Table 2.
Posb | PEc | rgd | rve | EUf | Ag | GRUh | NLi | Dj | Rec | Pre | F1 | MCC | AUC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base | C | T | 20 | 10 | T | S | T | 4 | 128 | 0.676 | 0.537 | 0.598 | 0.558 | 0.926 |
(A) | SC | 0.593 | 0.591 | 0.592 | 0.552 | 0.922 | ||||||||
CA | 0.633 | 0.537 | 0.581 | 0.538 | 0.921 | |||||||||
(B) | F | 0.650 | 0.528 | 0.583 | 0.540 | 0.920 | ||||||||
(C) | 15 | 0.634 | 0.551 | 0.589 | 0.548 | 0.919 | ||||||||
25 | 0.656 | 0.540 | 0.593 | 0.551 | 0.923 | |||||||||
30 | 0.580 | 0.594 | 0.587 | 0.547 | 0.913 | |||||||||
(D) | 5 | 0.622 | 0.472 | 0.537 | 0.490 | 0.910 | ||||||||
13 | 0.663 | 0.540 | 0.595 | 0.555 | 0.923 | |||||||||
(E) | F | 0.570 | 0.483 | 0.523 | 0.474 | 0.899 | ||||||||
(F) | M | 0.561 | 0.407 | 0.472 | 0.418 | 0.875 | ||||||||
(G) | 2 | 0.630 | 0.524 | 0.573 | 0.529 | 0.914 | ||||||||
3 | 0.647 | 0.551 | 0.595 | 0.554 | 0.925 | |||||||||
5 | 0.647 | 0.545 | 0.592 | 0.550 | 0.925 | |||||||||
6 | 0.688 | 0.522 | 0.586 | 0.545 | 0.924 | |||||||||
F | 2 | 0.670 | 0.523 | 0.587 | 0.546 | 0.925 | ||||||||
F | 4 | 0.637 | 0.541 | 0.585 | 0.543 | 0.922 | ||||||||
F | 6 | 0.669 | 0.504 | 0.575 | 0.533 | 0.922 | ||||||||
(H) | 64 | 0.593 | 0.527 | 0.558 | 0.513 | 0.910 |
aOnly different settings are given and other settings (empty values) are the same as the base model. These metrics are calculated on the validation set of DNA-573_Train and the highest values are bolded.
bPseudo-position of a residue: C, SC and CA stand for the centroid of residue, the centroid of residue side-chain and the position of alpha-C atom, respectively.
cUse the relative distance from every node to the sphere center as position embeddings of nodes (T) or not (F).
dRadius of the structural context: it defines the nodes belonging to a graph of a residue, and its unit is Å.
eThe threshold of adjacent matrix: it binarizes a distance matrix to the adjacent matrix to define the adjacent edges belonging to a node, and its unit is Å.
fUse the edge feature vectors (T) or not (F).
gThe aggregation operation in the node update module and the graph update module. S and M stand for sum and max operation, respectively.
hUse GRU (T) or not (F). If GRU is not used, the output ,, equal the intermediate output , , , respectively.
iThe number of GNN-blocks.
j D e, Dv and Du stand for the dimension of encoded edge feature vectors, the dimension of encoded node feature vectors and the dimension of encoded graph feature vectors, respectively. We set DeDvDu.