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Abstract

Estimating the time of delivery is of high clinical importance because pre- and postterm deviations 

are associated with complications for the mother and her offspring. However, current estimations 

are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal 

immune, metabolic, and endocrine systems that culminate in birth. The comprehensive 

characterization of maternal biology that precedes labor is key to understanding these 

physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal 

study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma 

analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, 

aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples 

collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into 

a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval 

(CI) [0.79 to 0.89], P = 1.2 × 10−40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 

× 10−7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, 

and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 

weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 

that preceded labor coincided with a switch from immune activation to regulation of inflammatory 

responses. Our study lays the groundwork for developing blood-based methods for predicting the 

day of labor, anchored in mechanisms shared in preterm and term pregnancies.

INTRODUCTION

During human pregnancy, the onset of labor is precisely timed to ensure the delivery of a 

healthy newborn. However, what determines the timing of parturition is not clearly 

understood. The ability to accurately predict the timing of labor is of high clinical 

importance because preterm (<37 weeks of gestation) or postterm (>42 weeks of gestation) 

deviations are associated with complications for the mother and her offspring (1, 2).

Existing methods for predicting the day of labor perform poorly (3–5). In current clinical 

practice, the estimate day of delivery (EDD) is calculated on the basis of the first day of the 
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last menstrual period (LMP) and assumes a gestational length of 40 weeks (6, 7). The 

gestational age (GA) and EDD are further determined by the first accurate ultrasound 

examination (8). Although they are useful for managing the pregnancy, the EDD and GA are 

not accurate predictors for when labor will actually occur because most pregnancies deviate 

from the norm of 40 weeks of gestational duration. To advance clinical decision-making, 

further estimation approaches including predictive biomarkers are critically needed to better 

predict the actual labor onset, leading to delivery in healthy and pathological pregnancies.

A comprehensive characterization of the biological processes that precede spontaneous labor 

is a key step for the identification of predictive biomarkers. The maintenance of pregnancy 

relies on finely tuned adaptations (9–11), which are readily detectable in maternal blood 

using high-content metabolomic, proteomic, and single-cell cytometric technologies (12–

17). At the onset of labor, a major transition occurs in the fetomaternal physiology that 

culminates in the delivery of the fetus, including the breakdown of fetomaternal immune 

tolerance by immune infiltration into fetal membranes and the placenta (18, 19), endocrine 

changes (20, 21), rupture of fetal membranes (22), cervical dilation, and augmentation of 

uterine contractility (23).

The timing of systemic molecular and cellular events that mark the transition from 

pregnancy maintenance to parturition, which begins with labor contractions and/or 

spontaneous rupture of membranes (24), is ill-defined. Prior studies have provided important 

information with regard to systemic maternal adaptations that track GA during pregnancy 

(13, 15–17, 25). However, to understand the biological transition to labor, studies are needed 

that specifically examine labor biology in relation to spontaneous labor onset, rather than in 

relation to the estimated GA. Limitations in either study design, such as inclusion of 

medically induced labor cases, or technology, such as the limited coverage of immune 

system–wide adaptations, have precluded a comprehensive analysis of biologic events 

preceding spontaneous labor and delivery.

In this study, we combined an untargeted mass spectrometry approach (26) with an aptamer-

based technology (27) to quantify the concentrations of 4846 metabolomic and proteomic 

analytes in longitudinally collected plasma samples during the 100-day period preceding 

spontaneous labor onset. In parallel, we used a single-cell mass cytometry immunoassay to 

quantify the dynamic changes in the distribution and intracellular signaling responses of all 

major innate and adaptive peripheral immune cells (2296 features). The analysis generated 

three high-dimensional omic datasets. We applied a stacked generalization (SG) algorithm to 

the multiomic dataset to build and independently validate an integrated model that predicted 

the time to labor (TL). Model component trajectories revealed precisely timed alterations 

that marked a transition from pregnancy maintenance to prelabor biology. Our findings and 

predictive modeling approach can serve to identify elements of a common pathway that 

precedes labor in term as well as pre- or postterm pregnancies.
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RESULTS

Maternal metabolome, proteome, and immunome are assessed in the 100 days preceding 
the day of labor

One-hundred twelve pregnant women receiving routine antepartum care at the Lucile 

Packard Children’s Hospital in Stanford, CA, USA, were enrolled during their second or 

third trimester of pregnancy. After exclusion of patients who did not meet the inclusion 

criteria, such as medical induction of labor (see Materials and Methods), an analysis was 

performed on samples from 53 patients (training cohort) with spontaneous labor 

contractions. The day of labor for this study is defined as the day of admission for 

spontaneous labor (contractions occurring at least every 5 min, lasting >1 min, and 

associated with cervical change). All patients in the training cohort were in stage I labor on 

the day of labor at the time of diagnosis, among which 73.6% were in the latent phase and 

delivered within 11 hours [interquartile range (IQR) [5, 18] hours]. The remaining 26.4% 

were in the active phase of labor and delivered within 4 hours (IQR [2, 10] hours). The 

difference between the day of labor and day of delivery ranged from 0 to 1 day (median = 0; 

SD = 0.23; range [0, 1] days). Five women in the training cohort delivered preterm [34 

weeks + 0 days (34+0) to <37 weeks of gestation]. An independent analysis was performed 

on samples from 10 additional patients (test cohort), who had spontaneous labor (N = 5) or 

spontaneous rupture of membranes (N = 5). Patient demographics including labor and 

delivery, as well as ante- and peripartum parameters are shown in Table 1.

For each study participant, serial blood samples [median of three samples (plasma and 

whole blood) per patient, range [1, 3]] were collected during the last 100 days before labor 

(Fig. 1A). The approach leveraged the interindividual variabilities in sample collection time 

to define a continuous variable, the TL, which describes the difference between the day of 

sampling and the day of labor. In the aggregated sample cohort of all patients, the TL was 

distributed with near daily resolution across the last 100 days of pregnancy with a median 

time of blood sampling of 36 days (~5 weeks) before the day of labor. The plasma 

concentration of 3529 metabolites and 1317 proteins were quantified using a high-

throughput untargeted mass spectrometry and an aptamer-based proteomic platform, 

respectively (Fig. 1B). Using a 46-parameter mass cytometry assay (table S1), a total of 

2296 single-cell immune features were extracted from each sample including the frequencies 

of 41 immune cell subsets, representing major innate and adaptive populations, endogenous 

intracellular activities such as phosphorylation states of 11 signaling proteins, and capacities 

of each cell subset to respond to a series of receptor-specific immune challenges 

[lipopolysaccharide (LPS), interferon-α (IFN-α), granulocyte-macrophage colony-

stimulating factor (GM-CSF), and a combination of interleukin-2 (IL-2), IL-4, and IL-6].

Multiomic modeling of the maternal interactome predicts labor onset

The combined metabolome, proteome, and immunome datasets produced 7142 features per 

sample. Features were visualized with three correlation networks, highlighting intraomic 

(within-dataset) correlations across the last 100 days before the day of labor (Fig. 2, A to C). 

A single chord diagram highlighted interomic (between-dataset) correlations between 

features from two different datasets (Fig. 2, D and E), after controlling to a false discovery 
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rate (FDR) of 0.05 (Spearman R > 0.46) computed from the distribution of correlation 

between randomly generated features (Fig. 2D). Individual biological systems were tightly 

orchestrated because 99% of all omic correlations were found in feature pairs belonging to 

the same dataset (Fig. 2, A to C).

Correlations between the three biological systems included 3995 weak (R = 0.46 to 0.59), 

596 moderate (R = 0.6 to 0.79), and 21 strong (R = 0.8 to 1.0) interomic correlations (Fig. 2, 

E and F), revealing an interactome of late pregnancy. Of all interomic correlations (R > 0.46, 

FDR < 0.05), 80% were observed between the metabolome and proteome, 4% between the 

immunome and proteome, and 16% between the immunome and metabolome (Fig. 2F). 

Overall, the multimodal analysis of plasma analytes and peripheral blood immune cells 

measured during pregnancy revealed a concerted behavior between the metabolomic, 

proteomic, and immunologic systems. The interactome analysis did not account for the 

timing of omic measurements, such that observed correlations were not enriched for 

interactions temporally linked to the time in pregnancy. However, the analysis highlighted 

the interconnected nature of the multiomic dataset, justifying the need for an integrated 

approach to identify biologically relevant components predictive of the TL.

Peripheral blood metabolic, proteomic, and immunologic events informed an integrated 

approach to predict the TL. Here, multivariate least absolute shrinkage and selection 

operator (LASSO) linear regression models were first individually built for each omic 

dataset and then integrated into a single model by SG. An advantage of the SG method is 

that differences in size and modularity of individual omic modalities are accounted for to 

prevent datasets of higher dimensions (such as the metabolome) to overwhelm the integrated 

model (Fig. 3A) (14, 28). The SG model predicted the TL from the measurement of 

metabolic, proteomic, and immunologic features with high accuracy [R = 0.85, 95% 

confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10−40, root mean square error (RMSE) = 

17.7 days, N = 53] (Fig. 3B). Statistical significance was established using a cross-validation 

method that accounts for the high dimensionality of the data. The generalizability of the SG 

model was prospectively tested in an independent cohort of 10 additional women (R = 0.81, 

95% CI [0.61 to 0.91], P = 3.9 × 10−7, RMSE = 17.4 days) (Fig. 3C).

Five of the 53 patients included in the training cohort experienced spontaneous preterm labor 

(GA at delivery < 37 weeks). Although comparing term and preterm labor was not a primary 

aim of the study, the presence of these five patients questioned whether the integrated SG 

approach would generalize to predict the TL when labor occurred preterm. A new model 

trained on a subcohort of patients with term labor successfully predicted the TL for patients 

with preterm labor (R = 0.67, 95% CI [0.21 to 0.86], P = 8.8 × 10−3, RMSE = 27.3 days; fig. 

S1, A to D). In addition, there was a strong overlap between the most informative features of 

the original model (including term and preterm patients) and the term-only model (fig. S1, E 

to G; R = 0.68 to 0.78, Spearman correlation in bootstrap feature ranking between the two 

models). The results suggest that the SG model generalized to the prediction of the TL for 

both term and preterm labor. The data also confirm that the SG model built on the entire 

patient cohort was not driven by a preterm-specific prelabor biology. A confounder analysis 

further established that the prediction accuracy was not influenced by other clinical or 

demographic variables [including race, body mass index (BMI), and major comorbidities; 
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table S2]. In summary, our assessment of maternal circulating factors in the peripheral blood 

provided an accurate prediction for the timing of labor that was independent of the GA 

based on EDD.

Trajectories of metabolome, proteome, and immunome reveal alterations in prelabor 
dynamics

To facilitate the biological interpretation of the multivariate SG model, we focused on the 

model features that contributed most to the prediction of the TL (selected using a bootstrap 

and ranking approach; see Materials and Methods). These features included 12 

metabolomic, 18 proteomic, and 15 immune cell features (Fig. 3D and table S3) and formed 

a correlation network that segregated into two clusters (Fig. 3E). For each cluster, enriched 

proteomic and metabolomic pathways were identified using the Fisher’s test (29) and the 

hypergeometric test (30), respectively. The lower cluster was enriched for metabolic features 

representing steroid hormone biosynthesis, and pentose and glucuronate interconversions 

(carbohydrate metabolism) that clustered with innate and adaptive immune cell responses to 

IFN-α stimulation [including phosphorylated signal transducer and activator of transcription 

1 (pSTAT1) and phosphorylated mitogen-activated protein kinase–activated protein kinase 

(pMK2) in dendritic cells (DCs), natural killer (NK) cells, and T cell subsets] (Fig. 3E). The 

upper cluster contained metabolic features enriched for tryptophan metabolism and proteins 

representing glycoprotein metabolic pathways that clustered with various immune cell 

features, including granulocyte frequencies, signaling responses to GM-CSF in non-classical 

monocytes (ncMCs) and basal pMK2 signaling in T cell subsets (Fig. 3E).

The pathway enrichment analysis provided a snapshot of key biological systems temporally 

linked to the TL. To examine the dynamic behavior of biological events predictive of the TL, 

individual model features were plotted over time (Fig. 4, figs. S2 to S4, and table S3). 

Classifying the dynamic behavior of each feature revealed three general trajectory patterns 

on the basis of the goodness of fit of a pattern-fitting model (Fig. 4A and table S4): linear 

progression (degree 1; Fig. 4, B to D) or quadratic progression, including accelerating 

(surging of an increasing or decreasing pattern over time) (degree 2a; Fig. 4, E to G) or 

decelerating (plateauing of an increasing or decreasing pattern over time) (degree 2b; Fig. 4, 

H to J) progression (table S4). We plotted the distribution of trajectory patterns across all 

datasets. The resulting plot (Fig. 4K) showed a remarkable overlap of the behavior of 

metabolomic and proteomic model features, which were predominantly classified as degree 

1 (constant rate). In contrast, immune cell trajectories predominantly followed a degree 2b 

(decelerating) pattern.

Degree 1 trajectories highlighted biological processes progressing linearly throughout the 

last 100 days of pregnancy until labor (Fig. 4, B to D). For example, the plasma 

concentration of an isomer of cortisol, strongly correlating with cortisol (Spearman R = 0.7; 

Materials and Methods), increased steadily from TL −100 to labor onset (Fig. 4B), 

recapitulating known steroid changes occurring throughout pregnancy (31, 32). Similarly, 

proteins expressed by fetal membranes constantly increased throughout the 100 days before 

labor, such as plexin-B2 (PLXB2) (33) and discoidin domain receptor-1 (DDR1) (fig. S3) 

(34). In contrast, Angiopoietin-2, a protein that contributes to placental vascular 
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development, decreased at a constant rate throughout the study period (Fig. 4C) (35, 36). In 

addition to the many proteomic and metabolomic model features with constant pattern 

trajectories, accelerating (degree 2a) or decelerating (degree 2b) trajectories denoted 

important prelabor alterations of the maternal metabolome and proteome (Fig. 4, E, F, H, 

and I).

Among the most informative degree 2 metabolomic features were isomers of 17-

hydroxyprogesterone (17-OHP) and 17-hydroxypregnenolone sulfate, an upstream substrate 

for the production of 17-OHP. The isomers of 17-OHP correlate with 17-OHP, suggesting 

that they have similar biological functions and belong to similar pathways (Materials and 

Methods). Plasma concentrations of these features increased in accelerated fashion within 

the last 30 days before the day of labor (Fig. 4E and fig. S2). Whereas this finding confirms 

known progesterone biology in the late third trimester (37, 38), our data provide additional 

temporal information showing that a surge in 17-OHP, one of the most informative features 

of the predictive model, is tightly linked to the timing of labor. Furthermore, metabolites 

with degree 2b trajectories included pregnenolone sulfate (39), which showed decelerating 

behavior, stagnating around 30 days before the day of labor (Fig. 4H).

Among the most informative degree 2 proteomic features of the predictive model were 

trajectories whose accelerating or decelerating patterns pointed toward important prelabor 

alterations in placental biology, coagulation, and inflammation. The most informative degree 

2a proteomic feature was IL-1 receptor type 4 (IL-1R4), the soluble inhibitory receptor of 

the proinflammatory cytokine IL-33. IL-1R4 plasma concentration surged during the last 30 

days before labor (Fig. 4F and fig. S3). The data complement prior studies showing an 

elevated concentration of IL-1R4 during the third trimester of pregnancy (40, 41). Surging 

concentrations of IL-1R4 observed in the systemic circulation may counteract the 

proinflammatory effects of IL-33, potentially released upon mechanical uterine distension 

and in the context of the local inflammation occurring at the fetomaternal interface (42, 43). 

Hence, IL-1R4 may be an important regulator of inflammation during the late phase of 

pregnancy.

Also surging with approaching labor (degree 2a) were two proteins highly expressed by the 

placenta, Activin-A and sialic acid binding immunoglobulin-like lectin–6 (Siglec-6) (fig. 

S3). In contrast, the trajectory of antithrombin III (ATIII), an endogenous anticoagulant (44), 

negatively accelerated during the last 30 days before the day of labor (fig. S3). Soluble 

tunica interna endothelial cell kinase–2 (sTie-2), a regulator of angiopoietin availability for 

vasculogenesis (45), displayed a decelerating trajectory (Fig. 4I). Overall, together with the 

constantly rising concentrations of fetal membrane–derived PLXB2 and DDR1 (fig. S3), the 

coordinated trajectories of angiogenic factors sTie-2, Angiopoietin-2 (Fig. 4C), and vascular 

endothelial growth factor 121 (VEGF121) as well as Activin-A, and Siglec-6 (fig. S3) 

suggest that these proteins are integral components of a plasma fetoplacental signature that 

portends the impending day of labor.

Plasma metabolites and proteins form the interactive environment for circulating immune 

cells. Immune cell trajectories predominantly followed a decelerating pattern (Fig. 4, D, G, 

and J), in contrast to accelerating or constantly increasing plasma analyte trajectories (Fig. 
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4K). Granulocyte frequencies decreased over time (Fig. 4D). In parallel, decelerating 

signaling trajectories were observed along the Janus kinase (JAK)–STAT and myeloid 

differentiation primary response 88 (MyD88) signaling pathways in both innate and adaptive 

immune cells (fig. S4). This decelerating behavior was particularly pronounced in innate 

immune cells, as illustrated by the pSTAT1 signal in CD56dimCD16+ NK cells and the 

pSTAT6 signal in DCs in response to IFN-α (Fig. 4, G and J), the phosphorylated cyclic 

adenosine monophosphate response element–binding protein (pCREB) response in ncMCs 

in response to GM-CSF (fig. S4), and the phosphorylated P38 mitogen-activated protein 

kinase (pP38), phosphorylated extracellular signal–regulated kinase (pERK) and pCREB 

signals in classical monocytes (cMCs) in response to LPS and GM-CSF (fig. S5). During the 

100 days preceding labor, proinflammatory innate immune cell responses first increased, in 

accordance with their previously described trajectory during the first and second trimesters 

(12), and then stagnated or decreased closer to the day of labor. These findings indicate a 

regulated dampening of systemic immune cell responses before the day of labor that may 

counterbalance the local inflammatory environment emerging at the fetal membranes, 

cervix, and fetomaternal interface during labor and parturition (46).

A breakpoint defined by nonlinearity of omic trajectories demarcates a transition from 
pregnancy to prelabor biological adaptations

The presence of degree 2 (quadratic) trajectories across all omic datasets pointed toward a 

period of disruption with approaching labor that resonated across all measured biological 

systems (Fig. 4, E to J). Identifying the timing of such a nonlinear transition is clinically 

relevant because it defines when the assessment of peripheral blood analytes is linked to 

prelabor biology rather than a reflection of the biology relevant for the maintenance of 

pregnancy. A piecewise fused LASSO regression analysis was used to provide an estimate as 

to when before the day of labor such a transition occurs (Fig. 5A). This approach (see 

Materials and Methods) combined the predictions rho (ρ) of two LASSO regression models 

built using the data points before or after a given TL threshold, while varying the threshold 

across all time points. A maximum ρ value was reached when the models on each side of the 

threshold contained distinct yet top informative biological features that, when combined, 

reached maximal predictive accuracy. The piecewise fused LASSO regression analysis 

produced a maximum at 23 days before the day of labor (range [−27, −13] days; ρ at −23 

days = 0.95; Fig. 5B).

Our results indicate that the maternal metabolome, proteome, and immunome undergo a 

marked transition from maintenance of pregnancy to a phase of prelabor biology that is 

linked to the timing of labor (Fig. 5C). The model in Fig. 5C summarizes major 

characteristics of the biology before and after the transition period occurring 2 to 4 weeks 

before labor.

DISCUSSION

This study combined the high-content assessment of circulating plasma factors with single-

cell analyses of peripheral immune cells to survey dynamic changes in the maternal 

metabolome, proteome, and immunome preceding the day of labor. Using a stringent 
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analytical method that accounts for the dimensionality and heterogeneity of the data, we 

built and independently validated a multiomic model that predicted the timing of 

spontaneous labor.

Current efforts to monitor biological adaptations during pregnancy have primarily been 

focused on investigating dynamics that differentiate normal from pathological pregnancies 

on the basis of GA (12, 13, 47–53). Although they are informative in characterizing 

pathological deviations during pregnancy, these approaches provide limited information for 

the prediction of timing of labor because they rely on estimates of GA, which are imposed 

by human assumption rather than based on biological determination. In contrast, our study 

paradigm did not use an estimate but an observed outcome, such as the time to spontaneous 

labor. This outcome was independent of GA on the basis of EDD and accounted for the 

inherent variations in pregnancy duration. Hence, our approach enabled characterization of 

labor-relevant pathways, which may be important for the identification of labor-specific 

mechanisms in normal and pathological pregnancies.

In our study, the analysis of metabolic, proteomic, and immunologic trajectories provided an 

integrated view of response mechanisms associated with the TL. Two major themes evolved: 

(i) The coordinated adaptations across biological systems revealed a prelabor interactome 

that pointed toward cross-talk between circulating plasma factors and immune cell responses 

toward the end of pregnancy, and (ii) dynamics in omic trajectories uncovered a marked 

transition from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery.

Aspects of our analysis agree with prior studies of endocrine and inflammatory changes 

during late pregnancy. For example, steroid hormone metabolites were among the most 

informative metabolic features of the predictive model, which is consistent with the 

established role of progesterone in the maintenance of mammalian pregnancy (54) and the 

progression to labor (20, 54, 55). Similarly, key immune response features of our predictive 

model are consistent with previous studies reporting on peripheral immune activation with 

approaching labor (12, 17, 56–63). Specifically, the pSTAT1 signaling in CD56dimCD16+ 

NK cells in response to IFN-α was a key immune feature common to our current model 

predicting the TL and our previous model predicting GA (12). In contrast, the endogenous 

STAT5 signaling activity in T cells, important for predicting GA (12), did not contribute to 

the current model (fig. S6). Differences in immune features between the two models likely 

reflect the dynamic evolution of immune signatures throughout pregnancy and underpin that 

the selection of predictive parameters depends on the window of observation.

Our results also suggest previously undescribed cross-talk between metabolic, proteomic, 

and immune cell features that precedes the onset of labor. We found that the surge in steroid 

hormone metabolites 2 to 4 weeks before labor coincided with dynamic changes in plasma 

protein concentrations and immune cell responses that reflected a previously unrecognized 

switch from immune activation to regulation of inflammatory responses. One of the most 

pronounced examples of immune regulation was the surge in the concentration of IL-1R4, 

which paralleled the dampening of JAK-STAT and MyD88 responses in innate immune cells 

(Fig. 4, F and J). The data suggest that IL-1R4, an IL-33 antagonist, may play a prominent 

regulatory role during the prelabor phase by neutralizing IL-33 (64), a proinflammatory yet 
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regulatory T cell–stabilizing alarmin released upon tissue remodeling (42). In mice, IL-33 

has been assigned a pregnancy-maintaining role (43). Rising concentrations of IL-1R4 in 

response to increased IL-33 activity could function as a labor-initiating signal by disrupting 

IL-33–mediated mechanisms of fetomaternal tolerance (11, 19), while simultaneously 

counteracting systemic proinflammatory innate responses to accumulating circulating fetal 

material with approaching parturition (13, 65–68).

The observed dampening of systemic inflammatory events with approaching labor contrasts 

with prior studies showing increased local inflammation of the cervix, decidua, fetal 

membranes, and placenta during labor and parturition (46, 69, 70), although several other 

studies of systemic immune responses during pregnancy echo our findings of decreased 

peripheral immune cell responses with approaching labor (47, 56, 57, 60, 71, 72). Hence, the 

systemic dampening of proinflammatory responses may be important to keep in check 

proinflammatory events initiated locally with labor onset.

Our multiomic analysis also provided a high-resolution fingerprint of essential biological 

processes preceding the day of labor, including changes in vascular development, placental 

biology, and fetal membrane activation (22, 73). Angiogenic factors, potentially involved in 

placental vascularization, progressively diminished (35, 36, 45); whereas, coagulation 

capacity became enhanced (16, 17, 44). In accordance with previous studies (16, 25, 74, 75), 

placental factors Activin-A and Siglec-6 followed accelerated trajectories, potentially 

reflecting placental aging (32). Increased concentrations of serum Activin-A and placental 

Siglec-6 are also detected in labor versus nonlabor deliveries (76–78). In addition, the steady 

increase of epithelial factors PLXB2 and DDR1 likely mirrors the remodeling of the fetal 

membranes (22). Several of these circulating proteins, including Angiopoietin-2, urokinase-

type plasminogen activator (uPA), Activin-A, Siglec-6, PLXB2, and DDR1, have proven to 

be informative model components for the prediction of GA, both by our group (79) and 

others (16, 17).

The pathway enrichment analysis of the most informative model features provided further 

insight on previously undescribed biological pathways implicated in the transition from 

progressing pregnancy to labor onset. First, glycoproteins and proteins associated with 

glycoprotein metabolism, including ATIII, VEGF121, matrix metalloproteinase 12 

(MMP12), Angiopoietin-2, sTie-2, and SLIT and NTRK-like protein 5 (SLITRK5), were 

enriched among the proteomic features. SLITRK5 has a high affinity for pregnancy-specific 

glycoprotein (80), an immune tolerance–enhancing protein released from the placenta and 

peaking in late gestation (81). Second, metabolic pathways, including tryptophan 

metabolism, and pentose/glucuronate interconversions (carbohydrate metabolism) were also 

enriched. The systemic concentration of serotonin-precursor 5-hydroxytryptophan is a proxy 

for serotonin activity in the central nervous system and facilitates vasoconstriction in the 

placenta (82, 83). The involvements of glycoproteins, vasoactive neurotransmitters, and 

energy metabolism highlight prelabor dynamics beyond previously described fetal and 

immunoendocrine mechanisms.

Our study has certain limitations. First, the cohort included a homogeneous population of 

women recruited at a single center, who went into labor predominantly at term (N = 63; of 
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which five preterm < 37 weeks, zero postterm > 42 weeks). Hence, our model predicted the 

TL in term and preterm pregnancies with similar accuracy. Future studies in a more diverse 

population and enriched for women with extreme pregnancy lengths will be needed to 

further test the generalizability of our findings. Studies specifically focusing on women with 

preterm labor will be particularly important because the ability to predict labor several 

weeks before the actual day of labor provides a critical time window that would aid in 

clinical decision-making for the early management of a patient at risk of preterm labor. In 

such studies, it will also be important to refine the predictive models to allow differentiating 

between labor onset that results in arrested preterm labor versus resulting in a preterm 

delivery, which our current model cannot resolve. Further, future studies will be required to 

determine the effect of pregnancy complications such as preeclampsia, chorioamnionitis, or 

infection on the predictive model parameters reported here. Second, we limited the blood 

sampling frequency to three samples per patient. Nonetheless, our approach provided highly 

informative results regarding multiomic adaptations relevant to the TL, which will dovetail 

with other studies, generating less data with higher per-patient sampling resolution (84). 

Third, our study lacks the assessment of local immune responses. It will be informative to 

determine the relationship between systemic and local features occurring before and during 

labor. Last, interactions between features identified within and between datasets remain 

associations until supported by direct mechanistic evidence. However, on the basis of prior 

biological knowledge, particular associations between proteins or metabolites and immune 

cell responses can be hypothesized to be biological interactions.

In summary, determining the timing of labor and delivery, and predicting preterm and 

postterm pregnancy risk, remains an important clinical challenge. The biological insights of 

this study may guide therapeutic approaches to extend pregnancy when the labor signature is 

detected early (preterm birth) or to accelerate labor processes to avoid the need for induction 

of labor in postdate pregnancies. The results lay the foundation to examine prelabor biology 

for the development of a universal diagnostic tool that can predict the TL.

MATERIALS AND METHODS

Study design

The aim of this observational study was to determine a precise chronology of pregnancy-

related metabolomic, proteomic, and immunologic adaptations in venous blood samples 

collected serially during the last 100 days of pregnancy. The study was conducted at the 

Lucile Packard Children’s Hospital (Stanford, CA, USA) and approved by the Institutional 

Review Board (approval ID, 40105). All participants signed an informed consent. Healthy 

pregnant women receiving routine antepartum care were eligible for the study if they were 

within 18 to 50 years of age, had a BMI < 40 in their second or third trimester of pregnancy 

as determined by their clinician using LMP and ultrasound estimates of GA, and had no 

immune-modifying comorbidities or medication usage. Participants were followed 

longitudinally until parturition, collecting one to three blood samples throughout the third 

trimester. In total, 112 women were recruited to meet the predetermined sample size 

required for sufficient power in this longitudinal study. Participants for whom labor was 

medically induced (N = 43) or who underwent cesarean section without labor (N = 4) were 
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excluded. Two participants dropped out of the study. Participants with singleton pregnancies, 

who went into spontaneous labor (N = 53 training cohort, N = 5 test cohort) or experienced 

spontaneous rupture of membranes before labor onset (N = 5 test cohort) were included in 

the analysis. The day of labor was defined as day of admission for spontaneous labor 

(contractions occurring at least every 5 min, lasting >1 min, and associated with cervical 

change). For five patients from the test cohort, the day of spontaneous rupture of membrane 

was designated as the day of labor because labor would have likely ensued spontaneously 

(85), but modern clinical care required induction of labor for these patients. The GA at day 

of sampling was based on the clinical EDD established by LMP and/or ultrasonographic 

assessment according to the American College of Obstetricians and Gynecologists 

committee opinion (8). Researchers conducting the analyses were not blinded. 

Randomization was not applicable to this study. Demographics, pregnancy characteristics, 

and comorbidities for the 63 participants included in the analysis are summarized in Table 1.

Mass cytometry from whole blood

Ex vivo immunoassay—Whole blood was collected from study subjects and processed 

within 60 min after blood draw. Individual aliquots were stimulated for 15 min at 37°C with 

LPS (1 μg/ml; InvivoGen, San Diego, CA), IFN-α (100 ng/ml; PBL Assay Science, 

Piscataway, NJ), GM-CSF (100 ng/ml; R&D Systems, Minneapolis, MN), and a cocktail of 

IL-2, IL-4, and IL-6 (each 100 ng/ml; R&D Systems) or left unstimulated. Samples were 

processed using a standardized protocol for fixing with proteomic stabilizer (SMART TUBE 

Inc., San Carlos, CA) and stored at −80°C until further processing.

Mass cytometry and derivation of cell frequency, basal intracellular signaling, 
and intracellular signaling response features—Forty-one innate and adaptive 

immune cell subsets were identified using a 45-parameter mass cytometry antibody panel 

and according to the gating strategy in fig. S7. Cell frequencies were expressed as a 

percentage derived from singlet live mononuclear cells (DNA+cPARP− 

CD235−CD61−CD66−) except for granulocyte frequencies, which were expressed as a 

percentage of singlet live leukocytes (DNA+cPARP− CD235−CD61−). Endogenous 

intracellular signaling activities at the basal, unstimulated state were quantified per single 

cell for pSTAT1, pSTAT3, pSTAT5, pSTAT6, pCREB, pMK2, pERK, phosphorylated S6 

ribosomal protein (prpS6), pP38, and phosphorylated nuclear factor κB (pNF-κB), and total 

inhibitor of NF-κB (IκB) using an arcsinh-transformed value calculated from the median 

signal intensity. Intracellular signaling responses to stimulation were reported as the 

difference in arcsinh-transformed value of each signaling protein between the stimulated and 

unstimulated conditions (arcsinh ratio over endogenous signal). A knowledge-based 

penalization matrix was applied to intracellular signaling response features in the mass 

cytometry data based on mechanistic immunological knowledge, as previously described 

(14, 86). Mechanistic priors used in the penalization matrix are independent of 

immunological knowledge related to pregnancy or the day of labor.
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Proteomics and untargeted metabolomics from plasma

Derivation of proteomic (SomaLogic Inc., Boulder, CO) and metabolomic (liquid 

chromatography–mass spectrometry) features from plasma samples is described in the 

Supplementary Materials.

Statistical analyses

Multivariate modeling and SG—For a matrix X of all biological features from a given 

omic dataset, and a vector of days to day of labor Y, the LASSO algorithm calculates 

coefficients β to minimize the error term L(β) = ∥Y − Xβ∥2. An L1 regularization was used 

to increase model sparsity for the sake of biological interpretation and model validation. 

Once a LASSO model was trained for each omics modality, the multiomic analysis was 

carried out by performing SG on the new representation of the data by using the outputs of 

the previous layer of models as predictors. A LASSO model was first constructed on each 

omic modality. Then, all estimations of TL were used as predictors for a second-layer 

LASSO model. Intrinsically, this is equivalent to a weighted average of the individual 

models with the coefficients of the LASSO model as desired weights. A two-layer leave-

one-subject-out cross-validation strategy was used to assess the generalizability of the SG 

model built on the training cohort (see the Supplementary Materials). Performance for 

training and validation was evaluated using RMSE, and the test statistic is based on 

Pearson’s product moment correlation coefficient. The asymptotic confidence interval is 

given on the basis of Fisher’s Z transform.

Piecewise fused LASSO regression—To identify a possible “switch point” before 

labor, we used two sequential LASSO models applied to all samples before/after a given 

threshold. Cross-validation predictions from both models were combined to develop a joint 

goodness-of-fit score for the entire dataset. The threshold was varied across the dataset to 

identify the point with the best fit for the combined models. Fused LASSO (87, 88), a 

generalized LASSO for one-dimensional sequential data, which penalizes the absolute 

differences in successive coordinates of the LASSO coefficients, was used to detect the 

interval in which the joint models had the strongest predictive power, representing the region 

where the maximal change of biological behavior occurs before delivery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The maternal metabolome, proteome, and immunome were assessed during the 100-day 
period preceding the day of labor.
(A) Peripheral blood was obtained serially from 63 women during the 100 days preceding 

spontaneous labor. The primary outcome of the analysis was the time to labor (TL), such 

that the prediction of the day of labor did not consider estimates of GA. Raster plots 

depicting the day of sampling for the training (top plot; N = 53, n = 150 samples) and test 

(bottom plot; N = 10, n = 27 samples) cohort, and the TL distribution (range [−112, 0]), 

calculated as the difference between the day of labor (TL 0, red line) and the day of 

sampling (filled dots). At least one sample was collected on any day of the 100 days 

preceding the day of labor (cumulative count plot). (B) Plasma samples were used in the 

analysis of the circulating metabolome (high-throughput mass spectrometry) and proteome 

(aptamer-based technology). Whole-blood samples were used in the analysis of the systemic 
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immunome (mass cytometry). In total, 7142 features were generated per sample from all 

three datasets and integrated into a multivariate model to predict the TL.
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Fig. 2. The late-gestational maternal interactome highlights interconnectivity between biological 
systems.
(A to C) Intraomic correlation networks of metabolome, proteome, and immunome features 

during the 100 days preceding labor in the training cohort (N = 53). Each node represents a 

biological feature. Correlations between features are represented by edges. Red/blue nodes 

highlight features positively/negatively correlated with the TL. Dot size indicates the −log10 

of P value of the correlation (Spearman). Clusters of features most highly correlated with the 

TL are shaded in gray and annotated. (D) Distributions of all correlations within (intraomic) 

and between (interomic) modalities in the original as well as simulated random datasets. The 

false discovery rate (FDR) threshold of 0.05 was computed from the generated distribution 

of random features in a target-to-decoy approach to filter the correlations with FDR > 0.05, 

corresponding to an absolute (|x|) correlation coefficient cutoff at 0.46. (E) Chord diagram of 

interomic (between-dataset) correlations between metabolome, proteome, and immunome 

features in the last 100 days before the day of labor. The outer circle represents all features 

with FDR-adjusted absolute correlation coefficients [Spearman R (0.46, 1.0), FDR < 0.05], 

colored by the respective biological modality. Shaded inner connections represent interomic 

correlations between the metabolome, proteome, and immunome as specified by color 

codes. The number of FDR-adjusted interactions between two omics is visualized as 

normalized to the number of total possible interomic interactions. (F) Quantification of the 

number of interomic interactions visualized in (E). The number of interomic correlations 

between the three biological modalities divided into weak (0.46 to 0.6), moderate (0.6 to 

0.8), and strong (0.8 to 1.0) absolute correlation coefficients is shown.
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Fig. 3. Multiomic modeling of the maternal interactome predicts labor onset.
(A) Integration of all three modalities (metabolome, proteome, and immunome) using a 

stacked generalization (SG) method. (B and C) Regression of predicted versus true TL 

(days) derived from the SG model [training cohort, Pearson R = 0.85, 95% CI [0.79 to 0.89], 

P = 1.2 × 10−40, RMSE = 17.7 days, N = 53 patients (B); test cohort, Pearson R = 0.81, 95% 

CI [0.61 to 0.91], P = 3.9 × 10−7, RMSE = 17.4 days, N = 10 patients (C)]. (D) Volcano plot 

depicting the 45 most informative SG model features in the training cohort. Feature 

importance to the overall predictive model is plotted on the x axis (SG model coefficient), 

correlation with the TL is plotted on the y axis [−Log10 (P value)]. Orange colors depict 

positive correlations with the TL, and teal colors depict negative correlations. See table S3 

for number-to-feature key. (E) Pathway enrichment analysis was performed on metabolic 

and proteomic top SG model features (see Materials and Methods; P values derived from 

hypergeometric and Fisher’s test). All 45 most informative model features are depicted in a 

correlation network to visualize interomic correlations (edges indicate an absolute R > 0.46, 

N = 53). See also Fig. 4, fig. S1, and table S3.
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Fig. 4. Trajectories of the maternal metabolome, proteome, and immunome reveal alterations in 
prelabor dynamics.
(A) Distribution of relevance-of-fit P values for the trajectories assigned to SG model 

features in comparison to nonselected features demonstrates goodness of fit of curve 

classification (N = 53 patients, n = 150 samples). Feature trajectories were classified as 

linear or quadratic on the basis of the goodness of fit with Akaike information criterion and 

relevance of fit with associated P value (F statistic). Degree 1 (B to D), degree 2a (E to G), 

or degree 2b (H to J) trajectories are plotted over time for the metabolome (left), proteome 

(middle), and immunome (right). Lines represent smoothened spline (df = 3, Z-scored) for 

all features. The most informative model features are highlighted and numbered (in 

reference to Fig. 3D and table S3). A representative feature is shown (inset) for each 

trajectory type including its correlation with TL (Spearman coefficient [95% CI], and 
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associated P value). (K) Radar plot quantifying the distribution of degree 1 (linear), degree 

2a [quadratic, accelerating (surging of an increasing or decreasing pattern over time)], and 

degree 2b [quadratic, decelerating (plateauing of an increasing or decreasing pattern over 

time)] trajectories among all multiomic features. See also figs. S2 to S6 and tables S3 and 

S4.
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Fig. 5. A breakpoint in omic trajectories demarcates the transition from pregnancy maintenance 
to prelabor biological adaptations.
(A) Schematic of a piecewise fused LASSO regression combining predictions rho (ρ) of two 

regression models built from all datasets before and after a particular TL threshold, while 

sliding the threshold across the time axis. Plotting ρ over time reveals the time point of 

highest accuracy (maximum ρ). (B) Maximum ρ of 0.95 was observed at day −23 (range 

[−27, −13]; N = 53 patients). (C) Summary of concerted biological adaptations depicting a 

clock to labor. Angiogenic factors: Decreased Angiopoietin-2, sTie-2, and VEGF121. Aging 

fetal membranes: Increased PLXB2 and DDR1. Placental signaling: Increased Activin-A 

and Siglec-6. Coagulation capacity: Decreased ATIII and increased uPA. Immune 

responsiveness: Increased Cystatin C, increased pSTAT1 responses in NK and pDC upon 

IFN-α stimulation, and decreased granulocyte frequencies. A switch to prelabor biology 

occurs at day −23 (range [−27, −13]; pink shaded phase) before the day of labor. The 

prelabor phase is characterized by immune regulation: Stagnating pSTAT1 responses in NK 

and pDC upon IFN-α stimulation, decreased basal IκB and pMK2 signals in CD4+ and 

CD8+ T cells, decreased pCREB in ncMC upon GM-CSF stimulation, decreased pSTAT6 

responses in DC upon IFN-α stimulation, decreased pMK2 in B cells upon LPS stimulation, 

and decreased MyD88 responses in cMC upon LPS and GM-CSF stimulation. Regulation of 

Macrophage inhibitory cytokine-1 (MIC-1), Secretory Leukocyte Peptidase Inhibitor (SLPI), 

and Lymphocyte-activation gene 3 (LAG3). Surging Cystatin C and IL-1R4. Endocrine 

signaling: Surging 17-OHP isomers, 17-hydroxypregnenolone sulfate, and cortisol isomer.
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