 R pack-
age (Huynh-Thu et al., 2010). The normalized expression matrix of 
genes changing in expression (positive or negative correlation) with 
age in IVM-MII stage oocytes was given as an input. Either a list 
of described human transcription factors (TF) (Lambert et al., 2018) 
or all genes changing RNA amount with age were specified in the 
parameter ‘regulators’ for the Genie3 analysis. The top 2500 reg-
ulatory links were next plotted using Cytoscape3 (Shannon et al., 
2003). Genes with the highest number of interactions (over 50 for 
human TF and over 10 for all genes considered as potential regula-
tors) and a betweenness centrality value over 0.5 were considered 
the main regulators of the network. For visualization, the main nodes 
(blue) size represent the number of interactions with other nodes. 
The colour green represents genes belonging to GO terms enriched 
in the list of genes positively correlating (going up in expression) with 
age in IVM-MII oocytes. The red colour indicates the genes belong-
ing to GO terms enriched in the list of genes negatively correlating 
(going down in expression) with age in IVM-MII oocytes. Genes with 
a number of interactions lower than 50 (TF as regulators) or 10 (all 
genes considered as potential regulators) have a node size equal to 0.

ACKNOWLEDG EMENTS
We would like to acknowledge all members of the Heyn, Vassena 
and Payer laboratories for their input and discussions and in 
particular Tom Mattimoe and Elvan Boke for proofreading of 
the manuscript. Work on this study in the laboratory of B.P. has 
been funded by the AXA research fund (AXA Chair in Risk pre-
diction in age-related diseases), contributions from Clinica EUGIN 
(Identification of Epigenetic Effects of Ageing on Human Oocytes), 
the Spanish Ministry of Science, Innovation and Universities 
(BFU2017-88407-P), the Agencia Estatal de Investigación (AEI) 
(EUR2019-103817) and the Catalan Agència de Gestió  d'Ajuts 
Universitaris i de Recerca (AGAUR, 2017 SGR 346). S.L. has re-
ceived funding from the European Union's Horizon 2020 research 
and innovation programme under the Marie Skłodowska-Curie 
grant agreement No 754422. We acknowledge support of the 
Spanish Ministry of Science and Innovation through the Instituto 
de Salud Carlos III, to the EMBL partnership and to the Co-
financing with funds from the European Regional Development 
Fund (FEDER) (Programa Operativo FEDER Plurirregional de 
España (POPE) 2014-2020). We also acknowledge support of 
the Centro de Excelencia Severo Ochoa and the Generalitat de 



16 of 18  |     LLONCH et al.

Catalunya through the CERCA Programme, the Departament de 
Salut and Departament d'Empresa i Coneixement and through 
the Secretaria d'Universitats i Recerca for the Co-financing with 
FEDER funds (Programa Operatiu FEDER de Catalunya 2014-
2020). Furthermore, this study has been supported by intramural 
funding of Clinica EUGIN to R.V.

CONFLIC T OF INTERE S T
The authors have no conflict of interest to declare.

AUTHOR CONTRIBUTIONS
M.B., A.M., H.H., R.V. and B.P. conceived the study. M.B. collected 
and performed IVM on oocytes. P.L. and S.R. performed single-cell 
sequencing. S.L., P.N. and M.E. performed Bioinformatic analysis. 
F.Z. assisted with data analysis. B.P., R.V. and H.H. acquired funding 
and supervised the project. S.L., M.B. and B.P. wrote the paper with 
input from the other authors.

OPEN RE SE ARCH BADG E S

This article has earned an Open Data Badge for making publicly 
available the digitally-shareable data necessary to reproduce the 
reported results. The data is available at https://www.ncbi.nlm.nih.
gov/geo/query/​acc.cgi?acc=GSE15​8802.

DATA AVAIL ABILIT Y S TATEMENT
The data underlying this article have been uploaded to the Gene 
Expression Omnibus (GEO) with accession number GSE158802: 
https://www.ncbi.nlm.nih.gov/geo/query/​acc.cgi?acc=GSE15​8802. 
Furthermore, data can be explored interactively at:https://marce​
losua​bayes.shiny​apps.io/shiny_smart​seq2/.

ORCID
Sílvia Llonch http://orcid.org/0000-0001-6190-0377 
Montserrat Barragán http://orcid.org/0000-0001-8859-6643 
Paula Nieto   https://orcid.org/0000-0002-0083-9901 
Anna Mallol   https://orcid.org/0000-0001-7366-0980 
Marc Elosua-Bayes   https://orcid.org/0000-0001-5315-815X 
Patricia Lorden   https://orcid.org/0000-0003-3400-2576 
Filippo Zambelli http://orcid.org/0000-0001-7275-2947 
Holger Heyn http://orcid.org/0000-0002-3276-1889 
Rita Vassena http://orcid.org/0000-0002-0846-0365 
Bernhard Payer   https://orcid.org/0000-0002-4694-2082 

R E FE R E N C E S
Almansa-Ordonez, A., Bellido, R., Vassena, R., Barragan, M., & Zambelli, F. 

(2020). Oxidative Stress in reproduction: A mitochondrial perspec-
tive. Biology, 9(9), 269. https://doi.org/10.3390/biolo​gy909​0269

Blazquez, A., Guillén, J. J., Colomé, C., Coll, O., Vassena, R., & Vernaeve, 
V. (2014). Empty follicle syndrome prevalence and management in 
oocyte donors. Human Reproduction, 29, 2221–2227.

Blighe, K., Rana, S., & Lewis, M. (2019). EnhancedVolcano: Publication-
ready volcano plots with enhanced colouring and labeling. R package 
version 1. https://github.com/kevin​bligh​e/Enhan​cedVo​lcano.

Brower, M., Wang, E., Hill, D., Surrey, M., Danzer, H., & Pisarska, M. D. 
(2013). The effect of low body mass index (BMI) on ooctye qual-
ity in IVF cycles. Fertility and Sterility, 100(3), S494. https://doi.
org/10.1016/j.fertn​stert.2013.07.355

Burkhardt, S., Borsos, M., Szydlowska, A., Godwin, J., Williams, S. A., 
Cohen, P. E., Hirota, T., Saitou, M., & Tachibana-Konwalski, K. 
(2016). Chromosome cohesion established by Rec8-cohesin in fetal 
oocytes is maintained without detectable turnover in oocytes ar-
rested for months in mice. Current Biology, 26, 678–685.

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). 
Integrating single-cell transcriptomic data across different condi-
tions, technologies, and species. Nature Biotechnology, 36, 411–420.

Chamani, I. J., & Keefe, D. L. (2019). Epigenetics and female reproductive 
aging. Frontiers in Endocrinology, 10, 473.

Chen, H., & Boutros, P. C. (2011). VennDiagram: A package for the gen-
eration of highly-customizable Venn and Euler diagrams in R. BMC 
Bioinformatics, 12(35), https://doi.org/10.1186/1471-2105-12-35

Clarke, H. J. (2018). Growth and meiotic maturation of mammalian oo-
cytes: An overview. In M. K. Skinner (Ed.), Encyclopedia of reproduc-
tion (2nd ed., pp. 144–152). Academic Press.

De La Fuente, R. (2018). Chromatin modifications during mammalian 
oocyte growth and meiotic maturation. In M. K. Skinner (Ed.), 
Encyclopedia of reproduction (2nd ed., pp. 183–189). Academic 
Press.

De La Fuente, R., & Eppig, J. J. (2001). Transcriptional activity of the 
mouse oocyte genome: Companion granulosa cells modulate tran-
scription and chromatin remodeling. Developmental Biology, 229, 
224–236.

del Llano, E., Masek, T., Gahurova, L., Pospisek, M., Koncicka, M., Jindrova, 
A., Jansova, D., Iyyappan, R., Roucova, K., Bruce, A. W., Kubelka, 
M., & Susor, A. (2020). Age-related differences in the translational 
landscape of mammalian oocytes. Aging Cell, 19, e13231, https://
doi.org/10.1111/acel.13231

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., 
Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast 
universal RNA-seq aligner. Bioinformatics, 29, 15–21.

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., 
Slichter, C. K., Miller, H. W., Juliana McElrath, M., Prlic, M., Linsley, 
P. S., & Gottardo, R. (2015). MAST: A flexible statistical framework 
for assessing transcriptional changes and characterizing heteroge-
neity in single-cell RNA sequencing data. Genome Biology, 16(278). 
https://doi.org/10.1186/s1305​9-015-0844-5

Fox, C. A., Sheets, M. D., & Wickens, M. P. (1989). Poly(A) addition 
during maturation of frog oocytes: Distinct nuclear and cytoplas-
mic activities and regulation by the sequence UUUUUAU. Genes & 
Development, 3, 2151–2162.

Fragouli, E., Bianchi, V., Patrizio, P., Obradors, A., Huang, Z., Borini, 
A., Delhanty, J. D. A., & Wells, D. (2010). Transcriptomic profil-
ing of human oocytes: Association of meiotic aneuploidy and al-
tered oocyte gene expression. Molecular Human Reproduction, 16, 
570–582.

Grøndahl, M. L., Yding Andersen, C., Bogstad, J., Nielsen, F. C., Meinertz, 
H., & Borup, R. (2010). Gene expression profiles of single human ma-
ture oocytes in relation to age. Human Reproduction, 25, 957–968.

Gruhn, J. R., Zielinska, A. P., Shukla, V., Blanshard, R., Capalbo, A., 
Cimadomo, D., Nikiforov, D., Chan, A.-C.-H., Newnham, L. J., Vogel, 
I., Scarica, C., Krapchev, M., Taylor, D., Kristensen, S. G., Cheng, J., 
Ernst, E., Bjørn, A.-M.-B., Colmorn, L. B., Blayney, M., … Hoffmann, 
E. R. (2019). Chromosome errors in human eggs shape natural fer-
tility over reproductive life span. Science, 365, 1466–1469.

Guillaumet-Adkins, A., Rodríguez-Esteban, G., Mereu, E., Mendez-Lago, 
M., Jaitin, D. A., Villanueva, A., Vidal, A., Martinez-Marti, A., Felip, 
E., Vivancos, A., Keren-Shaul, H., Heath, S., Gut, M., Amit, I., Gut, I., 
& Heyn, H. (2017). Single-cell transcriptome conservation in cryo-
preserved cells and tissues. Genome Biology, 18, 45.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158802
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158802
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158802
https://marcelosuabayes.shinyapps.io/shiny_smartseq2/
https://marcelosuabayes.shinyapps.io/shiny_smartseq2/
http://orcid.org/0000-0001-6190-0377
http://orcid.org/0000-0001-8859-6643
https://orcid.org/0000-0002-0083-9901
https://orcid.org/0000-0002-0083-9901
https://orcid.org/0000-0001-7366-0980
https://orcid.org/0000-0001-7366-0980
https://orcid.org/0000-0001-5315-815X
https://orcid.org/0000-0001-5315-815X
https://orcid.org/0000-0003-3400-2576
https://orcid.org/0000-0003-3400-2576
http://orcid.org/0000-0001-7275-2947
http://orcid.org/0000-0002-3276-1889
http://orcid.org/0000-0002-0846-0365
https://orcid.org/0000-0002-4694-2082
https://orcid.org/0000-0002-4694-2082
https://doi.org/10.3390/biology9090269
https://github.com/kevinblighe/EnhancedVolcano
https://doi.org/10.1016/j.fertnstert.2013.07.355
https://doi.org/10.1016/j.fertnstert.2013.07.355
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.1111/acel.13231
https://doi.org/10.1111/acel.13231
https://doi.org/10.1186/s13059-015-0844-5


    |  17 of 18LLONCH et al.

Hafemeister, C., & Satija, R. (2019). Normalization and variance stabiliza-
tion of single-cell RNA-seq data using regularized negative binomial 
regression. Genome Biology, 20, 296.

Hendrickson, P. G., Doráis, J. A., Grow, E. J., Whiddon, J. L., Lim, J.-W., 
Wike, C. L., Weaver, B. D., Pflueger, C., Emery, B. R., Wilcox, A. L., 
Nix, D. A., Peterson, C. M., Tapscott, S. J., Carrell, D. T., & Cairns, B. 
R. (2017). Conserved roles of mouse DUX and human DUX4 in acti-
vating cleavage-stage genes and MERVL/HERVL retrotransposons. 
Nature Genetics, 49, 925–934.

Howles, C. M., Kim, C.-H., & Elder, K. (2006). Treatment strategies 
in assisted reproduction for women of advanced maternal age. 
International Surgery, 91, S37–54.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring reg-
ulatory networks from expression data using tree-based methods. PLoS 
One, 5(9), e12776. https://doi.org/10.1371/journ​al.pone.0012776

Labrecque, R., & Sirard, M.-A. (2014). The study of mammalian oocyte 
competence by transcriptome analysis: Progress and challenges. 
Molecular Human Reproduction, 20(2), 103–116. https://doi.
org/10.1093/moleh​r/gat082

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., 
Chen, X., Taipale, J., Hughes, T. R., & Weirauch, M. T. (2018). The 
human transcription factors. Cell, 175, 598–599.

Li, J., Lu, M., Zhang, P., Hou, E., Li, T., Liu, X., Xu, X., Wang, Z., Fan, Y., 
Zhen, X., Li, R., Liu, P., Yu, Y., Hang, J., & Qiao, J. (2020). Aberrant 
spliceosome expression and altered alternative splicing events cor-
relate with maturation deficiency in human oocytes. Cell Cycle, 19, 
2182–2194.

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., 
Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. 
(2018). Oxidative stress, aging, and diseases. Clinical Interventions 
in Aging, 13, 757.

Lim, J., Lee, M., Son, A., Chang, H., & Kim, V. N. (2016). mTAIL-seq reveals 
dynamic poly(A) tail regulation in oocyte-to-embryo development. 
Genes & Development, 30, 1671–1682.

Lim, J., & Luderer, U. (2011). Oxidative damage increases and antioxidant 
gene expression decreases with aging in the mouse ovary. Biology 
of Reproduction, 84, 775–782.

Lu, X., Ng, H.-H., & Bubulya, P. A. (2014). The role of SON in splicing, 
development, and disease. Wiley Interdisciplinary Reviews: RNA, 5, 
637–646.

Ma, J., Zeng, F., Schultz, R. M., & Tseng, H. (2006). Basonuclin: A novel 
mammalian maternal-effect gene. Development, 133, 2053–2062.

Machtinger, R., Combelles, C. M. H., Missmer, S. A., Correia, K. F., Fox, J. 
H., & Racowsky, C. (2012). The association between severe obesity 
and characteristics of failed fertilized oocytes. Human Reproduction, 
27, 3198–3207.

Matthews, T. J., & Hamilton, B. E. (2009). Delayed childbearing: More 
women are having their first child later in life. NCHS Data Brief, 1–8.

Micallef, L., & Rodgers, P. (2014). eulerAPE: Drawing area-proportional 
3-Venn diagrams using ellipses. PLoS One, 9, e101717.

Nagaoka, S. I., Hassold, T. J., & Hunt, P. A. (2012). Human aneuploidy: 
Mechanisms and new insights into an age-old problem. Nature 
Reviews Genetics, 13, 493–504.

Nakagawa, S., & FitzHarris, G. (2017). Intrinsically defective microtubule 
dynamics contribute to age-related chromosome segregation er-
rors in mouse oocyte meiosis-I. Current Biology, 27, 1040–1047.

Namgoong, S., & Kim, N.-H. (2018). Meiotic spindle formation in mamma-
lian oocytes: Implications for human infertility. Biology of Reproduction, 
98, 153–161.

Olivennes, F., Fanchin, R., Bouchard, P., Taieb, J., & Frydman, R. (1996). 
Triggering of ovulation by a gonadotropin-releasing hormone 
(GnRH) agonist in patients pretreated with a GnRH antagonist. 
Fertility and Sterility, 66, 151–153.

Pan, H., Ma, P., Zhu, W., & Schultz, R. M. (2008). Age-associated increase 
in aneuploidy and changes in gene expression in mouse eggs. 
Developmental Biology, 316, 397–407.

Papasaikas, P., Tejedor, J. R., Vigevani, L., & Valcárcel, J. (2015). Functional 
splicing network reveals extensive regulatory potential of the core 
spliceosomal machinery. Molecular Cell, 57, 7–22.

Picelli, S., Björklund, Å. K., Faridani, O. R., Sagasser, S., Winberg, G., & 
Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcrip-
tome profiling in single cells. Nature Methods, 10, 1096–1098.

Prochazkova, B., Komrskova, P., & Kubelka, M. (2018). CPEB2 is neces-
sary for proper porcine meiotic maturation and embryonic devel-
opment. International Journal of Molecular Sciences, 19(10), 3138. 
https://doi.org/10.3390/ijms1​9103138

Reyes, J. M., Silva, E., Chitwood, J. L., Schoolcraft, W. B., Krisher, R. L., 
& Ross, P. J. (2017). Differing molecular response of young and ad-
vanced maternal age human oocytes to IVM. Human Reproduction, 
32(11), 2199–2208. https://doi.org/10.1093/humre​p/dex284

Romar, R., De Santis, T., Papillier, P., Perreau, C., Thélie, A., Dell'Aquila, M. 
E., Mermillod, P., & Dalbiès-Tran, R. (2011). Expression of maternal 
transcripts during bovine oocyte in vitro maturation is affected by 
donor age. Reproduction in Domestic Animals, 46, e23–e30.

Saskova, A., Solc, P., Baran, V., Kubelka, M., Schultz, R. M., & Motlik, J. 
(2008). Aurora kinase A controls meiosis I progression in mouse oo-
cytes. Cell Cycle, 7, 2368–2376.

Sha Q.-Q., Yu J.-L., Guo J.-X., Dai X.-X., Jiang J.-C., Zhang Y.-L., Yu C., 
Ji S.-Y., Jiang Y., Zhang S.-Y., Shen L., Ou X.-H., & Fan H.-Y. (2018). 
CNOT 6L couples the selective degradation of maternal transcripts 
to meiotic cell cycle progression in mouse oocyte. The EMBO 
Journal, 37(24). http://dx.doi.org/10.15252/​embj.20189​9333

Shah, D. K., Missmer, S. A., Berry, K. F., Racowsky, C., & Ginsburg, E. S. 
(2011). Effect of obesity on oocyte and embryo quality in women 
undergoing in vitro fertilization. Obstetrics and Gynecology, 118, 
63–70.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., 
Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A soft-
ware environment for integrated models of biomolecular interac-
tion networks. Genome Research, 13, 2498–2504.

Shirai, Y.-T., Suzuki, T., Morita, M., Takahashi, A., & Yamamoto, T. (2014). 
Multifunctional roles of the mammalian CCR4-NOT complex in 
physiological phenomena. Frontiers in Genetics, 5, 286.

Smoak, E. M., Stein, P., Schultz, R. M., Lampson, M. A., & Black, B. E. 
(2016). Long-term retention of CENP-A nucleosomes in mammalian 
oocytes underpins transgenerational inheritance of centromere 
identity. Current Biology, 26, 1110–1116.

Solc P., Baran V., Mayer A., Bohmova T., Panenkova-Havlova G., Saskova 
A., Schultz R. M., Motlik J. (2012). Aurora Kinase A Drives MTOC 
Biogenesis but Does Not Trigger Resumption of Meiosis in Mouse 
Oocytes Matured In Vivo1. Biology of Reproduction, 87, (4), 1–12. 
http://dx.doi.org/10.1095/biolr​eprod.112.101014.

Steuerwald, N. M., Bermúdez, M. G., Wells, D., Munné, S., & Cohen, J. 
(2007). Maternal age-related differential global expression profiles 
observed in human oocytes. Reproductive BioMedicine Online, 14(6), 
700–708. https://doi.org/10.1016/S1472​-6483(10)60671​-2

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, 
W. M. 3rd, Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. (2019). 
Comprehensive integration of single-cell data. Cell, 177, 1888–
1902.e21.

Su, Y.-Q., Sugiura, K., Woo, Y., Wigglesworth, K., Kamdar, S., Affourtit, 
J., & Eppig, J. J. (2007). Selective degradation of transcripts during 
meiotic maturation of mouse oocytes. Developmental Biology, 302, 
104–117.

Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H., & Bartel, D. P. 
(2014). Poly(A)-tail profiling reveals an embryonic switch in transla-
tional control. Nature, 508, 66–71.

Sun, S., Liu, J., Zhao, M., Han, Y., Chen, P., Mo, Q., Wang, B., Chen, G., 
Fang, Y., Tian, Y., Zhou, J., Ma, D., Gao, Q., & Wu, P. (2017). Loss of 
the novel mitochondrial protein FAM210B promotes metastasis via 
PDK4-dependent metabolic reprogramming. Cell Death & Disease, 
8, e2870.

https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1093/molehr/gat082
https://doi.org/10.1093/molehr/gat082
https://doi.org/10.3390/ijms19103138
https://doi.org/10.1093/humrep/dex284
http://dx.doi.org/10.15252/embj.201899333
http://dx.doi.org/10.1095/biolreprod.112.101014
https://doi.org/10.1016/S1472-6483(10)60671-2


18 of 18  |     LLONCH et al.

Susor, A., & Kubelka, M. (2017). Translational regulation in the mamma-
lian oocyte. Results and Problems in Cell Differentiation, 63, 257–295.

Svensson, V., Vento-Tormo, R., & Teichmann, S. A. (2018). Exponential 
scaling of single-cell RNA-seq in the past decade. Nature Protocols, 
13, 599–604.

Swartz, S. Z., McKay, L. S., Su, K.-C., Bury, L., Padeganeh, A., Maddox, 
P. S., Knouse, K. A., & Cheeseman, I. M. (2019). Quiescent cells 
actively replenish CENP-A nucleosomes to maintain centromere 
identity and proliferative potential. Developmental Cell, 51(1), 35–
48.e7. http://dx.doi.org/10.1016/j.devcel.2019.07.016

Tachibana-Konwalski, K., Godwin, J., van der Weyden, L., Champion, L., 
Kudo, N. R., Adams, D. J., & Nasmyth, K. (2010). Rec8-containing 
cohesin maintains bivalents without turnover during the growing 
phase of mouse oocytes. Genes & Development, 24, 2505–2516.

Takei, N., Takada, Y., Kawamura, S., Sato, K., Saitoh, A., Bormann, J., 
Yuen, W. S., Carroll, J., & Kotani, T. (2020). Changes in subcellular 
structures and states of pumilio 1 regulate the translation of tar-
get Mad2 and cyclin B1 mRNAs. Journal of Cell Science, 133(23), 
jcs249128. http://dx.doi.org/10.1242/jcs.249128

Vieux, K.-F., & Clarke, H. J. (2018). CNOT6 regulates a novel pattern of 
mRNA deadenylation during oocyte meiotic maturation. Scientific 
Reports, 8, 6812.

Virant-Klun, I., Leicht, S., Hughes, C., & Krijgsveld, J. (2016). Identification 
of maturation-specific proteins by single-cell proteomics of human 
oocytes. Molecular & Cellular Proteomics: MCP, 15, 2616–2627.

Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., Liu, Z., Min, Z., Hu, H., 
Jing, Y., He, X., Sun, L., Ma, L., Esteban, C. R., Chan, P., Qiao, J., Zhou, 
Q., Izpisua Belmonte, J. C., Qu, J., … Liu, G.-H. (2020). Single-cell tran-
scriptomic atlas of primate ovarian aging. Cell, 180, 585–600.e19.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.
Wilkinson, L. (2012). Exact and approximate area-proportional circular 

Venn and Euler diagrams. IEEE Transactions on Visualization and 
Computer Graphics, 18, 321–331.

Yang, F., Wang, W., Cetinbas, M., Sadreyev, R. I., & Blower, M. D. (2020). 
Genome-wide analysis identifies -acting elements regulating 
mRNA polyadenylation and translation during vertebrate oocyte 
maturation. RNA, 26, 324–344.

Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An R 
package for comparing biological themes among gene clusters. 
OMICS: A Journal of Integrative Biology, 16(5), 284–287. https://doi.
org/10.1089/omi.2011.0118

Zhang, D., Liu, Y., Zhang, Z., Lv, P., Liu, Y., Li, J., Wu, Y., Zhang, R., Huang, 
Y., Xu, G., Qian, Y., Qian, Y., Chen, S., Xu, C., Shen, J., Zhu, L., Chen, 
K., Zhu, B., Ye, X., … Huang, H. (2018). Basonuclin 1 deficiency is a 
cause of primary ovarian insufficiency. Human Molecular Genetics, 
27, 3787–3800.

Zhang, J.-J., Liu, X., Chen, L., Zhang, S., Zhang, X., Hao, C., & Miao, Y.-L. 
(2020). Advanced maternal age alters expression of maternal ef-
fect genes that are essential for human oocyte quality. Aging, 12, 
3950–3961.

Zhang, S., Wang, J., & Tseng, H. (2007). Basonuclin regulates a subset of 
ribosomal RNA genes in HaCaT cells. PLoS One, 2, e902.

Zielinska, A. P., Bellou, E., Sharma, N., Frombach, A.-S., Seres, K. B., Gruhn, 
J. R., Blayney, M., Eckel, H., Moltrecht, R., Elder, K., Hoffmann, E. R., 
& Schuh, M. (2019). Meiotic kinetochores fragment into multiple 
lobes upon cohesin loss in aging eggs. Current Biology, 29, 3749–
3765.e7.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Llonch S, Barragán M, Nieto P, et al. 
Single human oocyte transcriptome analysis reveals distinct 
maturation stage-dependent pathways impacted by age. Aging 
Cell. 2021;20:e13360. https://doi.org/10.1111/acel.13360

http://dx.doi.org/10.1016/j.devcel.2019.07.016
http://dx.doi.org/10.1242/jcs.249128
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1111/acel.13360

