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Abstract

High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian diffusion assumption 

that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white 

matter micro-structure with greater precision. However, HARDI methods such as Diffusion 

Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, 

resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to 

improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the 

Orientation Distribution Function (ODF) with a limited number of diffusion-weighted 

measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly 

accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required 

traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS 

in the q-space of diffusion signal measurements and fail to take into consideration information 

redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional 

Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and 

the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-

dMRI is the first work that applies compressed sensing in the full 6D k–q space and reconstructs 

the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. 

Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling 

in k–q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low 

root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-

fold reduction in q-space).

1 Introduction

Diffusion MRI (dMRI) is a unique non-invasive technique to investigate the white matter in 

brain. In dMRI, MR signal attenuation E(q) = S(q)/S(0) is a continuous function that 

depends on the diffusion weighting vector q ∈ ℝ3, where S(q) is a diffusion-weighted 

measurement at q, and S(0) is the measurement without diffusion weighting at q = 0. A 

central problem in dMRI is to reconstruct the MR signal attenuation E(q) from a limited 

number of noisy measurements in the q-space and to estimate some meaningful quantities 

such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function 
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(ODF). The EAP P(R), which is the Fourier transform of E(q) under the narrow pulse 

assumption [1], fully describes the Probability Density Function (PDF) of water molecule 

displacements in a voxel. The radial integral of EAP results in the ODF [1], a PDF defined 

on S2. By assuming a Gaussian EAP, Diffusion Tensor Imaging (DTI) requires only a dozen 

of measurements for estimating the diffusion tensor for the EAP or the diffusion signal. 

However, it is well reported that DTI cannot fully characterize complex micro-structure such 

as crossing fibers [1]. On the other hand, Diffusion Spectrum Imaging (DSI) is a model-free 

technique for EAP estimation. However, DSI normally requires about 515 signal 

measurements in q-space, causing a scan time as long as an hour, thus limiting its clinical 

utility.

Compressed Sensing (CS) [2] is known for its effectiveness in signal reconstruction from a 

very limited number of samples by leveraging signal compressibility or sparsity. In general, 

the stronger the assumption is used in reconstruction, the less number of samples is needed. 

Note that the assumption in CS is always true if the dictionary is devised appropriately to 

sparsely represent signals. k-space CS techniques, such as Sparse MRI [3,4], have been 

proposed to reconstruct MR images from a sub-sampled k-space, where the sparsity 

dictionaries are the wavelet basis and the total variation operator. In dMRI, existing 

techniques mainly focus on applying CS to the q-space [5,6,7]. [8,5,6] represented diffusion 

signal and EAP discretely, which suffers from numerical errors in regridding and numerical 

integration. [9,10,7] represented diffusion signal and EAP continuously, which have closed 

form expressions of Fourier transform and ODF/EAP calculation. However, this line of work 

fails to harness information redundancy in the k-space. The correlation of the k-space and 

the q-space can be employed for even greater sub-sampling, thus further reducing scanning 

while retaining good reconstruction accuracy. To our knowledge, [11,12] are the only works 

on signal and ODF reconstruction in joint k–q space by using single-shell data (single b 

value), i.e., ℝ3 × S2. However, reconstruction of continuous diffusion signal and EAP in 

whole q-space ℝ3 is much more challenging than single shell S2. In this paper, we propose a 

framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for 

reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-

space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies 

compressed sensing in the full 6D k–q space and reconstructs the diffusion signal in the full 

continuous q-space and the EAP in full continuous displacement R-space. A preliminary 

abstract of this work was published in [13].

2 Compressed Sensing dMRI in Joint k–q Space

2.1 Sampling and Reconstruction in the 6D Joint k–q Space

Considering the diffusion-attenuated signal S(x, q) as a complex function in a 6-dimensional 

(6D) space, i.e. 3D voxel x-space and 3D diffusion q-space, for a fixed q value, the 

magnitude of S(x, q), denoted as |S(x, q)|, is a 3D diffusion weighted image volume. Then 

the k-space measurements S(k, q) and the EAP are related by [14]
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P (x, R) = ∫
x ∈ ℝ3

1
S(x, 0) |∫

k ∈ ℝ3S(k, q)exp −2πjxTk dk|

|S(x, q)|

exp −2πjqTR dq
(1)

where S(k, q) is the 3D Fourier transform of S(x, q) over x, and S(x, 0) is the image volume 

with q = 0. Two Fourier transforms are involved: the Fourier transform between S(k, q) in 

scanning k-space and S(x, q) in voxel x-space for any fixed q, and the Fourier transform 

between E(x, q) = |S(x, q)|/S(x, 0) in diffusion q-space and EAP P(x, R) in displacement R-

space for a voxel x. Instead of dense sampling in k-space and q-space, sparse sampling in 

both spaces can significantly reduce the scanning time. Fig. 1 is an overview of the 6D space 

sampling and reconstruction framework that will be discussed in this paper. The goal is to 

reconstruct continuous functions E(x, q) and P(x, R) from a small number of samples of 

S(k, q) in the joint 6D k–q space.

A naive approach to 6D-CS-dMRI is to perform two CS reconstructions in association with 

the two Fourier transforms in Eq. (1). For a fixed q, Sparse MRI can be used to reconstruct 

the 3D diffusion weighted (DW) images S(x, q) from samples in k-space [3]. Then all these 

3D DW images can be used in a CS-dMRI technique to reconstruct the EAP [6,7]. This 

approach separates the estimation into two independent steps. However, the first step fails to 

take into consideration the diffusion signal in the same voxel across different q values, and 

in the second step, information of different voxels in the same DW images is not used.

2.2 6D-CS-dMRI Using Joint Optimization

We propose a novel reconstruction framework to jointly reconstruct the diffusion signal and 

EAP from the 6D space. For simplicity, we assume in the following that the baseline image 

S(x, 0) is known or pre-reconstructed by Sparse MRI [3]. The goal here is to estimate S(x, q) 

and P(x, R) from a number of samples of S(k, q) in Eq. (1).

We use sv to denote the partial Fourier sample vector of the v-th volume S(x, qv) and si to 

denote the vector of the diffusion weighted signals S(xi, q) at voxel i with different q values. 

We assume that the magnitude of the diffusion signal vector si can be sparsely represented 

by a real basis set M and coefficient vector ci, i.e. si = Mci⊙ψi, where ψi is the complex 

vector with unit magnitude that contains phase information, and ⊙ means element-wise 

multiplication. Then we estimate coefficients {ci} by solving

min
ci , sv , ψi

∑
v = 1

Nq
‖ℱpsv − sv‖2

2 + λ1TV sv + λ2‖Φsv‖1 + λ3 ∑
i = 1

Ns
‖ci‖1 s . t

. Mci ⊙ ψi = si ∀i,
(2)

where Nq is the number of DW images, Ns is the number of spatial voxels, ℱp is the partial 

Fourier transform operator [3], TV(·) denotes the total variation operator, Φ is a chosen 

wavelet dictionary. Note that si is a complex vector because sv is complex, thus the signal 

representation Mci = |si| is only applied to the magnitude of si when M is a real basis set. 

The first three terms in Eq. (2) originate from Sparse MRI [3]. The sparsity term of {ci} and 
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the equality constraint are from sparse representation in CS-dMRI [6,7]. Eq. (2) is 

essentially a non-convex optimization problem for variable ({ci}, {ψi}), because of the 

constraints Mci ⊙ ψi = si, ∀i.

We solve Eq. (2) using Alternating Direction Method of Multipliers (ADMM) [15]. ADMM 

is typically used for convex optimization, but it can also obtain a local minimum for some 

non-convex optimization problems [15]. The augmented Lagrangian cost function in 

ADMM is

min
ci , sv , ψi , Ui

∑
v = 1

Nq
‖ℱpsv − sv‖2

2 + λ1TV sv + λ2‖Φsv‖1 + λ3 ∑
i = 1

Ns
‖ci‖1

+ ρ
2 ∑

i = 1

Ns
‖Mci ⊙ ψi − si + Ui‖2

2,
(3)

where Ui is the complex Lagrangian variable U for voxel i, and ρ is the augmented 

Lagrangian parameter. Note that

∑
i = 1

Ns
‖Mci ⊙ ψi − si + Ui‖2

2 = ∑
v = 1

Nq
‖sv ci, ψi − sv + Uv‖2

2 (4)

where Uv denotes the complex Lagrangian variables for DW images {sv} with qv, and 

sv({ci, ψi}) means complex DW images calculated by {ci} and {ψi} based on the basis 

representation si = Mci ⊙ ψi, ∀i. Then the optimization can be separated into a sequence of 

three subproblems that can be solved iteratively:

ci
(k + 1), ψi

(k + 1) ≔ arg min
c, ψ

‖Mc ⊙ ψ − si
(k) − Ui

(k) ‖2
2 + 2

ρλ3‖c‖1 (5a)

sv
(k + 1) ≔ arg min‖ℱps − sv‖2

2 + λ1TV(s) + λ2‖Φs‖1

+ 0.5ρ‖svk ci, ψi − s + Uv
(k)‖2

2 (5b)

Ui
(k + 1) ≔ Ui

(k) + Mci
(k) − si

(k) (5c)

Note: 1) for complex vector f = (f1, f2, … , fn)T, f = f1, f2, …, fn
T , ‖f‖2

2 = ∑m = 1
n |fm|2. 2) 

If ∥f∥ ≥ ∥g∥, then ∥f − g∥2 ≥ ∥f∥ − ∥g∥, and the equality holds if and only if fm and gm have 

the same phase, ∀m. Thus c and ψ in Eq. (5a) can be solved separately by

ψi
(k + 1) ≔ Ph si

(k) − Ui
(k)

(6a)

ci
(k + 1) ≔ arg min

c
‖Mc − |si

(k) − Ui
(k)|‖2

2 + 2
ρλ3‖c‖1 (6b)
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where for a complex vector f, Ph(f) ≔ (f1/|f1|, … , fm/|fm|)T is the complex vector f divided 

by the magnitude values in each dimension, i.e., f = |f|⊙Ph(f).

Note that 1) The initialization of sv
(0)  are set as the DW images {sv} estimated by Sparse 

MRI [3,16], and Uv
(0)  are set as zero. Thus the naïve 6D-CS-dMRI result is actually ci

(1)

after the initialization and the subproblem Eq. (5a) when k = 1; 2) Eq. (6b) is performed for 

each tissue voxel using CS-dMRI technique [6,7], and Eq. (5b) is performed for each DW 

image volume using a variation, which considers the last term with sv
(k) ci, ψi , of the 

efficient method in [16]. Since Eq. (6a), Eq. (6b) and Eq. (5b) are iteratively updated, the 

information in voxel level and volume level are jointly used in each subproblem.

2.3 6D-CS-dMRI Using Learned Continuous Dictionary in SPFI

6D-CS-dMRI in Eq. (2) requires a dictionary for sparsely representing the magnitude of the 

diffusion signal. We choose the dictionary via Dictionary Learning Spherical Polar Fourier 

Imaging (DL-SPFI) [7] which learns the DL-SPF dictionary from Gaussian signals, and 

allows a continuous closed form expression for the EAP and diffusion signal. In SPFI 

[17,18], the signal in each voxel is represented by SPF basis, and after estimating the SPF 

coefficients, the EAP is analytically represented by dual SPF basis, i.e.,

E xi, q = ∑
n = 0

N
∑
l = 0

L
∑

m = − l

l
ai, nlmBnlm(q ∣ ζ)

P xi, R = ∑
n = 0

N
∑
l = 0

L
∑

m = − l

l
ai, nlmBnlm

dual(R ∣ ζ)
(7)

where {Bnlm(q|ζ)} are SPF basis functions with scale parameter ζ which form a continuous 

complete basis with Gaussian Laguerre polynomial in radial part and Spherical Harmonics 

in spherical part [17], Bnlm
dual(q)  are the Fourier transforms of SPF basis functions, and EAP 

and diffusion signal share the same coefficients [18]. For DL-SPFI [7], in voxel xi, the basis 

representation is

si = Si
0BDci = Si

0Bai, (8)

where Si
0 is a diagonal scale matrix caused by the baseline image S(x, 0) with q = 0, B is the 

SPF basis matrix with SPF basis functions in its volumes, ai is the SPF coefficient vector, D 
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is the learned parameterization matrix for the learned DL-SPF basis matrix BD, and ci is the 

coefficient vector for the learned DL-SPF basis. It is shown in [7] that the parameterization 

matrix D can be learned from single tensor model, and then adaptively applied to different 

voxels by adaptively setting the scale parameter ζ in B based on the mean diffusivity in 

voxels. The learned matrix D and the adaptive scale setting make ci under DL-SPF basis 

much sparser than ai under the original SPF basis. For 6D-CS-dMRI, we set M = Si
0BD in 

Eq. (2), and set adaptive scale ζ based on mean diffusivity in voxel xi as done in [7].

2.4 Implementation Issues

Following [7], we use SPF basis with N = 4, L = 8 in Eq. (5a) to learn 254 DL-SPF atoms. 

As shown in [7], there are two implementation details which can improve the result of CS-

dMRI in Eq. (5a) using DL-SPFI. 1) The prior E(x, 0) = 1 can be incorporated in Eq. (5a) by 

removing isotropic parts from |si
(k) − Ui

(k)| and B, and focusing the estimation on the 

independent coefficients. 2) Additional regularization can be devised as ∥Λc∥1 instead of 

λ3∥c∥ to give large regularization for the learned basis functions with small energy in the 

space of mixture of tensors. Please refer [7] for more details about these two issues.

There is a masking issue specifically for 6D-CS-dMRI. Note that the dictionary M used in 

Eq. (5a) and Eq. (8) was devised for the diffusion signal whose decay is known to be close to 

mono-/multi-exponential decay, while the noise signal in non-tissue voxels violates this 

property. Thus for non-tissue voxels, the representation Eq. (8) is not sparse, resulting in 

large representation error with the limited number of basis we used. Note that existing CS-

dMRI works [5,6,7] in q-space normally perform estimation voxel by voxel or only 

considering information from neighborhood voxels, thus failed estimation in non-tissue 

voxels will not affect the estimation in tissue voxels. However if the non-tissue voxels are 

considered in Eq. (3), the representation error and total variation caused by these non-tissue 

voxels will dominate the minimization, such that the estimation of the signals in tissue 

voxels is problematic. Thus proper masking has to be used in 6D-CS-dMRI. We first extract 

the brain region using S(x, 0). Then Eq. (5a) is only performed on the tissue voxels. If xi is a 

non-tissue voxel, we set ci = 0 in Eq. (6b), and after Eq. (5b) we also set si = 0. Using this 

strategy, Ui, ψi, ci and si are always zero if xi is a non-tissue voxel. See Algorithm 1 for the 

6D-CS-dMRI pipeline.

3 Experiments

3.1 Evaluation Strategy for CS Reconstruction of DWI/EAP/ODF

RMSE for Data Reconstruction.—Once the coefficient vectors {ci} are estimated, ODF, 

DWI and EAP fields all can be analytically obtained by SPF basis [7,18,19]. With a given 

set of samples of ODF/DWI/EAP, the Root-Mean-Square Error (RMSE) is defined as

RMSE(θ) = 1
N ∑

i = 1

N
θ i − θi

2
(9)
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where θ i is the estimated value for the ground truth θi. The RMSE is calculated for each 

voxel, then the mean RMSE is calculated for an estimated field of DWI/EAP/ODF.

• For DWI signal, we use two sets of samples, where one is the set of 321 uniform 

samples with b = 1200s/mm2, and the other one is the DSI sampling scheme in 

3D q-space. These two sample sets determine two RMSEs, which can be used to 

evaluate the DWI signal reconstruction respectively in a single shell and the 

whole q-space.

• For EAP, we use the 321 uniform orientations for EAP profile with radius 

0.015μm as the samples in displacement space.

• For ODF defined on S2, we use 321 uniform orientations from sphere tessellation 

as the samples.

Sampling Schemes in the Joint k–q Space.—Conventional DSI requires 514 

diffusion-weighted images and one baseline image S(x, 0) [1]. Denoting the spatial size in k-

space as Nx × Ny × Nz, the size of the fully sampled data is then Nx × Ny × Nz × 514. A 3-

fold acceleration was considered in [6,7] by using only 170 samples with maximal b-value 

of 8000s/mm21. Considering E(x, q) = E(x, −q), we remove antipodal symmetric samples 

from these 170 samples to obtain finally 138 samples, resulting in a 3.7-fold q-space 

acceleration. In k-space, we follow the Sparse MRI approach to perform a 3-fold sub-

sampling using a polynomial distribution [3]. Thus we have a sub-sampling scheme in k–q 
space with the total acceleration of approximately 11-fold compared with the full DSI 

scheme.

Evaluation Strategy.—6D-CS-dMRI was evaluated using synthetic and real data. For 

synthetic data with known ground truth, the RMSE can be calculated by comparing the 

estimated DWI/ODF/EAP using sub-sampled data and the ground truth. For real data 

without ground truth, the RMSE is calculated by comparing the results of DL-SPFI using the 

full DSI samples with the results of 6D-CS-dMRI and naive 6D-CS-dMRI using sub-

sampled data.

3.2 Synthetic Data Experiments.

We generated a slice of synthetic data with size 20×20×1×514 using mixture of tensor model 

with eigenvalues [1.5, 0.3, 0.3] × 10−3 mm2/s, S(x, 0) = 1 for all voxels. The generated 

signal is real in the x–q space. By considering its imaginary part as zero, Fourier transform 

was performed to obtain the synthetic ground-truth Fourier samples in k–q space. Then we 

performed 6D-CS-dMRI and naive 6D-CS-dMRI to 11-fold sub-sampled data in k–q space. 

Note that although we generated data with ψi = 1, ∀i, 6D-CS-dMRI still estimates the 

unknown variables {ψi} in reconstruction. To evaluate the robustness to noise, we added 

some complex Gaussian noise in subsamples in k-space with SNR = 30 which is defined as 

S(x, 0)/σ [7], where σ is the variance of the complex Gaussian noise, then we performed 6D-

CS-dMRI and naive 6D-CS-dMRI on the noisy samples in k–q space and re-calculated the 

1https://www.martinos.org/berkin/DSI_Dictionary_Toolbox.zip
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RMSE. We tuned the parameters (λ1, λ2, λ3, ρ) in reconstruction to obtain the best results 

in terms of RMSE of DWI signal in 3D space. Fig. 2 shows the estimated EAP profiles with 

radius 15μm and the mean RMSE calculated respectively for the estimated DWI, ODF and 

EAP fields. It demonstrates that 1) Compared with the naive approach, which introduces 

some small spurious lobes, 6D-CS-dMRI is more robust and obtains sharper EAP profiles 

which are similar to the ground truth as indicated by the lower RMSE for all DWIs, ODFs, 

EAPs. 2) EAP is more difficult to reconstruct, giving larger RMSE than DWI and ODF. 3) 

Although EAP reconstruction RMSEs are larger, the fiber directions shown in EAP profiles 

are close to the ground truth fiber directions. 4) DWI signal in single shell has the lowest 

RMSE, and it is normally easier to be estimated than DWI signal in whole 3D space.

3.3 Real Data Experiments.

We evaluated 6D-CS-dMRI using the real DSI data used in [7,6]1. There is no ground truth 

for real data, thus direct comparison between the estimated DW images and the raw DWI 

data is not appropriate due to noise. Following [7], the coefficients {ci} were first estimated 

by DL-SPFI from full samples in k–q space, and DWIs, ODFs, and EAP profiles were 

generated from these estimated coefficients as golden standards. Then we estimated the 

coefficients by 6D-CS-dMRI and naive 6D-CS-dMRI using 11-fold sub-sampling, and 

calculated RMSE by comparing the estimated DWIs/ODFs/EAPs with the golden standards 

reconstructed from full sampled data. Mean RMSEs for DWIs, ODFs and EAPs shown in 

Fig. 3 are consistent with the observations in synthetic data experiments, i.e., DWI signal in 

a single shell is the easiest quantity to be reconstructed, while EAP profile is the most 

difficult quantity. From Fig. 3, the small RMSE (3.99% for DWIs, 13.44% for EAPs) given 

by 6D-CS-dMRI using 11-fold sub-sampled data indicates that reconstruction using sub-

sampled data gives results similar to reconstruction using the full samples. Since acquiring 

the full DSI samples requires nearly one hour, the 11-fold subsampled data only need less 

than 6 minutes. Similar to the synthetic data experiments, we also added complex Gaussian 

noise with SNR=30 to the sub-sampled k-space data. After adding 

∑k, q |S(k, q) − S*(k, q)|2

∑k, q |S*(k, q)|2
= 0.279, where S*(k, q) is the golden standard DWI samples in k–q 

space. We then performed 6D-CS-dMRI and naive 6D-CSdMRI on the noisy samples in k–q 
space and re-calculated the RMSEs. It can be seen from Fig. 3 that, compared with naive 

6D-CS-dMRI, 6D-CS-dMRI is more robust to noise.

4 Conclusion

In this paper, we have proposed a novel compressed sensing framework, called 6D-CS-

dMRI, for reconstruction of the continuous diffusion signal and EAP in the joint 6D k–q 
space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in 

the full 6D k–q space and reconstructs simultaneously the diffusion signal in the full 

continuous q-space and the EAP in full continuous displacement R-space. The experiments 

on synthetic data and real data demonstrate that 1) compared with the reconstruction using 

full DSI sampling in k–q space, 6D-CS-dMRI using 11-fold sub-sampling data obtains 

similar results with low RMSE (less than 5% for DWI signal in synthetic data and real data), 
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indicating that the scanning time can be reduced from nearly 1 hour to less than 6 minutes; 

2) compared with naive 6D-CS-dMRI, which performs two CS reconstruction respectively 

in the k space and the q space, 6D-CS-dMRI generally obtains lower RMSE and is more 

robust to noise. Our future work is to incorporate the proposed 6D-CS-dMRI method with 

existing imaging techniques in k space, such that 6D-CS-dMRI can be used in clinical 

scanners.
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Fig. 1. 
Overview of reconstruction in 6D k–q space. Dense sampling (left) and sparse sampling 

(right) in both k and q spaces.
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Fig. 2. Synthetic Data Experiment.
Visualization of the estimated EAP profiles with 15μm by 6D-CS-dMRI and naive 6D-CS-

dMRI using 11-fold sub-sampling of the raw data, without and with complex Gaussian 

noise. Also shown are the RMSEs for ODFs and EAPs, and two RMSEs for DWI signal, 

where the first one is calculated for a single shell and the second one for the 3D space.
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Fig. 3. Real Data Experiment.
RMSE images (defined by DWI signal in 3D space) for 6D-CS-dMRI and naive 6D-CS-

dMRI using 11-fold sub-sampling of the raw data, without or with complex Gaussian noise. 

Also shown are the mean RMSEs for DWIs, EAPs and ODFs. The first RMSE of DWI is 

calculated for a single shell and the second RMSE of DWI is for 3D space.
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