Skip to main content
. 2021 May 5;9(5):e21347. doi: 10.2196/21347

Table 9.

Mortality model performance based on area under the receiver operating characteristic curve (AUROC).

Method and algorithm Training set AUROC, mean (SD) Test set AUROC
Baseline approach


LRa 0.702047 (0.015652) 0.69313

LDAb 0.701731 (0.016077) 0.69247

RFc 0.764875 (0.009214) 0.76725

kNNd 0.629262 (0.008944) 0.63173

SVMe 0.653269 (0.011730) 0.66800

XGBf 0.771187 (0.012094) 0.76971
Quantiles approach


LR 0.727331 (0.014217) 0.72810

LDA 0.725909 (0.014758) 0.72622

RF 0.783696 (0.010503) 0.78292

KNN 0.631649 (0.010416) 0.64087

SVM 0.719253 (0.008940) 0.72333

XGB 0.788908 (0.010665) 0.79036

aLR: logistic regression.

bLDA: linear discriminant analysis.

cRF: random forest.

dkNN: k-nearest neighbor.

eSVM: support vector machine.

fXGB: extreme gradient boosting.