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Abstract

Multi-domain data are widely leveraged in vision applications taking advantage of complementary 

information from different modalities, e.g., brain tumor segmentation from multi-parametric 

magnetic resonance imaging (MRI). However, due to possible data corruption and different 

imaging protocols, the availability of images for each domain could vary amongst multiple data 

sources in practice, which makes it challenging to build a universal model with a varied set of 

input data. To tackle this problem, we propose a general approach to complete the random missing 

domain(s) data in real applications. Specifically, we develop a novel multi-domain image 

completion method that utilizes a generative adversarial network (GAN) with a representational 

disentanglement scheme to extract shared content encoding and separate style encoding across 

multiple domains. We further illustrate that the learned representation in multi-domain image 

completion could be leveraged for high-level tasks, e.g., segmentation, by introducing a unified 

framework consisting of image completion and segmentation with a shared content encoder. The 

experiments demonstrate consistent performance improvement on three datasets for brain tumor 

segmentation, prostate segmentation, and facial expression image completion respectively.
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I. INTRODUCTION

MULTI-DOMAIN images are often required as inputs in various vision tasks because of the 

nature that different domains could provide complementary knowledge. For example, four 

medical imaging modalities, MRI with T1, T1-weighted, T2-weighted, FLAIR (FLuid-

Attenuated Inversion Recovery), are acquired as a standard protocol to accurately segment 

the tumor regions for each patient in the brain tumor segmentation task [1]. Different 

modalities provide distinct features to locate tumor boundaries from differential diagnosis 

perspectives. Additionally, when it comes to the natural image tasks, there are similar 

scenarios such as person re-identification across different cameras or times [2], [3]. Here, the 

medical images in different modalities or natural images with the person under varied 

appearances can be considered as different image domains, depicting the same underlying 

subject or scene from various aspects.

However, some image domains might be missing in practice. Especially when it comes to a 

large-scale multi-institute study, it is generally difficult or even infeasible to guarantee the 

availability of data in all domains for every data entry. For example, some patients might 

lack certain imaging scans due to different imaging protocols, data loss or image corruption. 

For these rare and valuable collected data, it is costly to just throw away the incomplete 

samples during training, and also infeasible to test with missing-domain inputs. Thus, in 

order to take the most advantage of such missing data, it becomes crucial to design an 

effective data completion algorithm to cope with this challenge. An intuitive approach is to 

impute the missing domain of one sample with the nearest neighbor from other samples 

whose corresponding domain image exists. But this might lack of semantic consistency 

among different domains of the input sample as shown in Fig. 2 since it only focuses on the 

pixel-level similarity compared with existing images. Another possible solution is to 

generate images and complete missing domains via image translation from existing domains 

using generative models, such as GAN models, as illustrated in Fig. 1.

In this work, we propose a general n-to-n image completion framework based on a 

Representational disentanglement scheme for Multi-domain Image Completion (ReMIC). 

Specifically, our contribution is fourfold: (1) We propose a novel GAN framework for a 

general and flexible n-to-n image generation with representational disentanglement, i.e., 

learning semantically shared representations cross domains (content code) and domain-

specific features (style code) for each input domain; (2) We demonstrate the learned content 

code could be utilized for the high-level task, i.e., developing a unified framework for jointly 

learning the image completion and segmentation based on shared content encoder; (3) We 

demonstrate the proposed n-to-n image generation model can effectively completes the 

missing domains given randomly distributed numbers (k-to-n, 1 ≤ k ≤ n) of visible domains 

in the input; (4) Experiments on three datasets illustrate that the proposed method 
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consistently achieves better performance than previous approaches in both multi-domain 

image completion and missing-domain segmentation.

II. RELATED WORK

A. Image-to-Image Translation

The recent success of GANs [4–16] in image-to-image translation provides a promising 

solution to deal with the challenge of missing image domains. CycleGAN [7] shows 

impressive performance in image-to-image translation via cycle-consistency between real 

and generated images. However, it mainly focuses on 1-to-1 mapping between two domains 

and assumes corresponding images in two domains strictly share the same representation in 

latent space. This is limited in multi-domain applications since n n − 1
2  CycleGAN models 

are required if there are n domains. Following this, StarGAN [11] proposes to use a mask 

vector in inputs to specify the desired target domain in multi-domain image generation. 

Meantime, RadialGAN [12] also deals with the multi-domain generation problem by 

assuming all the domains share the same latent space. Although these works make it 

possible to generate images in different target domains through 1-to-n mapping with 

multiple inference passes, the representation learning and image generation are always 

conditioned on the single input image as the only source domain. In order to take advantage 

of multiple available domains, CollaGAN [13] proposes a collaborative model to incorporate 

multiple domains for generating one missing domain. Similar to StarGAN, CollaGAN relies 

on the cycle-consistency to preserve the contents in the generated images, which is an 

indirect and implicit constraint for target domain images. Additionally, since the target 

domain is specified by an one-hot mask vector in input, CollaGAN is essentially doing n-

to-1 translation with a single output in an one-time inference. As illustrated in Fig. 1, our 

proposed model is a more general n-to-n image generation framework that can overcome 

aforementioned limitations.

B. Learning Disentangled Representations

Recently, learning disentangled representations is proposed to capture the full distribution of 

possible outputs by introducing a random style code [17–22], or to transfer information 

across domains for adaptation [23], [24], InfoGAN [17] and β-VAE [18] learn the 

disentangled representation in an unsupervised manner. In image translation, DRIT [20] 

disentangles content and attribute features by exchanging the features encoded from two 

domains respectively. The image consistency during translation is constrained by the code 

and image reconstruction. With a similar code exchange scheme, MUNIT [19] assumes a 

prior distribution on style code, which allows directly sampling style codes from the prior 

distribution to generate target domain images. However, both DRIT and MUNIT only deal 

with image translation between two domains, which requires to independently train n n − 1
2

separate translation models among n domains. While the recent work [24] also tackles multi-

domain image translation, it focuses more on learning cross-domain latent code for domain 

adaptation with less discussion about the domain-specific style code. Moreover, our 

proposed method handles a more challenging problem with random missing domains 

motivated by practical medical applications. Aiming at higher completion accuracy for the 
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segmentation task with missing domains, we further add reconstruction and segmentation 

constraints in our framework.

C. Medical Image Synthesis

Synthesizing medical images has attracted increasing interests in recent researches [14–16], 

[25–31]. The synthesized images are generated across multi-contrast MRI modalities or 

between MRI and computed tomography (CT) [32–34]. Other works [35–37] also discuss 

how to extract representations from multi-modalities especially for segmentation with 

missing imaging modalities. However, these studies mostly focus on how to fuse the features 

from multiple modalities but not from the perspective of representation disentanglement. 

Our model disentangles the shared content and separate style representations for a more 

general n-to-n multi-domain image completion task, and we further validate that the 

generation benefits the segmentation task.

III. METHOD

Images from different domains for the same sample present their exclusive features of the 

subject. Nonetheless, they also inherit some global content structures. For instance, in the 

parametric MRI for brain tumors, T2 and FLAIR MRI highlight the differences in tissues’ 

water relaxational properties, which will distinguish the tumor tissue from normal ones. 

Contrasted T1 MRI can examine the pathological intratumoral take-up of contrast agents so 

that the boundary between tumor core and the rest will be highlighted. However, the 

underlying anatomical structure of the brain is shared by all these modalities. With the 

availability of multiple domain data, it is meaningful to decompose the images into the 

shared content structure and their unique characteristics through learning. Therefore, we will 

be able to reconstruct the missing image during the testing by using the shared content 

feature (extracted from the available data domains) and a sampled style feature from the 

learned model. Without assuming a fixed set of missing domains during the training, the 

learned framework could flexibly handle one or more missing domains in a random set. In 

addition, we further enforce the accuracy of the extracted content structure by connecting it 

to the segmentation task. In such manner, the disentangled representations of multiple 

domain images (both the content and style) can help both the image completion and 

segmentation.

Suppose there are N domains: {χ1, χ2, ⋯, χN}. Let x1 ∈ χ1, x2 ∈ χ2, ⋯, xN ∈ χN be the 

images from N different domains respectively, which are grouped data describing the same 

subject x = {x1, ⋯, xN} as one sample. Assume the dataset contains M independent data 

samples in total. For each sample, we assume one or many of the N domain images might be 

randomly missing, i.e. the number and category of missing domains are both random. The 

goal of our first task is to complete all the missing domains for a random input sample.

To accomplish the completion of all missing domains from a random set of available 

domains, we assume the N domains share the latent representation of underlying structure. 

We name the shared latent representation as content code and meanwhile each domain also 

exclusively contains the domain-specific latent representation, i.e., style code, that is related 

to various characteristics or attributes in different domains. The missing domains can be 
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reconstructed from these two aspects of information through the learning of deep neural 

networks. Similar to the setting in MUNIT [19], we assume a prior distribution for style 

latent code as N(0, I) to capture the full distribution of possible styles in each domain. 

However, MUNIT trains separate content encoder for each domain and enforce the 

disentanglement via coupled cross-domain translation during training while our method 

employs a single content encoder to extract the anatomic representation shared across all the 

domains.

A. Unified Image Completion and Segmentation

As shown in Fig. 3, our model contains a unified content encoder Ec and domain-specific 

style encoders Ei
s (1 ≤ i ≤ N), where N is the total number of domains. Content encoder Ec 

extracts the shared content code c from all existing domains: Ec(x1, x2, ⋯, xN) = c. For the 

missing domains, we use zero padding in corresponding input channels. For each domain, a 

style encoder Ei
s learns the domain-specific style code si from the corresponding domain 

image xi (1 ≤ i ≤ N) respectively: Ei
s xi = si.

During the training, our model captures the shared content code c and separate style codes si 

(1 ≤ i ≤ N) through the disentanglement process (denoted as red and orange arrows 

respectively in Fig. 3) with a random set of input images (in green box). In Fig. 4, we 

visualize the extracted content codes (randomly selected 8 out of 256 channels) of one 

BraTS image sample. Various focuses (on different anatomical structures, e.g., tumor, brain, 

skull) are demonstrated by different channel-wise feature maps. Together with combined 

individual style code (sampling from a Gaussian distribution N 0, I , we only need to train 

one single ReMIC model to complete the multiple missing domains in the inputs.

In the image generation process (denoted as blue arrows in Fig. 3), our model samples style 

codes from a prior distribution and integrates with the content code to generate images in N 
domains through generators Gi (1 ≤ i ≤ N). The generator Gi for each domain generates 

images in the corresponding domain from the domain-shared content code and the domain-

specific style code: Gi c, si = xi.

Additionally, we extend the introduced image completion framework to a more practical 

scenario, i.e., tackling the missing data problem in image segmentation. Specifically, another 

branch of segmentation generator GS is added after content codes to generate the 

segmentation masks of the input images. Our underlying assumption is that the domain-

shared content codes contain essential image structure information for the segmentation 

task. By simultaneously optimizing the generation loss and segmentation Dice loss (detailed 

in Section III-B), the model could adaptively learn how to generate missing images to 

improve the segmentation performance. Please refer to the supplementary (Section 

Appendix I) for architecture details of content and style encoder, image generator, and 

segmentation model.
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B. Training Loss

In the training of GAN models, the setting of losses is of paramount importance to the final 

generation results. Our loss functions contain the cycle-consistency loss of images and latent 

codes, adversarial loss and reconstruction loss on the generated and input images.

1) Image Consistency Loss:: For each sample, the proposed model is able to extract a 

domain-shared content code and domain-specific style codes respectively from visible 

domains. Then by recombining the content and style codes, the domain generators are 

expected to recover the input images. The image consistency loss is defined to constrain the 

reconstructed images and real images as in the direction of “ Image → Code → Image” in 

Fig. 3.

ℒcyc
xi = Exi p xi Gi Ec x1, ⋯, xN , Ei

s xi − xi 1 (1)

where p(xi) is the data distribution in domain χi (1 ≤ i ≤ N). Here, we use ℒ1 loss to 

strengthen anatomical-structure related generation.

2) Latent Consistency Loss:: The latent consistency loss constrains the learning of 

both content and style codes before decoding and after encoding in the direction of “Code 

→ Image → Code”.

ℒcyc
c = Ec p c , si p si Ec G1 c, s1 , G2 c, s2 , ⋯, Gn c, sN − c 1 (2)

ℒcyc
si = Ec p c , si p si Ei

s Gi c, si − si 1 (3)

where p(si) is the prior distribution of style code: N 0, I , p(c) is given by c = Ec(x1, x2, ⋯, 

xN) and xi ~ p(xi) (1 ≤ i ≤ N), i.e., the content code is sampled by firstly sampling images 

from data distribution. Specifically, taking BraTS data as an example, style distribution p(si) 

contains various domain-specific characteristics in each domain, like varied image contrasts. 

Content distribution p(c) contains various anatomy structure related features among different 

brain subjects as shown in Fig. 4.

3) Adversarial Loss:: The adversarial learning between generators and discriminators 

forces the data distribution of the generated images to be close to that of the real images for 

each domain.

ℒadv
xi = Ec p c , si p si log 1 − Di Gi c, si + Exi p xi logDi xi (4)

where Di is the discriminator for domain i to distinguish the generated images xi and real 

images xi ∈ χi.

4) Reconstruction Loss:: In addition to the feature-level consistency mentioned above 

to constrain the relationship between the generated images and real images in different 

domains, we also constrain the pixel-level similarity between generated images and ground 
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truth images in the same domain during training stage, for accurately completing missing 

domains given visible images of the current subject or scene.

ℒrec
xi = Ec p c , si p si Gi c, si − xi 1 (5)

Please note that the image consistency loss in Eq. (1) denotes the encoding and decoding 

process for only the visible domains. The given input images in the visible domains are 

encoded as content codes and style codes, which are then directly decoded to recover the 

input images. The constraints between input images and recovered images are denoted here 

as image consistency loss. The image reconstruction loss in Eq. (5) denotes the image 

generation process for all the domains including the missing domains. In the image 

generation process, the content codes are encoded from given visible domains while the 

style codes are samples from prior distribution. Thus, this constraint between all the 

generated images and ground truth images in all the domains is denoted as image 

reconstruction loss. Without the reconstruction loss in Eq. (5), the whole image generation 

model is totally unsupervised learning.

5) Segmentation Loss:: In the n-to-n image translation, the model learns a 

complementary representation of multiple domains, which can further facilitate the high-

level tasks. For instance, extracted content code (containing the underlying anatomical 

structures) may benefit the segmentation of organs and lesions in medical image analysis, 

vice versa. Therefore, we train a multi-task network for both segmentation and generation. 

In the proposed framework, we construct a unified generation and segmentation model by 

adding a segmentation generator GS following the content code from the completed images 

as shown in Fig. 3. We utilize Dice loss [38], [39] for accurate segmentation from multiple 

domain images

ℒseg = 1 − 1
L l = 1

L
p2yp l yp l

pyp l 2 + pyp l 2 , (6)

where L is the total number of classes, p is the spatial position index in the image, y l  is the 

predicted segmentation probability map for class l from GS and y(l) is the ground truth 

segmentation mask for class l. The segmentation loss can be added into the total loss in Eq. 

7 for an end-to-end joint learning optionally.

6) Total Loss:: The encoders, generators, discriminators (and segmentor) are jointly 

trained to optimize the total objective as follows

min
Ec, Es, G

max
D

ℒ Ec, E1
s, ⋯, EN

s , G1, ⋯, GN, D1, ⋯, DN

=
i = 1

N
λcyc

x ℒcyc
xi + λcyc

s ℒcyc
si + λadvℒadv

xi + λrecℒrec
xi + λcyc

c ℒcyc
c +λsegℒseg

(7)
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where λadv, λcyc
x , λcyc

c , λcyc
s , λrec and λseg are hyper-parameters to balance the losses. Please 

note that the segmentation loss is included in the total training loss only when we train the 

unified generation and segmentation model for BraTS and ProstateX datasets.

IV. EXPERIMENTS

To validate the feasibility and generalization of the proposed model, we conduct experiments 

on two medical image datasets as well as a natural image dataset: BraTS, ProstateX, and 

RaFD. We firstly demonstrate the advantage of the proposed method in the n-to-n multi-

domain image completion task given a random set of visible domains. Moreover, we 

illustrate that the proposed model (a variation with two branches of image translation and 

segmentation) provides an efficient solution to multi-domain segmentation with missing-

domain inputs.

A. BraTS:

The Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018 [1], [40], [41] provides 

multi-modal brain MRI with four modalities: a) native (T1), b) post-contrast T1-weighted 

(T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (FLAIR). 

Following CollaGAN [42], 218 and 28 subjects are randomly selected for training and 

testing. A set of 2D slices is extracted from 3D volumes for four modalities respectively. In 

total, the training and testing sets contain 40,148 and 5,340 images. We resize the images of 

size 240 × 240 to 256 × 256. Three categories are labeled for brain tumor segmentation, i.e., 

enhancing tumor (ET), tumor core (TC), and whole tumor (WT).

B. ProstateX:

The ProstateX dataset [43] contains multi-parametric prostate MR scans for 98 subjects. 

Each sample contains three modalities : 1) T2-weighted (T2), 2) Apparent Diffusion 

Coefficient (ADC), 3) high b-value DWI images (HighB). We randomly split it into 78 and 

20 subjects for training and testing respectively. By extracting 2D slices from 3D volumes, 

the training and testing sets contain 3,540 and 840 images in total. Images of 384 × 384 are 

resized to 256 × 256. Prostate regions are manually labeled as the whole prostate (WP) by 

board-certificated radiologists.

C. RaFD:

The Radboud Faces Database (RaFD) [44] contains eight facial expressions collected from 

67 participants: neutral, angry, contemptuous, disgusted, fearful, happy, sad, and surprised. 

Following StarGAN [11], we adopt images from three camera angles (45°, 90°, 135°) with 

three gaze directions (left, frontal, right), and obtain 4,824 images in total. The data is 

randomly split to training set of 54 participants (3,888 images) and testing set of 13 

participants (936 images). We crop the image with the face in the center and then resize to 

128 × 128.

In all experiments, we set λadv = 1, λcyc
x = 10, λcyc

c = 1, λcyc
s = 1, λrec = 20, and λseg = 1 if 

ℒseg is included in Eq. 7. The adversarial loss λadv and consistency loss λcyc
x , λcyc

c , λcyc
s
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follow the same loss weights choices as in [19] which reported the necessity of the 

consistency losses in its ablative study. In the following, we will demonstrate ablative studies 

on the reconstruction and segmentation loss.

V. RESULTS

A. Results of Multi-Domain Image Completion

For comparison purpose, we firstly assume there are only one missing domain for each data 

sample. In training, the one missing domain is randomly distributed among all the N 
domains. During testing, at a time, we fix the one missing domain in inputs and evaluate the 

generation outputs only on that missing modality, whose results are demonstrated in one 

column (modality) of Table I, II. Multiple metrics are used to measure the similarity between 

the generated and teh target images, i.e., normalized root mean-squared error (NRMSE), 

mean structural similarity index (SSIM), and peak-signal-noise ratio (PSNR). We compare 

our results with previous methods on all three datasets. The results of the proposed method 

(“ReMIC”), ReMIC without reconstruction loss (“ReMIC w/o Recon”) are reported.

Moreover, we investigate a more practical scenario when there are more than one missing 

domains and show that our proposed method is capable to handle a general random n-to-n 
image completion. In this setting, we assume the set of missing domains in training data is 

randomly distributed, i.e. each training data has k randomly selected visible domains where 

k ≥ 1. During testing, we fix the number of visible domains k(k ∈ {1, …, N−1}) while these 

k available domains are also randomly distributed among N domains. We evaluate all the N 
generated images in outputs, showing results in all columns (modalities) of Table I, II. 

“ReMIC-Random(k = *)” denotes evaluation on the test set with k random visible domains 

or N – k random missing domains. Note that by leveraging the unified content code and 

sampling the style code for each domain respectively, the proposed model could handle any 

number of missing domains, which is more general and flexible for the random k-to-n image 

completion as shown in Fig. 1(d). We compare our model with following methods: MUNIT 
[19] conducts 1-to-1 image translation between two domains through representational 

disentanglement as shown in Fig. 1(a). In RaFD experiments, we train and test MUNIT 

models between any pair of two domains. Without loss of generality, we use “neural” image 

to generate all the other domains by following StarGAN setting, and “angry” image is used 

to generate “neural” image. In BraTS , the typical modality “T1” is used to generate other 

domains while “T1” is generated from “TIGd”. Similarly, “T2” is used to generate other 

domains in ProstateX while it is generated from “ADC”. StarGAN [11] adopts a mask 

vector to generate image in the specified target domain. In this way, different target domains 

could be generated from one source domain in multiple inference passes. This is actually a 

1-to-n image translation as in Fig. 1(b). Since only one domain can be used as input in 

StarGAN, we use the same domain pair match as MUNIT, following the same setting in 

[11].

CollaGAN [13], [42] carries out the n-to-1 image translation in Fig. 1(c), where multiple 

source domains collaboratively generate one target domain which is assumed missing in 

inputs. But it does not deal with multiple missing domains. In CollaGAN experiments, we 
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use the same domain generation setting as ours, i.e., fix one missing domain in inputs and 

generate from all the other domains.

1) Results of medical image generation: Fig. 5 and Fig. 7 show the results of image 

completion (modalities in rows) on BraTS and ProstateX data in comparison to others [11], 

[13], [19] (methods in columns). Each cell illustrates the generated image when the current 

modality is missing in inputs. The corresponding quantitative results averaged across all 

testing data are shown in Table I. In comparison, our model generates better results in 

meaningful details, e.g., a more accurate outstanding tumor region in BraTS and prostate 

regions are better-preserved in ProstateX. This is achieved by learning a better 

complementary content code from multiple input domains through factorized latent space in 

our method, which is essential in preserving the anatomical structures in medical images. 

Furthermore, we illustrate the generation results when multiple modalities are missing in 

BraTS and ProstateX dataset. We show the results in the rows of Fig. 6 and Fig. 8, where 

images are generated when only the first k modalities (from left to right) are given in the 

inputs (1 ≤ k ≤ N − 1). The averaged quantitative results for random k-to-n image generation 

are denoted as “ReMIC-Random(k = *)” in Table I.

2) Results of facial expression image generation: Fig. 9 shows the result of facial 

expression image completion for RaFD dataset. In each column, we show the target and 

generated images of each domain (facial expression), where we assume the current target 

domain is missing in the inputs at a time and needs to be generated using the rest N − 1 

available domains. Compared with MUNIT and StarGAN results, our method could generate 

missing images with a better quality, especially in generating details like teeth, mouth and 

eyes. This benefits from that our method can incorporate complementary information from 

multiple available domains, while MUNIT and StarGAN can adopt only one domain as 

input. For example, in the generation of “happy” and “disgusted” expressions, either 

MUNIT nor StarGAN could generate a good teeth and mouth region, since their source 

domain “neutral” does not contain the teeth. Compared with CollaGAN, our method could 

generate images with a better content due to the explicit disentangled representational 

learning in feature level instead of the implicit cycle-consistency constraints only in pixel 

level. Moreover, Fig. 10 shows the results of multiple missing domains. Each row shows the 

generated images in each of 8 domains, when the first k domains (from left to right) are 

given in inputs (1 ≤ k ≤ 7). The superior performance could also be observed in the NRMSE, 

and SSIM and PSNR evaluation metrics averaged across all testing samples as reported in 

Table II with all the eight expression domains. Please refer to the supplementary (Section 

Appendix II) for extended results and ablative study of multi-domain image completion.

B. Results of Missing-Domain Segmentation

Based on the missing-domain image completion, we demonstrate that our proposed method 

could go beyond image generation to solve the missing-domain image segmentation. 

specifically, our model learns factorized representations by disentangling latent space, which 

could be efficiently leveraged for high-level segmentation task. As shown in Fig. 3, a 

segmentation branch is added using the learned content code to generate segmentation 

prediction. We evaluate the segmentation performance with Dice coefficient on both BraTs 
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and ProstateX datasets as shown in Table III. Please note that we show the average Dice 

coefficient across three categories for BraTS dataset: enhancing tumor (ET), tumor core 

(TC), and whole tumor (WT). (details of per-category results in supplementary.)

We train a fully supervised 2D U-shaped segmentation network (a U-Net variation [45]) 

without missing images as the “Oracle”. “Oracle+*” means that the results are computed by 

predicting the multi-modal segmentation with the missing images generated or imputed from 

the “*” method using the pretrained “Oracle” model. “All” represents the full testing data 

without any missing domains. “ReMIC+Seg” stands for using separate content encoders for 

image generation and segmentation tasks in our proposed unified framework, while “ReMIC

+Joint” indicates sharing the weights of content encoder for the two tasks. Please note that 

for each column in Table III, we report the multi-modal segmentation results when the 

current modality is missing and synthesized while the other modalities are available. For the 

results on both datasets, our proposed unified framework with joint training of image 

generation and segmentation could achieve the best segmentation performance in 

comparison to other imputation or generation methods. This indicates that the joint training 

model can generate better images in missing domains that adaptively extract more useful 

information for the downstream task like segmentation. Moreover, it even obtains 

comparable results as “Oracle” model when some modalities are missing. This indicates that 

the learned content codes indeed embed and extract efficient anatomical structures for image 

representation.

In our experiments, we choose the widely used U-shaped segmentation network [45] as the 

backbone for segmentation generator GS. Here, we focus on showing how the proposed 

method could benefit the segmentation when missing domains exist and the segmentation 

backbone is fixed. But our method can also be easily generalized to other segmentation 

models with a similar methodology. Please refer to the supplementary (Section Appendix 

III) for extended results and ablative study of missing-domain image segmentation.

VI. DISCUSSION

In the paper, we assume the imaging objects have generally the same structure (that is, after 

alignment) across different domains. These shared structures of the same subject are the 

content code assumed in the paper, while the other domain-specific features are related to 

the style encoding such as the expression-related landmark variations or image contrasts in 

different domains. There may be some limitations with such an assumption, for example, the 

hairs that may not be aligned as the example shown in Fig. 10, which rely on the available 

source domains. But in the applications presented in the paper, we focus more on preserving 

the overall structures, that is, the outline and relative location of tumor regions and 

consistent appearance of facial landmarks.

From experiments, we observe an interesting finding that the reconstruction loss plays a 

different effect for medical and natural images. For natural images such as facial images in 

the RaFD, comparing the results of “ReMIC w/o Recon” and “ReMIC” in Table 2, we can 

see that there is not a big difference when adding reconstruction loss. This shows that our 

method can learn image generation in a totally unsupervised way through feature 
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disentanglement. For medical images, we see that although “ReMIC w/o Recon” already 

outperforms the other methods such as MUNIT, StarGAN and CollaGAN under the same 

setting, the reconstruction loss brings further advantage to generate better image quality. We 

think this is because the domain translation for medical images is even more challenging due 

to the contrast-specific information from different modalities.

In the paper, although the unified model adopts a U-Net shape segmentor and experiments 

on brain tumor segmentation and prostate segmentation, please note that the segmentation 

model in the framework are exchangeable. Thus, the insight of the method for random n-to-n 
mapping can be deployed to any other segmentation models and generalized to other 

downstream tasks such as segmentation for other organs [32–34].

In practical scenarios, the missing data problems are very common. For example, clinical 

scanning protocol for the same disease may differ among institutes, e.g., perfusion weighted 

images may be optional, and different B-value images may be acquired for computing ADC 

maps. Then, this random missing input data problem will affect both model development 

and deployment across institutes. Motivated by this, we propose a general solution to this 

practical problem by multi-domain image completion. To validate the proposed method, we 

design the corresponding experiments on three datasets with the missing input data 

scenarios, and the results validate the feasibility of the proposed method for image 

completion. Furthermore, we deploy the model for the segmentation task to show how this 

method can be useful in real applications. Thus, we think the proposed method potentially 

provides a general solution to deal with such scenarios in practice.

VII. CONCLUSION

In this work, we propose a general framework for multi-domain image completion, given 

that one or more input domains are missing. The proposed model learns shared content and 

domain-specific style encoding across multiple domains. We show the proposed image 

completion approach can be well generalized to both natural and medical images. our 

framework is further extended to a unified image generation and segmentation framework to 

tackle a practical problem of missing-domain segmentation. Experiments on three datasets 

demonstrate the proposed method consistently achieves better performance than several 

previous approaches on both multi-domain image completion and segmentation with random 

missing domains. Furthermore, although the work is extensively evaluated for brain and 

prostate multi-contrast MR image completion, experiments on real-world and large scale 

clinical experiments are required before clinical usage. In the next step, it is expected to 

conduct large scale clinical experiments to validate the effectiveness coping with the data 

discrepancy issue widely existing in the real world. Concluding, the proposed method paves 

the way for many potential medical image applications with the common missing data 

problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Image translation using (a) MUNIT (1-to-1), (b) StarGAN / Ours (ReMIC) (1-to-n), (c) 

CollaGAN / ReMIC (n-to-1), and (d) ReMIC (n-to-n). In multi-domain image completion, 

Ours (ReMIC) completes the missing-domain images given randomly distributed numbers 

(k-to-n, 1 ≤ k ≤ n) of visible domains in the input. Note the missing-domain images are 

denoted as blurred images.
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Fig. 2. 
BraTS images in four modalities with nearest neighbors and generated images from the 

proposed method (ReMIC). From the segmentation prediction of brain tumor, the generated 

images preserve better semantic consistency with ground truth in addition to the pixel-level 

similarity in images.
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Fig. 3. 
Overview of the proposed n-to-n multi-domain completion and segmentation framework. N 
= 4 and two domains (x2, x4) are missing in this example. Our model contains a unified 

content encoder Ec (red lines), domain-specific style encoders Ei
s (orange lines) and 

generators Gi (blue lines), 1 ≤ i ≤ N. A variety of losses are adopted (burgundy lines), i.e., 

image consistency loss for visible domains ℒcyc
x , latent consistency loss ℒcyc

c  and ℒcyc
s , 

adversarial loss ℒadv
x  and reconstruction loss ℒrec

x  for the generated images. Furthermore, 

representational learning framework combines a segmentation generator GS following the 

content code for a unified image generation and segmentation.

Shen et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Content codes visualization in BraTS image generation. The first 4 images are ground truth 

modalities.
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Fig. 5. 
BraTS image generation results with a single missing modality. Rows: 4 modalities. 

Columns: compared methods.
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Fig. 6. 
BraTS image generation results with multiple missing modalities (in columns). Ground truth 

image for each modality is shown in “Target” column of Fig. 5. Rows: the first k domains 

(from left to right) are given in inputs (1 ≤ k ≤ 3)
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Fig. 7. 
ProstateX image generation results. Rows: 3 modalities. Columns: compared methods.
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Fig. 8. 
ProstateX image generation results with multiple missing modalities (in columns). Ground 

truth image for each modality is shown in “Target” column of Fig. 7. Rows: the first k 
domains (from left to right) are given in inputs (1 ≤ k ≤ 2).
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Fig. 9. 
RaFD image generation results with a single missing modality. Columns: 8 facial 

expressions. Rows: compared methods.
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Fig. 10. 
RaFD image generation results with multiple missing modalities (in columns). Ground truth 

image for each modality is shown in “Target” row of Fig. 9. Rows: the first k domains (from 

left to right) are given in inputs (1 ≤ k ≤ 7).
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