Skip to main content
. 2021 May 5;9(5):e21347. doi: 10.2196/21347

Table 8.

Mortality model results for six algorithms using different performance metrics.

Method and algorithm Training set accuracy, mean (SD) Test set accuracy (95% CI) Test set sensitivity (95% CI) Test set specificity (95% CI) Test set NPVa (95% CI) Test set PPVb (95% CI)
Baseline approach

LRc 0.8826 (0.0058) 0.8806 (0.874-0.890) 0.0331 (0.033-0.034) 0.9979 (0.991-1.009) 0.8817 (0.875-0.891) 0.6923 (0.688-0.700)

LDAd 0.8817 (0.0058) 0.8788 (0.873-0.888) 0.0523 (0.052-0.053) 0.9932 (0.986-1.004) 0.8833 (0.877-0.893) 0.5182 (0.515-0.524)

RFe 0.8846 (0.0061) 0.8854 (0.879-0.895) 0.1127 (0.112-0.114) 0.9923 (0.985-1.003) 0.8898 (0.884-0.899) 0.6710 (0.666-0.679)

kNNf 0.8765 (0.0054) 0.8760 (0.870-0.886) 0.0854 (0.085-0.087) 0.9855 (0.978-0.996) 0.8861 (0.880-0.896) 0.4496 (0.447-0.455)

SVMg 0.8837 (0.0058) 0.8808 (0.875-0.890) 0.0272 (0.027-0.028) 0.9989 (0.992-1.010) 0.8811 (0.875-0.891) 0.7872 (0.782-0.796)

XGBh 0.8842 (0.0061) 0.8815 (0.875-0.891) 0.1429 (0.142-0.145) 0.9837 (0.977-0.994) 0.8923 (0.886-0.902) 0.5495 (0.546-0.556)
Quantiles approach

LR 0.8838 (0.0063) 0.8815 (0.875-0.891) 0.0545 (0.054-0.055) 0.9960 (0.989-1.007) 0.8838 (0.878-0.893) 0.6548 (0.650-0.662)

LDA 0.8821 (0.0067) 0.8814 (0.875-0.891) 0.0935 (0.093-0.095) 0.9905 (0.983-1.001) 0.8875 (0.881-0.897) 0.5772 (0.573-0.584)

RF 0.8859 (0.0064) 0.8861 (0.880-0.896) 0.0891 (0.089-0.090) 0.9964 (0.989-1.007) 0.8876 (0.881-0.897) 0.7756 (0.770-0.784)

KNN 0.8802 (0.0060) 0.8764 (0.870-0.886) 0.0589 (0.059-0.060) 0.9895 (0.982-1.000) 0.8836 (0.877-0.893) 0.4395 (0.437-0.445)

SVM 0.8851 (0.0058) 0.8820 (0.876-0.892) 0.0449 (0.045-0.046) 0.9816 (0.991-1.009) 0.8829 (0.877-0.893) 0.7439 (0.739-0.752)

XGB 0.8844 (0.0061) 0.8822 (0.875-0.891) 0.1643 (0.164-0.167) 0.9816 (0.975-0.992) 0.8945 (0.888-0.904) 0.5533 (0.550-0.560)

aNPV: negative predictive value.

bPPV: positive predictive value.

cLR: logistic regression.

dLDA: linear discriminant analysis.

eRF: random forest.

fkNN: k-nearest neighbor.

gSVM: support vector machine.

hXGB: extreme gradient boosting.