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People infected with severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) shed the virus and its genetic material via
their sputum, nasopharyngeal secretions, saliva, urine and feces
(Cevik et al. 2021). Hence, public health and water quality sci-
entists throughout the world have been monitoring untreated
and/or primary treated wastewater and sludge for the surveil-
lance of SARS-CoV-2 in communities (https://arcg.is/1aummW).
Numerous reviews have discussed the possibility of SARS-CoV-
2 transmission to humans from exposure to wastewater or
waters receiving untreated or inadequately treated wastewa-
ter based on limited empirical evidence (Adelodun et al. 2020;
Bilal et al. 2020; Olusola-Makinde and Reuben 2020; Elsamadony
et al. 2021; Khorram-Manesh, Goniewicz and Burkle 2021; Shut-
ler et al. 2021). Multiple transmission routes have been sug-
gested, including waterborne transmission, airborne transmis-
sion, contact with contaminated surfaces (fomites) and subse-
quent touching of mucous membranes such as the mouth, nose,
or eyes. Herein, we briefly summarize the empirical evidence
pertaining to the transmission of SARS-CoV-2 associated with
wastewater exposure.

SARS-CoV-2 RNA has been detected at high concentrations
in feces of COVID-19 patients (108 genome copies (GC)/g) and
COVID-19 patients are reported to shed RNA in their feces
>30 days (Li, Wang and Lv 2020). In contrast, infectious SARS-
CoV-2 is typically only isolated from nasopharyngeal specimens
during the first nine days of infection (Cevik et al. 2021). Stud-
ies have reported the isolation of infectious SARS-CoV-2 from
the feces and urine of COVID-19 patients (Sun et al. 2020; Xiao
et al. 2020); however, this is rare. For example, Wang et al. (2020)
screened 153 fecal samples and isolated infectious SARS-CoV-
2 from only four specimens with ‘high copy numbers’. Wölfel
et al. (2020) failed to detect infectious SARS-CoV-2 in 13 sam-
ples collected from four patients over six days. Another study
found that infectious SARS-CoV-2 was rapidly (i.e. 5-fold within
1 h and loss of 80% viral infectivity after 24 h) inactivated by
simulated colonic fluid (Zang et al. 2020). Similarly, during longi-
tudinal studies of monkeys inoculated with SARS-CoV-2, infec-
tious SARS-CoV-2 was isolated from feces two to seven days
post-infection from one of six monkeys at concentrations four
orders of magnitude lower than RNA (Woolsey et al. 2020). Col-
lectively, the available data indicate that for each shedding route,
infectious SARS-CoV-2 is shed for shorter durations and at lower
prevalence and concentration than SARS-CoV-2 RNA.

SARS-CoV-2 RNA has been commonly detected at concen-
trations ranging from 20 to more than 106 GC/L in untreated
wastewater and >108 GC/L in primary sludge (Ahmed et al.
2020a; Mlejnkova et al. 2020; Peccia et al. 2020). SARS-CoV-2
RNA has been detected in 25% of final treated effluent samples
at concentrations ranging from 1.3 to approximately 105 GC/L
(Ampuero et al. 2020; Balboa et al. 2021; Carrillo-Reyes et al. 2021;
Rimoldi et al. 2020; Saguti et al. 2021; Kumar et al. 2021a; Sherchan
et al. 2020; Westhaus et al. 2021).

SARS-CoV-2 RNA has also been detected in environmental
waters. For surface waters receiving untreated wastewater in
areas with poor sanitation, RNA has been detected in 100% of
samples (n = 18) at concentrations over 106 GC/L (Guerrero-
Latorre et al. 2020; Iglesias et al. 2020). Whereas for surface waters

receiving treated wastewater, SARS-CoV-2 RNA has been collec-
tively detected in 3/7 (43%) samples, but RT-qPCR quantification
cycle (Cq) values or concentrations were not reported (Haramoto
et al. 2020; Rimoldi et al. 2020). However, attempts to detect infec-
tious SARS-CoV-2 from six untreated wastewater samples, four
treated wastewater and six river water samples in Italy were not
successful (Rimoldi et al. 2020). Westhaus et al. (2021) could not
detect infectious SARS-CoV-2 in untreated and treated wastewa-
ter in Germany. Additionally, Desdouits et al. (2021) did not detect
SARS-CoV-2 RNA in shellfish in 187 samples across 37 sites along
the French coast between April and August 2020.

Inactivation and decay studies demonstrated that SARS-
CoV-2 RNA persisted longer (T90 = 18–25 days; Ahmed et al.
2020b) than infectious viruses (T90 = 1.2–1.9 days; Bivins et al.
2020; de Oliveira et al. 2021; Sala-Comorera et al. 2021) when
seeded in wastewater and surface water and seawater. This
persistence differential leads to a decreasing ratio of infectious
virus/RNA GC over time. For instance, during a 7-day period in
seeded wastewater, the median tissue culture infectious dose
(TCID50)/GC ratio decreased from 1 to 100 to less than 1 to
10,000 (Bivins et al. 2020). A recent preprint suggested that eval-
uating total RNA overestimated the number of intact viruses
within wastewaters (Wurtzer et al. 2021). Enveloped viruses are
considered less stable in the environment than non-enveloped
viruses, such as human enteric viruses (e.g. norovirus), typi-
cally transmitted via the fecal-oral route and associated with
waterborne transmission (Casanova and Weaver 2015). These
observations align with recent opinions from water microbi-
ologists and wastewater professionals (Maal-Bared et al. 2020)
that wastewater does not appear to be a significant trans-
mission route for SARS-CoV-2. Furthermore, presence of RNA
in a sample is insufficient to infer the magnitude of the risk
of waterborne transmission via wastewater or environmental
waters.

Despite caveats associated with using RNA concentration
for risk assessment, several studies have conducted quantita-
tive microbial risk assessment (QMRA) for SARS-CoV-2 transmis-
sion from exposure to wastewater via oral or inhalation routes
(Kumar et al. 2021b; Yang et al. 2020; Dada and Gyawali 2021;
Gholipour et al. 2021; Shutler et al. 2021; Zaneti et al. 2021).

QMRA models are inherently limited by assumptions and
uncertainties, including SARS-CoV-2 shedding rates and dura-
tions, the persistence of infectious SARS-CoV-2 in wastewater
and wastewater aerosols, dilution rates in wastewater collec-
tion systems and ratios of RNA to infectious viruses (the mod-
els assumed ranges from 1000 to 1 and 29 to 1). Furthermore,
each model uses a SARS-CoV-1 dose-response model (Watanabe
et al. 2010) and some apply this inhalation dose-response model
to other routes of exposure such as oral ingestion (Zaneti et al.
2021). There is also uncertainty surrounding morbidity ratios
among those infected. While, multi-pathway risk assessments
have not been conducted for wastewater exposures, QMRAs of
multiple exposure routes among health care workers indicated
the dominance of aerosol exposures as risk drivers (Mizukoshi
et al. 2021).

Several risk analyses have also raised concerns regarding
wastewater-impacted surface waters (Kumar et al. 2021b; Yang
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et al. 2020). Shutler et al. (2021), conducted a relative risk anal-
ysis of countrywide surface waters, calculating concentrations
in receiving rivers after a sewage spill, highlighting situations
where high infection rates among the wastewater-producing
population and low dilution rates in the environment could
result in ‘infectious doses’ of SARS-CoV-2 RNA >40 GC/100 mL in
river water, which is reflective of sewage impacted waterways,
but does not account for RNA to infectious virus ratios. Kumar
et al. (2021b) estimated that per event infection risks from inci-
dental ingestion of recreational water can range from 10−5.84 to
10−2.61 for swimming and fishing, respectively. Yang et al. (2020)
combined these approaches and estimated per-exposure infec-
tion risks ranging from 10−12 to 10−10 across various inhalation
scenarios. Across the three analyses, improved understanding of
virus fate, transport and viability, and relevant exposure routes
were highlighted as limitations.

Given the frequent detection of SARS-CoV-2 RNA in wastew-
ater combined with the rare observations of infectious SARS-
CoV-2 in feces/urine, the transmission of COVID-19 via wastew-
ater is possible. However, the limited persistence of infectious
SARS-CoV-2 in wastewater, and the well-established inhala-
tion exposure route suggests the most probable wastewater-
associated transmission scenario is fecal aerosols generated
from newly-produced wastewater escaping to air via defec-
tive building plumbing as implicated previously for SARS-
CoV-1 (McKinney, Gong and Lewis 2006). However, based on
the current evidence, we assert that fecal-oral transmission
of SARS-CoV-2 associated with wastewater is likely to be
low compared to well-documented person-to-person trans-
mission via respiratory droplets/aerosols. This assertion is
largely premised on the failure to isolate infectious SARS-
CoV-2 from wastewater or environmental waters in two peer-
reviewed studies totalling 19 samples (Rimoldi et al. 2020;
Westhaus et al. 2021). Furthermore, the low ratios of infec-
tious SARS-CoV-2 to RNA in clinical samples, the limited per-
sistence of infectious SARS-CoV-2 in environmental waters,
as observed during three studies, and the efficacy of most
WWTPs in virus reduction act as barriers to substantially reduce
risks. SARS-CoV-2 infection risks from untreated and treated
wastewaters and wastewater-impacted environmental waters
are likely lower than other fecally-excreted pathogens such as
norovirus and hepatitis A virus. Existing water quality regu-
lations, biosafety protocols and procedures, which have been
designed for waterborne pathogens, along with masks as recom-
mended by the CDC (https://www.cdc.gov/coronavirus/2019-n
cov/lab/lab-biosafety-guidelines.html), are sufficient to ensure
the safety of the public and wastewater professionals (Brisolara
et al. 2021).

Definitive conclusions about risk from wastewater exposures
are constrained by the limited sample size of the research per-
formed to date. Negative results, which are critical to estab-
lish upper bounds of risk (e.g. 0 in 20 is not equivalent to 0
in 1000), are less likely to be published due to bias against
such results (Anonymous 2020). Additional empirical observa-
tions of infectious SARS-CoV-2 in wastewater or environmen-
tal waters, including negative results if available, are needed.
Given the finite resources available for responding to the COVID-
19 pandemic, possible transmission routes must be exam-
ined, considering their probability of contributing to disease.
Researchers should continue to exercise caution and commu-
nicate the uncertainty and assumptions of their studies when
leveraging models based on limited empirical evidence partic-
ularly during a global pandemic when these results can be
misinterpreted.
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