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Abstract
The optimal extraction of information from untargeted metabolomics analyses is a continuing challenge. Here, we describe
an approach that combines stable isotope labeling, liquid chromatography– mass spectrometry (LC–MS), and a computa-
tional pipeline to automatically identify metabolites produced from a selected metabolic precursor. We identified the
subset of the soluble metabolome generated from phenylalanine (Phe) in Arabidopsis thaliana, which we refer to as the
Phe-derived metabolome (FDM) In addition to identifying Phe-derived metabolites present in a single wild-type reference
accession, the FDM was established in nine enzymatic and regulatory mutants in the phenylpropanoid pathway. To identify
genes associated with variation in Phe-derived metabolites in Arabidopsis, MS features collected by untargeted metabolite
profiling of an Arabidopsis diversity panel were retrospectively annotated to the FDM and natural genetic
variants responsible for differences in accumulation of FDM features were identified by genome-wide association. Large
differences in Phe-derived metabolite accumulation and presence/absence variation of abundant metabolites were observed
in the nine mutants as well as between accessions from the diversity panel. Many Phe-derived metabolites that accumu-
lated in mutants also accumulated in non-Col-0 accessions and was associated to genes with known or suspected functions
in the phenylpropanoid pathway as well as genes with no known functions. Overall, we show that cataloguing a biochemi-
cal pathway’s products through isotopic labeling across genetic variants can substantially contribute to the identification of
metabolites and genes associated with their biosynthesis.
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Introduction
Hundreds of thousands of different chemical compounds
are estimated to exist within the �350,000 species of flower-
ing plants. This metabolite diversity contributes greatly to
plant adaptation and fitness (Pichersky and Lewinsohn,
2011). For example, various specialized metabolites influence
pollination by providing flowers with color and scent,
defend against pathogens and herbivores through their
toxicity, contribute to abiotic stress tolerance and modify
the physical characteristics of the plant body through their
hydrophobicity and structural rigidity.

Advances in the resolution and sensitivity of analytical
techniques permit the detection and measurements of a
greater amount of plant chemical diversity. In particular,
untargeted mass spectrometry (MS) coupled with liquid
chromatography (LC–MS) can detect and quantify, in
relative terms, thousands of metabolites and “metabolite
features” (MS peaks generated by fragmentation and/or ad-
duct formation in the MS source) within a single analytical
run. This information allows for the detection of differences
in all mass features across different genetic or environmental
contrasts. However, in untargeted metabolomics, the only
information collected on a metabolite is its mass-to-charge
ratio (m/z), retention time, relative abundance, and any in-
source-generated fragmentation products. While untargeted
MS techniques are powerful in resolving a metabolome and
identifying differences between genotypes or treatments,
this information alone is rarely sufficient to assign chemical
identities to metabolites or their features. Moreover, any
subsequent chemical formula determination and structural
identification for metabolites of interest proceeds via low-
throughput approaches such as analysis of MS/MS fragmen-
tation patterns and nuclear magnetic resonance spectros-
copy. Knowledge of the precursor of a compound of
interest would significantly reduce the structure space that
would have to be considered when identifying metabolites.

Precursor–product relationships and metabolic pathways
have been studied using both radioactive isotopes (Brown
and Neish, 1955, 1956; Benson et al., 1950; Roughan et al.,
1980) and stable isotopes, with the advent of highly accurate
MS (Weng et al., 2012; Allen et al., 2015; Wang et al., 2018).
In most labeling studies, a few metabolites of known mass
and identity are tracked, despite the fact that dozens to
hundreds of other metabolites will also incorporate the la-
bel. Several computational programs have been developed
to complement isotopic labeling studies and identify labeled
metabolites and metabolite features in LC and GC MS data-
sets (e.g. DLEMMA and MISO [Feldberg et al., 2009; Feldberg
et al., 2018; Dong et al., 2019] X13CMS [Huang et al., 2014],
MIA [Weindl et al., 2016], geoRge [Capellades et al., 2016],
and MetExtract [Bueschl et al., 2012; Bueschl et al., 2017;
Doppler et al., 2019]). Here, we describe the development
and implementation of a new XCMS-based (Smith et al.,
2006) analytical pipeline to detect isotopically labeled
metabolite features in untargeted MS datasets. We applied
our method (named Pathway of Origin Determination in

Untargeted Metabolomics or PODIUM) to identify metabo-
lites incorporating ring-labeled [13C]-phenylalanine (Phe) in
stems of WT Col-0 and nine mutants in core enzymes of
Arabidopsis thaliana phenylpropanoid metabolism. In addi-
tion, we show that the library of Phe-derived MS features
can be applied in genome-wide association (GWA) studies
to identify genes involved in the biosynthesis of known and
yet-uncharacterized Phe-derived metabolites.

Results

A [13C6]-Phe isotopic labeling strategy identifies
soluble metabolites derived from phenylalanine in
Arabidopsis stems
We developed an isotopic labeling strategy and computa-
tional tool to identify MS features that have incorporated
an isotopically labeled precursor. This approach adds impor-
tant information to LC–MS analyses that can be used to
filter metabolomics data sets to focus on a metabolic path-
way and metabolites derived from a metabolic precursor of
interest. The Arabidopsis phenylpropanoid pathway was
chosen to develop and evaluate this method because [13C6]-
Phe is rapidly incorporated into endogenous substrate pools
(Wang et al., 2018), most of the reactions in the canonical
pathway have been resolved, and many Arabidopsis soluble
phenylpropanoid metabolites have already been identified
(Fraser and Chapple, 2011; Vanholme et al., 2012). Thus, the
results of our study could be benchmarked by comparison
to existing data on genes, enzymes, and metabolites. If suc-
cessful, this method should identify known players involved
in this metabolic pathway and by extension, could be
expected to identify novel genes and metabolites when ap-
plied to the investigation of more poorly explored pathways.

Phe-derived metabolite features were identified by com-
paring mass-to-charge ratios (m/z) and retention times for
mass features collected and quantified by LC–MS from tis-
sues fed with either a [13C6]-Phe or [12C]-Phe precursor
(Figure 1). To specifically identify the precursor-derived mass
features, we identified peak-pairs. Peak-pairs are defined as
co-eluting MS features that have a difference in m/z corre-
sponding to the number of isotopically labeled carbons in
the labeled precursor relative to natural 12C-form. To help
eliminate false positives caused by co-eluting metabolites or
experimental artifacts, only those peak-pairs whose labeled
peak occurred at significantly higher levels in the 13C-fed
versus 12C-fed samples were retained. In the end, the user is
given .csv files containing the m/z, retention time windows,
and ion abundance for all identified MS features across all
samples that were put through the pipeline (i.e. the stan-
dard XCMS output), and also a file containing the same set
of information but only for only identified 12C-13C peak-pair
clusters. Detailed information about the program we devel-
oped can be found in Supplemental File S1.

We evaluated the effectiveness of our labeling and analyti-
cal strategy for phenylpropanoids in Arabidopsis stems by
examining the degree of labeling in four representative
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metabolites derived from different branches of the pathway.
All mass features throughout this paper are referred to by
their negative ion mode (which includes [M-H]– and any ad-
duct ions) m/z ratio and retention time using a C18 reverse-
phase column. For example, in wild-type Col-0, the pathway
intermediate p-coumaric acid has an [M-H]– m/z value of
163 and elutes at 714 s. The mass feature is therefore re-
ferred to as Phe_M163T714 (the “Phe_” prefix denotes that
this feature is found in the FDM, as opposed to the GWA
dataset to be described later). The pool of p-coumaric acid
was labeled in the presence of [13C6]-Phe and the six heavy
carbon atoms caused the labeled form to have a m/z ratio
of 169 (Phe_M169T714). We found that peaks in a peak-
pair vary in their relative abundance depending upon pre-
existing metabolite abundances and turnover rates
(Figure 2). The ion counts for Phe_M169T714 were 100-fold
higher than the background in the [12C]-Phe fed sample,
indicating that Phe_M169T714 was derived from [13C6]-Phe
(Figure 2, A). The Phe_M169T714 isotope-labeled form
of the p-coumaric acid almost completely replaced the
12C form of the metabolite in the [13C6]-Phe fed sample
during the 24 h feeding experiment. This extensive labeling
is consistent with rapid turnover of p-coumaric acid as an
intermediate of phenylpropanoid metabolism. Our pipeline
also effectively detected less efficient labeling of compounds.
For example, the abundant flavonol-glycoside kaempferol-3-
rhamnoside-7-rhamnoside (Phe_M577T729) and the hydrox-
ycinnamate ester sinapoylmalate (Phe_M339T736) co-eluted
with + 6 Da features (Phe_M583T729 and Phe_M345T736,

respectively) in labeled tissues, indicating that they were de-
rived from [13C6]-Phe, as expected. The lower relative accu-
mulation of the 13C-form for those metabolites, in contrast

Figure 1 Summary of the pipeline to feed, detect, and positively identify metabolites derived from an isotopically labeled precursor. A, [13C6]-Phe
and [12C]-Phe are fed to biologically equivalent stem tissue. B, Metabolites are extracted and separated on LC–MS and peaks are identified
with XCMS. All peaks are scanned for MS features consistent with an incorporated [13C6]-Phe. C, Peak-pairs are identified. M301T200 (named as
such because it has a [M-H]– m/z of 301 and retention time of 200 s) is a Phe-derived feature because: (1) At 200 s, a peak 6 Da larger than M301
(red color and named M307T200) is detected in [13C6]-Phe-fed tissue. (2) M307T200 in [13C6]-Phe-fed tissue is significantly more abundant
than M307T200 in [12C]-Phe-fed tissue. Sketch of Arabidopsis stem was downloaded from FigShare (Bouché, Frédéric [2018]: https://doi.org/10.
6084/m9.figshare.7159949.v1).

Figure 2 Labeling of four known Phe-derived compounds. Each panel
shows the abundance of the indicated Phe-derived metabolite in the
[12C]-Phe and [13C6]-Phe-fed wild-type Col-0 stems. Blue bars repre-
sent [12C]-derived metabolites and red bars represent the correspond-
ing metabolite(s) identified as incorporating one or two [13C6]-Phe
molecules. Error bars indicate ±SD for three biological replicates.

494 | THE PLANT CELL 2021: 33: 492–510 J. P. Simpson et al.

https://doi.org/10.6084/m9.figshare.7159949.v1
https://doi.org/10.6084/m9.figshare.7159949.v1


to p-coumaric acid, was consistent with large pre-existing
pools of flavonols and sinapoylmalate in stems, to which a
proportionately modest number of 13C-derived molecules
were added during the feeding period. Knowing that there
are compounds built from multiple Phe-derived subunits,
we also searched for + 12 m/z peak-pairs. Guaiacyl (8-O-4)
feruloylmalate is a neolignan thought to be produced from
the conjugation of two different Phe-derived intermediates,
coniferyl alcohol and feruloylmalate. Accordingly, the unla-
beled guaiacyl (8-O-4) feruloylmalate (Phe_M505T750) co-
eluted with + 6 Da feature (Phe_M511T750) and a + 12
Da feature (Phe_M517T748) in the [12C]-Phe-fed sample.
These isotopomers correspond to guaiacyl (8-O-4) feruloyl-
malate where one or both of the Phe-derived components
was derived from [13C6]-Phe. These results demonstrate that
our computational approach detects and quantifies the la-
beling pathway intermediates and end-products in a way
that reflects underlying metabolic processes.

Based on our current understanding of Phe metabolism,
most of the peak-pairs detected by application of the pipe-
line should exhibit an m/z difference of 6 (or higher multi-
ples of 6 such as 12, or 18) due to incorporation of the
entire phenyl ring into products. To evaluate this specificity,
we set the program to also detect peak-pairs that exhibited
an m/z difference of 1–12. As expected, most peak-pairs
detected were indeed + 6 (Supplemental Figure S1). Because
the data were not deisotoped, many of the + 4 and + 5
peak-pairs detected could be attributed to the pairing of a
natural + 1 and + 2 isotopologue of a [12C6]-Phe-derived
compound to a feature that incorporated a [13C6]-Phe-de-
rived ring. To estimate this type of isotopologue pairing, + 1
and + 2 isotopologues were predicted for the [12C6]-Phe-de-
rived features using CAMERA (Kuhl et al., 2012), and then
compared against the lists of + 5 and + 4 peak-pairs. There
were 390 M + 1 and 108 M + 2 isotopologues predicted by
CAMERA among the [12C6]-Phe-derived features. Of those
isotopologues, 372 and 66 were captured as the [12C] com-
pound in a + 5 peak-pair and + 4 peak-pair, respectively.
Similarly, 695 of the 1094 + 7 peak-pairs were the result of
pairing a natural Phe-derived compound to a newly synthe-
sized [13C6]-Phe-derived compound that contained an addi-
tional 13C in its Phe sidechain (Supplemental Data Set S1).
While isotopologues can account for some of the non + 6
pairings, the remaining peak-pairs exhibiting mass differences
other than 6 may correspond to unknown products pro-
duced from the catabolism of Phe, or false-positive detection
of co-eluting compounds of differing masses.

The Phe-derived metabolomes of -type Col-0 differ
from those of enzymatic and regulatory mutants of
the pathway
The FDM was established in 10 different lines of the Col-0 ac-
cession (Supplemental Table S1). In addition to Col-0 -type
plants, nine mutants with known alterations in phenylpropa-
noid accumulation were labeled and profiled. These included

plants harboring hypomorphic alleles that affect enzymatic
steps in the pathway including reduced epidermal fluorescence
(ref) 3-3, which contains a mutation in CINNAMATE 4-
HYDROXYLASE (C4H; Schilmiller et al., 2009), omt-1, which is
a T-DNA knockout mutant of CAFFEIC ACID/5-
HYDROXYFERULIC ACID O-METHYLTRANSFERASE 1 (OMT;
Goujon et al., 2003), ccr1, a T-DNA null mutant of
CINNAMOYL-COA REDUCTASE 1 (CCR; Mir Derikvand et al.,
2008), and fah1-2, a loss-of-function mutant of FERULATE 5-
HYDROXYLASE (F5H; Chapple et al., 1992). The tt4-2 mutant,
which produces no flavonoids because it is null for
CHALCONE SYNTHASE (CHS), was used to identify these
metabolites within the profiled sets (Burbulis et al., 1996). In
addition to these single mutants, multiple mutants lacking ac-
tivities encoded by multiple paralogs were also profiled. These
included a triple mutant with T-DNA insertions in three of
the four p-COUMAROYL COA LIGASE (4CL) genes, 4cl1 4cl2
4cl3 (Li et al., 2015), and the cadC cadD double mutant which
contains T-DNA insertions in two CINNAMYL ALCOHOL
DEHYDROGENASE (CAD) genes required for the synthesis of
cinnamyl alcohols (Anderson et al., 2015b). The med5a
med5b double mutant, which is null for both MED5 subunit
paralogs of the MEDIATOR transcriptional complex (Bonawitz
et al., 2012, 2014) exhibits enhanced flux into the phenylpro-
panoid pathway and also restores growth to the severely
dwarfed ref8–1 hypomorphic mutant of P-COUMARATE 3’-
HYDROXYLASE (C3’H) without reversing its chemical pheno-
type (Franke et al., 2002; Bonawitz et al., 2012). This feature
permits the analysis of the ref8 mutant’s chemistry without
the complications of radically different growth. The med5a
med5b mutant was also used to evaluate the consequences of
enhanced pathway flux and as a control for the ref8–1 med5a
med5b triple mutant to study the effect of reduced C30H
activity.

In total, 28,136 MS features were identified across the 10
genotypes by our isotope-detection peak picking protocol.
Of these, 2,829 were predicted by our peak-pairing method
to contain all six carbons from the aromatic ring of Phe,
and 448 features were predicted to be derived from multiple
Phe molecules (Table 1 and Supplemental Data Set S2).
Because samples were run in negative ion mode, metabolites
that had a positive charge (e.g. anthocyanins) were not
detected. In addition to intact metabolites derived from
Phe, the library also contains fragments and adducts of in-
tact Phe-derived metabolites that were formed in the MS
source that met the peak-pairing criteria described above.

As stated above, the enzymatic and regulatory mutants
used in this study produce many Phe-derived soluble metab-
olites that differ quantitatively or in terms of presence/ab-
sence from wild-type Col-0 (Fraser and Chapple, 2011;
Vanholme et al., 2012). To test whether our pipeline
detected these differences, we applied orthogonal projec-
tions to latent structures discriminant analysis (OPLS-DA;
Bylesjö et al., 2006) to the 30 12C-Phe-fed samples (10 geno-
types with 3 replicates each) based on the ion abundance
of every predicted Phe-derived metabolite feature. In the
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OPLS-DA score plot (Figure 3), most mutant genotypes oc-
cupied distinct spaces across the two components with clear
clustering of the three replicates. This pattern suggests that
the method is reproducible in detecting Phe-derived MS-fea-
tures and that the Phe-derived features vary in their accu-
mulation between the different genotypes.

One benefit to measuring a suite of metabolites derived
from a specific biochemical pathway is that changes in carbon
allocation to a pathway in response to enzymatic or regula-
tory perturbations can be assessed. To this end, we tabulated
relative changes in the total ion counts and individual feature
counts in each phenylpropanoid pathway mutant and com-
pared them with wild type. We note that the abundance of
Phe-derived MS-features may be influenced by the excess Phe
provided during labeling, and different Phe-derived com-
pounds may ionize differently. Nevertheless, the aggregated
ion counts for Phe-derived metabolite features from samples
that were fed with 12C-Phe was significantly higher in most of
the mutants relative to their wild-type controls (Figure 4).
Thus, perturbations in many phenylpropanoid-related genes
cause Phe-derived pathway intermediates and end products
to be redirected to metabolites that are absent or of low
abundance in the wild type. However, this is not true for
omt1, or tt4-2 and fah1-2, even though they lack flavonoid
glycosides and sinapoylmalate, respectively, two classes of
abundant Phe-derived metabolites. We also tested whether
PODIUM optimally extracted likely Phe-derived MS features,
relative to all the MS features captured. Indeed, mutants with
a large number of Phe-derived features that differed in abun-
dance relative to wild type (Figures 4, 5) also contained the
fewest non-Phe-derived MS features that were different in
abundance from wild type (Supplemental Figure S2). Next,
we examined differences in ion counts for individual Phe-
derived metabolite features in each mutant compared with
wild type (Figure 5). Mutants that accumulated more total
Phe-derived metabolite features (ref3–3, 4cl1 4cl2 4cl3, ref8–1
med5, ccr1, cadc cadd, med5) also contained multiple features
that accumulated to higher levels than in the wild type. This
finding is in general agreement with previous observations
that some phenylpropanoid-pathway mutants produce novel
compounds that are not detected in wild type (Fraser and
Chapple, 2011; Vanholme et al., 2012; Bonawitz et al., 2014).
Consistent with the total-ion counts, tt4-2, fah1-2, and omt1
did not accumulate as many novel features as the other
mutants.

Labeling of mutants identifies ion abundance
differences in Phe-derived metabolites
We next evaluated whether individual Phe-derived metabo-
lites known to be produced in wild-type Col-0 or are

Table 1 Phe-derived metabolite features collected in wild-type Col-0 Arabidopsis and nine phenylpropanoid pathway mutants

Total features
collected

Total features after removal
of + 1 and + 2 natural

isotopologues

Features incorporating
one [13C6]-Phe

Features incorporating
two [13C6]-Phe’s

Features incorporating
three [13C6]-Phe’s

Features incorporating
four [13C6]-Phe’s

2,829 2,294 2,294 406 39 3

Figure 3 Orthogonal partial least squares discriminant analysis (OPLS-
DA) scores plot showing the effect of genotype on the accumulation
of Phe-derived metabolite features. The different genotypes are la-
beled and distinguished by color, and each dot within each genotype
represents a biological replicate (n = 3). The values below each axis re-
port the percentage of the variance explained by the first two compo-
nents. The plot was computed using the annotated Phe-derived
features from samples that were fed with [12C]-Phe.

Figure 4 Aggregate abundance of Phe-derived metabolite features in
each genotype. Genotypes significantly different from wild type are
denoted by the stars above each bar as determined by one-way
ANOVA (****P-value 5 0.0001; ***P-value of 0.002; **P-value of
0.0043; ns = not significantly different from wild type) corrected for
multiple comparisons using Dunnett’s test. Error bars indicate ±SD of
three biological replicates. The plot was computed using the anno-
tated Phe-derived features from samples that were fed with [12C]-Phe.
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characteristic of mutant genotypes were captured by our la-
beling. We were able to provide tentative identities to 498
MS features as Phe-derived metabolites using multiple crite-
ria. Specifically, Phe-derived metabolites were annotated if
their m/z (±15 ppm) and relative retention time values were
consistent with known Phe-derived compounds in
Arabidopsis and the characterized mutants if they co-eluted
with characteristic daughter ions produced through in-
source MS1 fragmentation, and following post hoc MS/MS
analysis of selected metabolites from unlabeled wild-type
Col-0 plants (Supplemental File S2 and Supplemental Data
Set S2; Afendi et al., 2012; Vanholme et al., 2012; Morreel
et al., 2014; Sundin et al., 2014; Dima et al., 2015).
Metabolite diversity across the mutants was then evaluated
by assigning 94 of the best characterized metabolites to
eight different structurally diverse groups (oligolignols/
lignans/neolignans; flavonol glycosides; and conjugates of
benzenoids, cinnamates, coumarates, ferulates, 5-hydroxyfer-
ulates, or sinapates).

Metabolite abundances for each of the eight groups were
compared between the mutant genotypes by summing the

ion counts for all features belonging to a particular class
(Figure 6). In general, the abundances of metabolites from
each class agreed with previous characterizations of the
mutants (Fraser and Chapple, 2011; Vanholme et al., 2012;
Bonawitz et al., 2014). Specifically, loss of C4H, 4CL, C3’H,
CCR1, and OMT1 resulted in the production of hydroxycin-
namic acid (HCA) conjugates (i.e. HCA conjugated to glu-
cose or malate) that were not abundant in wild type. This
included accumulation of cinnamoyl conjugates in ref3–3,
coumaroyl derivatives in 4cl and c3’h (i.e. ref8–1 med5a
med5b) mutants, feruloyl conjugates in ccr1, and 5-hydroxy-
feruloyl hexose in omt1 (Figure 6). Reduction of C4H activity
in ref3–3 also resulted in the accumulation of suspected
benzenoids (e.g. hydroxybenzoic acid glucoside) presumably
from a competing reaction that chain-shortens cinnamic
acid that is no longer being used by C4H (Widhalm and
Dudareva, 2015). Sinapoyl conjugates, primarily sinapoylma-
late, were reduced in most mutants that contain perturba-
tions in enzymes required for the synthesis of sinapic acid.
Exceptions to this included the weak C4H allele, ref3–3
(Schilmiller et al., 2009), and ccr1, which may be functionally

Figure 5 Abundance of individual Phe-derived metabolite features in wild-type and mutant genotypes. Colored dots in each panel depicts the av-
erage accumulation (n = 3) of a single metabolite feature in a mutant in comparison to its accumulation in wild type (black dots). Features are or-
dered (left to right) based on their abundance in wild type. Error bars are not plotted, to simplify visualization. The plot was computed using the
annotated Phe-derived features from samples that were fed with [12C]-Phe. The full FDM can be found in Supplemental Data Set S2.
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redundant with CCR2 (Mir Derikvand et al., 2008). Sinapoyl
conjugates increased in the cadC cadD double mutant, pre-
sumably due to decreased conversion of hydroxycinnamal-
dehydes into monolignols and redirection to sinapic acid
synthesis. MED5 is a negative transcriptional regulator of
phenylpropanoid pathway genes and regulatory factors, and
its loss of function caused the accumulation of sinapoylma-
late and other Phe-derived products not abundant in wild
type, such as 5-hydroxyferuloyl hexose, and neolignans
(Bonawitz et al., 2014; Kim et al., 2020). In the ref8–1 med5a
med5b triple mutant, the med5a med5b phenylpropanoid
hyperaccumulation phenotype persisted but was accompa-
nied by loss of C30H-dependent metabolites and accumula-
tion of coumaroyl derivatives.

Hierarchal clustering of Phe-derived metabolite fea-
tures in mutant genotypes identifies metabolites of
similar biosynthetic origins
The variation in all Phe-derived metabolite features in the
different mutant genotypes, relative to wild type, was visual-
ized following hierarchical clustering (Figure 7). In principle,
MS features that are derived from metabolites produced by
the same branch of the phenylpropanoid pathway will co-
vary in two or more genotypes and will co-cluster. For ex-
ample, omt1 and fah1-2 each lack an enzyme critical to the

production of sinapic acid. Those mutants cluster together
(y-axis), and there is a strong reduction in a group of co-
clustering (x-axis) MS features that contain known sinapate
esters. Nevertheless, these two genotypes are distinguished
by the clustering algorithm because omt1 accumulates a
group of metabolites that includes 5-hydroxyferuloyl hexose,
which is a metabolite that is not produced in fah1 (Chapple
et al., 1992).

In addition to applying hierarchical clustering to the iden-
tified metabolites, we also clustered the hundreds of Phe-
derived metabolite features that did not match a soluble
phenylpropanoid identified in a metabolite library (Figure 7,
B). Many of those unknown features may be uncharacter-
ized metabolites produced from Phe, and thus their co-
clustering with known MS features in mutants can provide
information about their biosynthesis and structure. This re-
source can be found in Supplemental Data Set S3.

In addition to the potential identification of novel intact
metabolites, hierarchical clustering can also help identify
MS-induced artifacts, such as isotopologues, adducts, and in-
source fragmentation of intact MS features. CAMERA, a
metabolomics tool widely used to identify and eliminate
artifacts, applies multiple criteria, including identical LC re-
tention times and ion abundance, to group MS features
(Kuhl et al., 2012). CAMERA was not very effective when

Figure 6 Total ion counts for 94 selected Phe-derived metabolites across different genotypes. Each panel shows the summed ion counts (±SD;
n = 3) for one or more tentatively identified Phe-derived metabolites belonging to a specific metabolic class. Metabolites were identified based
matching their m/z values to Arabidopsis Phe-derived metabolite libraries. The identity of some metabolites was also separately confirmed by
their MS/MS fragmentation pattern performed post hoc. The plots were computed using the annotated Phe-derived features from samples that
were fed with [12C]-Phe. A list of metabolites used in this figure can be found in Supplemental Data Set S2.
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applied to the FDM because it was unable to distinguish
many distinct but co-chromatographing Phe-derived metab-
olites. For example, sinapoylmalate and feruloylmalate both
elute between 737 and 739 s but were incorrectly identified
as a single feature by CAMERA. Because CAMERA uses chro-
matographic and spectral information, and hierarchical clus-
tering uses genetic variance, we applied them sequentially to
see if this complementary information about MS features
improved the accuracy of the identification of parent ions
and their Phe-derived daughter ions. The metabolite den-
drogram was split by k-means clustering into 40 groups and
MS features in each cluster were then processed using the
shared retention time information provided by CAMERA.
This grouping approach was evaluated by determining the
variance in retention time for MS features within each k-
means cluster following CAMERA annotation.

For groups of chemically distinct metabolites that share
genetic control, the retention times of features within each
of the 40 k-means clusters were highly variable, indicating
that each k-means cluster also contains MS features derived
from distinct metabolites. Grouping of MS features that
share retention times within each k-means cluster using
CAMERA annotations further partitioned MS features in
each k-means cluster into 2–15 subgroups. The expectation
is that most of these subgroups within a k-means cluster
will contain a single parental ion and multiple fragments or
adducts consistent with fragmentation of the parental ion.
For example, sinapoylmalate and feruloylmalate were in sep-
arate k-means clusters and known Phe-derived fragments of
those two metabolites were clustered with the correct par-
ent metabolite. Applying this process to the entire dataset

and retaining one feature per subgroup (putatively identified
as the parent ion), collapsed the total number of Phe-
derived MS features in the library from 2,294 to 1,337
(Supplemental Table S2). Thus, biochemical pathway
mutants combined with pathway-of-origin labeling and
shared retention time data improved our data processing
pipeline by allowing us to reduce the complexity of the MS
data while avoiding erroneously collapsing metabolite fea-
tures that are derived from distinct compounds.

Functional gene–metabolite relationships can
be identified by combining pathway-of-origin
annotations with metabolic GWA studies
We next assessed the value of applying the FDM to retro-
spectively classify metabolites and MS features within inde-
pendently processed untargeted MS datasets. We
established a metabolome containing 3,906 MS features de-
rived from the analysis of the stems of 422 Arabidopsis nat-
ural accessions. The MS features were used as traits in GWA
analyses in combination with approximately 1.6 million
single-nucleotide polymorphisms (SNPs) that had a minor-
allele frequency greater than 5% in the chosen accession
population. All of the mass features collected from natural
accessions with m/z ratios between 120 and 950 and reten-
tion times between 250 and 900 s were paired with their
corresponding mass feature in the FDM. Although similar
chromatographic approaches were used for both metabo-
lomes, because they were established approximately 2 years
apart, the m/z ratio and retention times of mass features
were not identical and had to be paired within m/z ratio

Figure 7 Dendrogram illustrating log2 fold changes in Phe-derived metabolite features in pathway mutants compared to wild type.
A, Dendrogram for the subset of metabolites assigned a tentative identity based on m/z ratio and Phe in structure. B, Dendrogram including all
Phe-derived MS-features. For both plots, Phe-derived metabolite features were grouped by the complete linkage method for hierarchical clustering
in R (hclust) based on their average log2-fold difference in ion counts compared with wild type. For each metabolite feature, the difference from
wild type is described by a color scale relative to wild type (blue = down, white = no change, red = up). Metabolites with a putative identity are
denoted by colors and numbered (x-axis) and in (B) representative metabolites for each class are labeled on top of the x-axis. The plots were com-
puted using the annotated Phe-derived features from samples that were fed with [12C]-Phe.
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(±15 ppm) retention time windows. The precision of the
dataset pairing was verified by manually checking that the
most abundant features in Col-0 in the GWA dataset and
wild-type Col-0 in the FDM were paired. Differences in re-
tention time and m/z between those abundant features
were then used to validate the pairings of the remaining fea-
tures (Supplemental Data Set S4). In the end, we retrospec-
tively annotated 176 metabolite features in the natural
accessions as derived from Phe and identified tens of thou-
sands of SNPs associated with Phe-derived MS features.

This retrospective annotation identified both intact paren-
tal ions and MS-induced artifacts and fragmentation ions
(e.g. sinapoylmalate and known Phe-derived daughter ions
of sinapoylmalate). In the previous Phe-labeling experiments,
we used hierarchical clustering based on genotype and
shared retention times to collapse many of Phe-derived MS
features into a putative parent ion. Here, in a conceptually
similar approach, we tested whether the association tests in
the GWA could be used to identify likely parental metabo-
lites by identifying groups of metabolite features that co-
chromatograph and associate to the same SNPs. To permit
comparison of SNP-to-metabolite associations without inter-
ference from too many false positive tests, we used tables of
associations with P-values less than 10–4 for the compari-
sons. The differential accumulation of sinapoylmalate and
feruloylmalate and their respective daughter ions was again
used to illustrate the effectiveness of this approach to col-
lapse the MS features into likely metabolites. Specifically, in
numerous natural accessions, a group of Phe-derived metab-
olite features eluted between 716 and 718 s (Figure 8, A)
that included sinapoylmalate (M339T717) and feruloylma-
late (M309T718), Phe-containing daughter ions of sinapoyl-
malate (i.e. m/z 149, 164, 223), feruloylmalate (i.e. m/z 193,
134), and their respective + 1 and + 2 isotopologues (m/z
340, 341, or m/z 310; Figure 8, B). In total, greater than 20%
of the SNPs that associated with sinapoylmalate and its
known fragments (with a P-value of less than 9.99 � 10–5),
or feruloylmalate and its fragments, were shared. There were
no shared associations between sinapoylmalate and feruloyl-
malate and their fragments (Figure 8, C). Based on the suc-
cess of collapsing features associated with sinapoylmalate
and feruloylmalate, we applied this approach to all 176 pre-
dicted Phe-derived features in the GWA dataset. Groups
were predicted as instances where two or more Phe-derived
features share 5% of the same SNP associations and elute
within 5 s of one another. This approach identified 33 fea-
ture groups containing 2–16 MS features, and 36 MS fea-
tures with no apparent fragments (Supplemental Data Set
S5). Within each of the 33 metabolite feature groups, a pu-
tative parent metabolite was selected as the ion that
matched a known Arabidopsis Phe-derived metabolite, or
the feature with the largest m/z ratio and/or largest ion
abundance. We do note that this process may be limited by
ion suppression from co-eluting compounds that may inac-
curately associate dissimilar MS features to a common SNP,
and by the fact that a parent ion is difficult to predict from

MS1 information alone. Nevertheless, by analyzing shared
SNP associations, the list of Phe-derived compounds was re-
duced from 176 to 69 features, 42 of which had m/z values
that matched a known Phe-derived metabolite
(Supplemental Data Set S4).

Phe-derived metabolites vary across Arabidopsis
natural accessions
Variation in the 69 predicted parental Phe-derived metabo-
lite features was assessed in the stems of 422 Arabidopsis
natural accessions (Figures 9, 10 and Supplemental Data
Set S6). The population-average ion count for each pre-
dicted Phe-derived MS feature was compared with the refer-
ence accession Col-0 and the accession that accumulated
the most and least of each respective MS feature (Figure 9).
This comparison shows greater than five-fold variation in
ion abundance between the highest and lowest accumulat-
ing accessions. Figure 10 further illustrates this variation for
specific metabolites and metabolite classes (e.g. benzenoids;
neolignans; flavonoids; 5-hydroxyferulate; and coumaroyl-,
feruloyl-, or sinapoyl-containing metabolites). For many
metabolites, notably coumaroyl hexose, feruloyl containing
metabolites, and 5-hydroxyferuloyl hexose, a small number
of accessions accumulated relatively high levels in compari-
son to most other accessions. By contrast, sinapoylmalate is
present at high levels in almost all accessions but is almost
completely absent in two accessions (ICE120 and ICE107).
The absence of sinapoylmalate has been observed in other
Arabidopsis accessions and results from deletion mutations
in the gene responsible for the transesterification of sinapate
from sinapoylglucose to malate (Li et al., 2010a). Consistent
with these previous studies, ICE20 and ICE107 also exhibit
elevated sinapoylglucose (Supplemental Data Set S6).

GWA identifies genetic variation contributing to
Phe-metabolite variation
To identify loci encoding variation in phenylpropanoid
metabolism, we queried the GWA dataset for SNPs associ-
ated to Phe-derived metabolite features at a P-value less
than 10–4. Using that criterion, the 69 predicted parental
Phe-metabolites formed approximately 59,000 individual
SNP–metabolite associations with 50,675 SNPs (Figure 11, A
and Supplemental Data Set S7). The number of parental MS
features associating to each SNP ranged from 1 to 10
(Figure 11, B). MS features that associate to a particular SNP
may be related either by shared genetic control or because
they represent unidentified fragments or adducts. As these
are all predicted to be Phe-derived, we sought to determine
if variation in these metabolites was associated with genes
with known or suspected functions in the phenylpropanoid
pathway. Associations were placed into three groups:
(1) associations to the core phenylpropanoid pathway genes
used to construct the FDM, (2) associations between metab-
olites and SNPs linked to genes that have an experimentally
verified or suspected function in the phenylpropanoid path-
way (Vanholme et al., 2012), or (3) strong associations to
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genes with no previously established function in the phenyl-
propanoid pathway.

SNPs linked to 11 of the 13 genes used in the mutant la-
beling experiments formed 243 associations to 34 Phe-
derived metabolite features (Figure 11, C and Supplemental
Data Set S8, S9). Seven of these metabolite features that
were affected by SNPs linked to eight core phenylpropanoid
pathway genes were also significantly altered in their accu-
mulation in one or more of the phenylpropanoid mutants
(Figure 11, D). The associations to 4CL were of particular

interest because of the greater than 10-fold increase in the
abundance of associative Phe-derived MS features in the
4cl1 4cl2 4cl3 triple mutant. One of the mutant-induced me-
tabolite features, M253T608, was associated to SNPs linked
to all four 4CL genes. Although its structure is unknown, the
ion abundance of M253T608 was enriched in only 10 acces-
sions (not including Col-0; Figure 11, E), suggesting that
natural genetic variation in 4CLs generates hypomorphic
alleles that lead to M253T608 accumulation. There were
also several SNPs linked to CADC that associated with

Figure 8 GWA and isotopic labeling can resolve distinct metabolites and fragments and isotopologues that co-chromatograph. A, Extracted ion
chromatogram from stems showing all MS features that co-elute with sinapoylmalate (SM) and feruloylmalate (FM). Identified SM and FM frag-
ments are highlighted in red and blue, respectively. B, MS/MS fragmentation of SM (M-H of 339) and FM (M-H of 309). C, The percentage of SNPs
that the parental ions, fragments, and isotopologues of SM and FM share.

The Plant Cell, 2021 Vol. 33, No. 3 THE PLANT CELL 2021: 33: 492–510 | 501

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koaa046#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koaa046#supplementary-data


variation in M327T530, which is a MS feature that has a
mass consistent with a caffeyl alcohol hexoside. Finally, there
was a very strong association between SNPs linked to OMT1
and 5-hydroxyferuloyl hexose (M371T557). This association
was previously identified in an Arabidopsis GWA with leaf-
derived metabolites (Wu et al., 2018), indicating that the
same factors influence its variation in a variety of tissues.

The dataset was also queried for associations to SNPs
linked to genes involved in the phenylpropanoid pathway
other than those represented by mutants in the feeding
experiments. We compiled a list of 210 genes with a puta-
tive or functionally verified role in the phenylpropanoid
pathway (Vanholme et al., 2012). Among the associations at
a P-value of 10–4 or lower, 3,918 unique SNP-metabolite fea-
ture associations were linked (five genes up and five genes
down from SNP) to 205 of the 210 predicted phenylpropa-
noid pathway genes (Supplemental Data Set S7). Because of
the large number of associations, and to reduce false posi-
tive discoveries, we focused on 27 independent regions that
contained a phenylpropanoid-pathway-related gene which
associated to a Phe-derived metabolite feature where at least
one SNP association had a P-value of less than 10–8

(Supplemental Table S3). This list included the functionally
verified examples of associations to 4CL and OMT1, and a
publication-verified association between flavonoid glycosyl-
transferase UGT78D1 (AT1G30530; Jones et al., 2003) and a
flavonoid identified as kaempferol 3,7-di-O-a-L-rhamnoside
(M577T702). The list was largely populated by genes with
experimentally unverified functions, or associations to un-
known Phe-derived metabolites. For example, the strongest
association was between UGT72E3, an enzyme associated
with monolignol glycosylation (Lim et al., 2005) and un-
known metabolite M431T569. The second strongest associa-
tion was between SNPs located across a GDSL lipase gene
cluster (AT1G28580 to AT1G28670) and the accumulation
of feruloylmalate (M309T718). This enzyme cluster contains

sinapoylcholine esterase (Clauss et al., 2008), suggesting that
it, or another enzyme in the cluster, may be involved in
the metabolism of other hydroxycinnamate esters, such as
feruloylmalate, in stems. Another strong association was be-
tween a cluster of four genes encoding putative 2-oxogluta-
rate-dependent dioxygenases and annotated as flavonol
synthases (FLS). Within this cluster, only FLS2 has been
shown to affect flavonol production, whereas FLS3 through
FLS5 in Col-0 are missing critical functional residues (Preuss
et al., 2009). Interestingly, the SNPs linked to the tandemly
duplicated FLS2 FLS3 FLS4 and FLS5 genes were associated
not with flavonols but with five Phe-derived metabolites,
three of which tentatively identified neolignans: guaiacyl
(8-O-4) caffeyl alcohol hexose (M505T630), guaiacyl (8-5)

Figure 9 Abundance ranges of Phe-derived metabolite features in 422
Arabidopsis natural accessions. Sixty-nine metabolite features in the
GWA dataset predicted to be Phe-derived are designated on the x-
axis. Features are ordered based on the average abundance and error
bars were excluded for improved visualization. Full data can be found
in Supplemental Data Set S5.

Figure 10 Abundances of selected Phe-derived metabolites across 422
Arabidopsis natural accessions. Plots of average (n = 3) accumulation
of tentatively identified Phe-derived metabolites from a specific class
for each natural accession (represented by the black dots). Error bars
were excluded for improved visualization. Tentative identities of the
neolignans (A–M) are given in Supplemental Data Set S6. Flavonol gly-
cosides are identified by their m/z ratio and retention time because
multiple similar structures could result in identical m/z ratios.
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Figure 11 Associations between Phe-derived metabolite features and SNPs linked to core Phe-pathway genes. A, Manhattan plot showing associa-
tions between all predicted parental Phe-derived metabolites and all SNPs to which they associate. A single Phe-derived MS feature may associate
to multiple SNPs, and a single SNP in the plot may associate to multiple Phe-derived MS features. B, The number of parental Phe-derived MS fea-
tures that associate to each SNP. C, Manhattan plot showing associations between all predicted parental Phe-derived metabolites and a selection
of core phenylpropanoid-pathway genes. D, Ion abundances for metabolite features that associate to SNPs linked to a phenylpropanoid pathway
gene (panel C) that when mutated causes the metabolite feature to change in abundance relative to wild type. Each panel is labeled with the
name of the gene to which the metabolite feature associates. The red color in the bars represents the accumulation of the metabolite feature in
the mutant, and blue bars reports the accumulation in wild type (n = 3 ±SD). Metabolite features with a putative identification based on accessed
metabolite libraries are M327T530, caffeyl alcohol hexoside; M371T557, 5-hydroxyferuloyl hexose. E, Ion abundance of unknown MS feature
M253T608 across all natural accessions (black dots).
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feruloyl hexose (M533T702), and guaiacyl (8-5) guaiacyl
hexose (M565T684; Supplemental Document S2).

Finally, we examined associations to SNPs linked to genes
that were not included in our list of putative phenylpropa-
noid pathway genes (Supplemental Data Set S7). While there
are many thousands of potential causative associations, we
specifically searched for low P-value associations to genes
that could have a role in phenylpropanoid metabolism based
on sequence similarity or co-expression. Of particular interest
was an association to SNPs in the tandemly duplicated
uncharacterized alcohol dehydrogenases (ALDHs)
AT1G22430 and AT1G22440 were strongly linked to Phe-
derived MS features preliminarily identified as neolignans:
guaiacyl (8-O-4) feruloyl hexose (M551T617), guaiacyl (8-O-
4) ferulic acid (M389T690), and guaiacyl (8-O-4) guaiacyl hex-
ose (M583T604; Supplemental Document S2). Moreover, the
uncharacterized ALDH enzymes are similar to CADC and
CADD and according to ATTEDII (Obayashi et al., 2018) are
co-expressed with the phenylpropanoid genes UGT72E2, and
pinoresinol reductase 2, both of which are involved in the
synthesis of neolignans (Lim et al., 2005; Nakatsubo et al.,
2008). Thus, this association appears to identify a previously
unknown gene associated with the metabolism of neoli-
gnans. While the associations described here are statistically
strong, Col-0-derived T-DNA knockouts across the GDSL-
lipase cluster (SALK_082907, SALK_094358, SALK_013628),
FLS cluster (SALK_023235 and SALK_050041), and
AT1G22440 (SALK_00800 and SALK 030343) did not alter
the metabolic phenotype, suggesting that the enzymes may
function differently in the Col-0 relative to other accessions
or have a redundant partner in Arabidopsis and require
higher order knockouts to observe a phenotype.

Discussion
Untargeted LC–MS provides the technical capacity to detect
hundreds of thousands of metabolites. The only parameters
collected in these experiments are m/z ratio, retention time,
and ion abundance. Without additional information, these
data cannot provide chemical identity. The large structural
space occupied by plant metabolites means that this limited
information is often not sufficient to fully inform down-
stream analyses enabled by metabolite identification includ-
ing the association of metabolites with the enzyme activities,
the construction of biosynthetic pathways, and the identifica-
tion of genes that encode and control these pathways. In
fact, it could be argued that we know more about pathways
that produce metabolites that can be identified by means
other than MS, such as UV absorption or fluorescence, be-
cause of the ease with which these metabolites can be
detected in a complex extract. The motivation behind our
study was to add an analogous dimension of information to
MS data that enable the organization of a subset of collected
MS features based upon their precursor of origin.

In this manuscript, we describe the successful implemen-
tation of a pipeline that accomplishes such a task. Overall,
our study identified (1) the biochemical origins for hundreds

of Phe-derived mass features, many of which have been
previously unannotated and uncharacterized, (2) the Phe-
derived metabolomes of nine mutants in the phenylpropa-
noid pathway, (3) global changes in the soluble metabolic
output of the phenylpropanoid pathway when it is per-
turbed, (4) variation in the FDM for natural accessions of
Arabidopsis and identification of putative causal genes
through GWA, and (5) mass and retention time for these
metabolites that can be used by other researchers to retro-
spectively annotate Phe-derived metabolites in other untar-
geted MS datasets. To accomplish this, we developed a
new program (PODIUM) that can identify MS features
that incorporated fed-isotopic labels within untargeted MS
datasets. Simply feeding and identifying MS features in a
single reference wild type by this method generates a
pathway-specific metabolite library. The addition of a genetic
component, via a collection of natural accessions or loss-of-
function mutants increased the size of this library and its
utility to detect structural and biosynthetic relationships be-
tween co-varying MS features. Thus, using genotype as a
complementary informational dimension improved the iden-
tification of metabolites and candidate genes associated with
their synthesis when this approach is combined with GWA.

We chose the well-studied phenylpropanoid pathway and
Arabidopsis to test this approach because of the widely
available genetic tools and biochemical information. We
found that labeling metabolic pathway mutants that have
strong or null mutations in single-copy genes and genes
that influence a large number of products helped in describ-
ing the metabolic space occupied Phe-derived metabolites.
In addition, a priori information about the pathway enabled
us to evaluate whether metabolites in mutants exhibited
the expected changes relative to wild type and allowed us
to predict MS feature identity using untargeted MS1 data.
Nevertheless, the pipeline does not depend upon extensive
prior information or the use of mutants, and we show that
identifying pathway specific metabolites across a panel of ge-
netically diverse members of the same species, such as
Arabidopsis accessions, aided in the identification of metab-
olites associated with naturally occurring polymorphisms in
core pathway genes in the interrogated pathway. Thus, while
the same genetic resources may not be available for other
metabolic pathways and plant species, we anticipate that
this approach can still be extended to other metabolic path-
ways, plant species, and even to users conducting research
on prokaryotes, fungi, and animals.

Isotopic labeling as a tool to identify biochemical
pathway-specific metabolites
In plant biochemistry, both radioactive and stable isotope la-
beling have been used to determine the metabolic precur-
sors and help elucidate the structure of plant metabolites
(Benson et al., 1950; Brown and Neish, 1955, 1956; Roughan
et al., 1980; Giavalisco et al., 2009, 2011; Weng et al., 2012;
Glaser et al., 2014; Wang et al., 2018; Tsugawa et al., 2019).
Arabidopsis has been grown under constant 13CO2, 15N, or
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34S to determine its entire element-specific metabolome
(Giavalisco et al., 2009, 2011; Glaser et al., 2014; Tsugawa
et al., 2019). In addition, biosynthetic pathways for special-
ized metabolites derived from fatty acids, isoprenoids, and
amino acids have been identified by feeding plants sub-
strates such as labeled glucose, acetate, methionine, lysine,
Phe, tyrosine, and tryptophan (Halkier and Du, 1997;
Lichtenthaler et al., 1997; Weng et al., 2012; Allen et al.,
2015; Doppler et al., 2019). Identification of mass features
that incorporate a heavy isotope can be done by manually
scanning ion chromatograms or by applying computational
pipelines, such as through the method we describe here. For
applications such as metabolic flux analysis, manual curation
of MS data is usually sufficient because the labeling pattern
of only a few known intermediates and end products are
desired for the flux models (e.g. Wang et al., 2018). By con-
trast, manual inspection of isotope mass shifts in mass spec-
tral data is impractical for the hundreds to thousands of
metabolite features that are expected to be labeled from a
metabolic precursor, such as an amino acid. Several MS-data
processing programs have been developed to automatically
identify mass features that incorporated a fed heavy isotope
within untargeted MS1 datasets (Feldberg et al., 2009;
Bueschl et al., 2012, 2017; Huang et al., 2014; Capellades
et al., 2016; Dong et al., 2019). Our isotope detection pro-
gram is conceptually similar to those previously described
methods, but with some modifications. For example, our
method requires separate feeding of tissues with a light and
heavy isotope, employs a custom peak-pairing algorithm
built on top of XCMS (Smith et al., 2006) to automatically
identify labeled MS features, and tests for enrichment of the
heavy isotope signal in the samples that were fed with the
heavy precursor. Where our method differs from other
methods is that it was designed to detect labeled MS fea-
tures across multiple genotypes, and that it searches for a
single type of mass shift at a time which allows for the de-
tection of labeled MS features that meet specific criteria,
such as preservation of a labeled structural motif in the pre-
cursor (e.g. the + 6 labeled phenyl ring of Phe). This con-
trasts with tracking all metabolites that exhibit any form of
a mass shift in the labeled sample, such as occurs in geoRGE
and X13CMS (Huang et al., 2014; Capellades et al., 2016).
Other approaches have used multiple distinctly labeled pre-
cursors to enable automated chemical formula prediction
(e.g. DLEMMA and MISO; Feldberg et al., 2009; Dong et al.,
2019). While interpretation of multiple labels can provide
additional structural information, using a single labeled pre-
cursor simplifies the labeling step and the interpretation of
labeling patterns, as well as reducing the number of statisti-
cal tests needed to detect a labeled metabolite because only
one peak-pair is identified. In addition, our method is highly
stringent in its detection of multiple labeled metabolites be-
cause it requires there to be a labeled peak present for every
incorporated precursor molecule. For example, a M + 12
compound derived from Phe must also have a coeluting + 6
compound in order to be considered valid.

In total, our pipeline predicted almost 3,000 metabolite
features derived from Phe in stems of wild type and nine
phenylpropanoid pathway mutants. However, since it has
been estimated that upward of 90% of the mass features
collected through MS may be artifacts (i.e. fragments and
adducts of true metabolites as well as LC/MS signal noise;
Mahieu and Patti, 2017), the number of intact Phe-derived
metabolites is likely much less than 3,000. Here, we show
that it is possible to identify artifacts and collapse multiple
MS features into a single peak by adding genetic dimensions
to this pipeline. Specifically, we demonstrated that co-
chromatographing MS features that are derived from Phe
and also co-vary in a specific mutant genotype are likely de-
rived from an identical parental metabolite and that frag-
ments as well as isotopologues can be located by SNP
associations identified through GWA. Applying these genetic
dimensions predicted that almost 50% of the MS features
were in fact artifacts from a measured Phe-derived metabo-
lite. Despite the power to collapse multiple MS features
with this process, post hoc MS/MS analysis is still required
to accurately determine specific parent and daughter ions
among co-chromatographing features.

Even after the MS feature reduction approaches
(Supplemental Table S2), the accumulation of over a thou-
sand unknown phenylpropanoids was affected by both nat-
ural and induced variants at genes known to encode
phenylpropanoid biosynthetic enzymes. We anticipate that
the genetic dimensions can also aid in the structural identifi-
cation of uncharacterized and novel metabolites. We show
that clustering similarly accumulating Phe-derived MS fea-
tures that do not share the same retention time can provide
basic branch-of-origin information and preliminary structural
information that would be missed if only wild type was ex-
amined. For example, MS features produced exclusively in
the ref3–3 mutant are likely cinnamate derived, MS features
that are lost in fah1 are likely sinapate derived, and MS fea-
tures lost in tt4 are derived through the flavonoid branch.
Along the same lines, if multiple Phe-derived MS features as-
sociate to the same set of SNPs it suggests they depend
upon a common enzyme for their synthesis and may share
some structural similarity. Indeed, a recent GWA analysis on
soluble maize metabolites identified structurally related
hydroxycinnamate-esters with strong associations to identi-
cal SNPs in a gene encoding a citrate synthase enzyme
(Zhou et al., 2019). Similarly, we identified multiple putative
neolignans that strongly associate to SNPs in a CAD-like al-
cohol dehydrogenase and a flavanol synthase gene cluster,
suggesting that their synthesis commonly depends upon
these uncharacterized loci.

Evaluating differences in phenylpropanoid
accumulation in wild type and pathway mutants
Although the majority of Phe goes toward production of
the insoluble extracellular polymer lignin, a proportion of
the flux is responsible for synthesizing a wide array of solu-
ble products, many of which help protect against biotic and
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abiotic stresses (Vanholme et al., 2012; Wang et al., 2018).
Previously, Vanholme et al. (2012) identified and quantified
differences in approximately 200 Phe-derived metabolites in
wild type and 10 mutants in the pathway, 4 of which were
shared with our analysis (f5h, ccr1, c4h, and omt1). However,
the identification of Phe-derived compounds in that work was
focused on compounds that had a characteristic UV absor-
bance or could be identified by MS/MS analysis. Our labeling-
derived library expands the set of known phenylpropanoids in
Arabidopsis approximately six-fold and allows for a global ex-
amination of Phe metabolism. This included the exploration
of changes in Phe allocation and identification of previously
unknown compounds that are accumulated when other steps
in the pathway are altered by mutation. Our global assess-
ment of the enzyme mutants found that six of them (ref3–3,
4cl1 4cl2 4cl3, ref8–1, ccr1, cadC cadD) accumulated signifi-
cantly more soluble metabolites than wild type, whereas omt1,
tt4-2, and fah1-2 did not. There is no difference in lignin depo-
sition between wild type and tt4-2 and fah1-2 (Meyer et al.,
1996; Li et al., 2010b), whereas the mutants that exhibited an
increase in total soluble Phe-derived metabolites generally pro-
duce less lignin than wild type (Fraser and Chapple, 2011;
Vanholme et al., 2012; Bonawitz et al., 2014). Thus, it seems
likely that a small spillover of carbon from lignin allocation
into soluble metabolites in mutants with impeded lignin bio-
synthesis would lead to higher levels of typical metabolites
and the accumulation of novel ones. Vanholme et al. (2012)
similarly showed that mutants that produce less lignin also
upregulate metabolic pathways that supply monolignols and
accumulate additional soluble glycosylated phenylpropanoids.
Transcriptional feedback mechanisms that down-regulate phe-
nylpropanoid metabolism in fah1 may also have a role in pre-
venting the altered accumulation of soluble phenylpropanoids
in that genotype (Anderson et al., 2015a).

The FDM of the med5 mutant illustrates the value of reg-
ulatory mutants in identifying pathway-specific metabolites.
The med5 mutant over-produces Phe-derived MS features
that wild type produces but does not produce the novel
metabolites present in ref3–3, 4cl1 4cl2 4cl3, ccr1, or omt1.
The use of the med5 ref8–1 triple mutants allows plants har-
boring ref8–1 to produce a stem that could be fed with Phe
(Bonawitz et al., 2014) thereby revealing the effects of block-
ing this step. The loss of the C03H enzyme in ref8–1 resulted
in more total Phe-derived ions; however, ref8–1 had a me-
tabolite profile similar to 4cl1 4cl2 4cl3 because they block
flux through a similar branch of the pathway. This result fur-
ther supports the hypothesis that med5 regulates Phe flux
at PAL (Kim et al., 2020) and that mutants in which lignin
monomer biosynthesis is blocked accumulate novel metabo-
lites not present in wild-type controls.

Retrospective identification of phenylpropanoids by
GWA identifies pathway specific gene–metabolite
relationships
A long-term objective of this work is to identify genes that
influence phenylpropanoid biosynthesis through GWA.

Specialized metabolic traits are often controlled by few large
effect loci; thus, a GWA approach is particularly suited to
identify new genes directly influencing these pathways
(Wu et al., 2016, 2018). GWA studies with Arabidopsis
metabolites identified statistically strong SNP associations
(i.e. P-value of lead SNP to metabolite is 5 1.0E–08) linked
to enzymes belonging to specialized metabolism that were
later verified by experimental analysis. These include the
identification of metabolites induced by abiotic stress (Wu
et al., 2018), discovery of new enzymes for the glycosylation
and acylation of flavonoids absent in Col-0 (Ishihara et al.,
2016; Tohge et al., 2016), identification of differences in the
glycosylation of dihydroxybenzoic acids (Li et al., 2014; Chen
and Li, 2017), genes involved in glucosinolate biosynthesis
(Chan et al., 2011), and identification of previously unknown
amino acid metabolism (Strauch et al., 2015).

Despite the potential to discover novel biochemistry
through GWA, it can be challenging to identify genes that
control metabolic traits. For example, a single SNP can asso-
ciate to a group of unrelated MS features, and multiple
SNPs can associate with the same MS feature (Atwell et al.,
2010; Korte and Farlow, 2013). Thus, without additional data
on the potential biological relevance of a GWA result, data
analysis can be slowed due to the testing of many candidate
genes, and follow-up studies can be biased toward a few
known metabolites. This issue can be mitigated by annota-
tion of the biochemical pathway to which the MS features
belong. As we demonstrate here with natural variation in
phenylpropanoids, identification of MS features as being
Phe-derived can improve confidence in selecting candidate
genes for further study. We identified associations between
known phenylpropanoid pathway genes and known and un-
known Phe-derived metabolites, some of which were verified
in Col-0 knockouts lines. The most statistically significant
were an association between 5-hydroxyferuloyl hexose pro-
duction and OMT1 that was previously identified in
Arabidopsis leaves (Wu et al., 2018) and unknown Phe-
derived metabolites that associate to 4CL genes. In addition,
this approach located associations between phenylpropa-
noids and genes with no previously known relationships or
experimentally verified functions in the phenylpropanoid
pathway. In fact, all of the SNP–FDM associations with a P-
value 5 1.0e–15 were linked with predicted Phe-derived
metabolite genes. Without the basic knowledge of the path-
way to which the metabolite belongs, we would not be able
to assign these strong associations to linked phenylpropa-
noid enzymes. For pathways that are less well described, the
list of candidate genes could be filtered based on computa-
tionally derived annotations or co-expressed genes sets. For
example, we identified an association of feruloylmalate to
SNPs in a gene cluster that contains an enzyme that metab-
olizes a related metabolite, sinapoylcholine, in developing
seeds, two separate groups of neolignans that strongly asso-
ciate to SNPs linked to a flavonol synthase-like gene cluster,
and an uncharacterized CAD-like alcohol dehydrogenase
that is co-expressed with phenylpropanoid-related genes.
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Together, these results demonstrate that selection of
candidate genes affecting metabolites identified by a GWA
approach can be greatly aided by knowing at least the meta-
bolic origin of the associative metabolites that is provided
by our isotopic labeling approach.

Materials and methods

Plant material and growth conditions
The A. thaliana plants used in the Phe feeding were grown
in Redi-Earth Plug and Seedling Mixture (Sun Gro
Horticulture) augmented with Scotts Osmocote Plus
controlled-release fertilizer (Hummert International). Potted
seeds were cold treated at 4�C for 5 days and then moved
into a growth chamber (Percival) and grown under a 16-h
light/8-h dark photoperiod with a light intensity of 100 lE
m–2 s–1 supplied by a combination of halogen and fluores-
cent bulbs and at a constant temperature of 22�C. The
FDM was established in wild-type Col-0 and nine lines with
that contain mutations in enzymes of the pathway
(Supplemental Table S1).

The Arabidopsis accessions used to generate the GWA
dataset were grown as described (Strauch et al., 2015). These
accessions were planted in triplicate using a restricted ran-
domization design to distribute genotypes across trays and
minimize environment and genotype confounding effects.
Three Col-0 plants were planted in each flat at three fixed
positions and used to assess variation between flats. All
accessions were grown on a single bench in a growth room
at 22�C and 50% humidity under long-day conditions (16-h
light, 8-h dark) for 7 days. All plants were then moved to
4�C for 8 weeks under 16-h light and 8-h dark cycles to ver-
nalize the plants and induce flowering. Following this treat-
ment, plants were returned to a growth room at 22�C and
50% humidity under long-day conditions (16-h light, 8-h
dark) for 28 days. Of the 440 accessions planted, 422 had
stems long enough to collect metabolites at this time. The
top 10 cm of each bolted inflorescence was cut from the
plant, flash frozen by placement in an ethanol-dry ice slurry
and then stored at –70�C until metabolite extraction.

Phenylalanine feeding
Phe feeding was performed similarly to Wang et al. (2018).
Briefly 4–5-week-old plants were removed from the soil,
washed with water, and the top 15 cm of the stem was cut
off with double-edged razor blade under water. For each of
the three biological replicates, three cut stems from separate
plants were placed in 1.5 mL Eppendorf tubes containing
1 mL of ammonia-free Murashige and Skoog medium and
either 1 mM [12C] L-Phe (Sigma) or 1 mM ring-[13C6] labeled
L-Phe (Cambridge Isotope Laboratories, Cat No. CLM-1055).
Stem feeding was done for 24 h under constant light, with
new tubes and fresh media being substituted after the first
12 h. At the end of the feeding, each replicate was rinsed
with water and patted dry. The basal 5 mm of the stem was
removed to mitigate the effects of any localized wounding
at the cut site and the next basal 3 cm section of stem was

weighed, and flash frozen in liquid nitrogen and stored at –
70�C until metabolite extraction.

Metabolite extraction and LC–MS analysis of soluble
metabolites
For both datasets, soluble metabolites were extracted from
frozen stems in 50% methanol (v/v) at a concentration of
100 mg fresh mass mL–1 at 65�C for 2 h, vortexing every 30
min. Samples were then centrifuged for 5 min at 13,000 �
g, and the soluble fraction was transferred to a new tube.
For the FDM, samples were concentrated in a speed vacuum
at 30�C and the dried extract was then re-dissolved in 50%
methanol (v/v) at 10% of the original volume. All extracts
were stored at –20�C until LC–MS analysis.

Chromatographic separations were performed using an
Agilent 1100 HPLC system (Agilent Technologies, Palo Alto,
CA, USA) with a Shimadzu Shim-pack XR-ODS (3.0 � 75
mm � 2.2 mm) separation column and a 5-mL injection vol-
ume. A binary solvent system was used where solvent A was
0.1% aqueous formic acid (v/v) and solvent B was 0.1% for-
mic acid (v/v) in acetonitrile. Initial conditions of 98:2 A:B
were held for 1 min, followed by linear gradients to 94:6 at
5 min, 54:46 at 15 min, 5:95 at 21.5 min, and a 5:95 hold for
2 min. The column was then re-equilibrated by returning to
98:2 over 1 min and holding for 4 min, for a total analytical
run time of 28.5 min. The mobile phase flow rate was 0.6
mL min–1 and the column was maintained at 30�C.
Following separation, the column effluent was introduced
via negative electrospray ionization (ESI) into an Agilent
6210 time-of-flight mass spectrometer. The following set-
tings were used for the ESI and MS: capillary voltage of 3.2
kV; N2 gas temperature of 350�C; drying gas flow rate of 11
L/min; nebulizer gas pressure of 55 psi; fragmentor voltage
of 125 V; skimmer voltage of 60 V; octopole RF of 250 V;
mass range 80–1,000 m/z. Mass accuracy was enhanced by
infusing Agilent Reference Mass Correction Solution (G1969-
85001) throughout each run. Data from each run were cen-
troided and converted to .m/zm/zData format using Agilent
MassHunter Qualitative Analysis (v B.06) before analysis by
our pipeline.

Isotopic labeling method and computational
analysis
The isotopic labeling method involved feeding two biologi-
cally equivalent samples with either a labeled or unlabeled
precursor, extracting the desired metabolites and then ana-
lyzing each sample via LC–MS. This treatment creates a
unique MS signature for each metabolite derived from the
labeled precursor in the label-fed samples in the form of
paired peaks. Paired peaks are defined as metabolite features
that coelute and differ in m/z by the mass difference be-
tween the labeled and unlabeled precursor. To automate
identification of labeled MS features, we developed an R
package called PODIUM. The program leverages the unique
mass for mass features derived from the heavy isotope to
separate them from the rest of the MS signals. The program
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then compares the labeling pattern for each metabolite
against the corresponding data from the non-label-fed sam-
ples via an unpaired, one-tailed t test that tests whether the
labeled peak in a given peak-pair is significantly greater in
the label-fed samples. In doing this, the program can rigor-
ously determine whether the observed labeling pattern is
derived from the labeled precursor or the result of random
biological variation. Supplemental File S1 contains additional
information regarding the peak-pairing algorithm, the set-
tings we applied to generate the FDM, and installing and
running the PODIUM package. The full program and sample
MS data can be accessed through our GitHub page (https://
github.com/chapple-lab/podium).

LC–MS data processing and GWA analysis
Stem metabolite features used for GWA were processed
according to the same procedure described in Strauch et al.
(2015). Briefly, metabolite features in the accessions were
identified using XCMS (Smith et al., 2006) without deisotop-
ing or adduct detection (Supplemental Data Set S10). The
SNPs used for mapping were derived from a combination of
SNP array and resequencing data (Atwell et al., 2010; Platt
et al., 2010; Cao et al., 2011; Horton et al., 2012) followed by
imputation using BEAGLE (v3; Browning and Browning,
2011). The resequencing of 80 accessions (Cao et al., 2011)
and other accessions obtained from the 1,001 genomes proj-
ect page resulted in full coverage data for 244 of the acces-
sions used in this study (Atwell et al., 2010). The remaining
196 accessions had genotypes from a SNP array consisting of
211,781 SNPs that corresponded to sequenced SNPs (Horton
et al., 2012). Genotypes for all missing positions were im-
puted using BEAGLE. These genotypes were filtered to re-
move SNP positions with a minor allele frequency less than
5%, resulting a data set with 1.6 million (1.6M) SNPs that
were used in the GWA. Of the 466 genotypes we generated
SNP data for, MS features from 422 accessions were used for
GWA. Associations were calculated using the Efficient Mixed-
Model Association eXpedited procedure. EMMAx corrects
for population structure by calculating a kinship matrix and
including this matrix in a linear model as a covariate (Kang
et al., 2010). To create a database of possible associations, all
SNP-to-metabolite associations returning P-values less than
10–4 were recorded. This permitted querying the set of asso-
ciations for candidate gene associations, and pathway level
candidate testing, without a high false-negative rate. False
negatives, i.e. failure to score association due to an inappro-
priately strict statistical cutoff, would present a major imped-
iment to linking metabolite features and a lack of overlap
between SNPs would be assessed, incorrectly, as a lack of
shared control between metabolic features. In total, from all
the mass features, 3,595 detected features had at least one
SNP which returned a P-value of less than 10–4.

Accession numbers
Sequence data can be found under the following
Arabidopsis Genome Initiative accession numbers: C4H/REF3

(AT2G30490), 4CL1 (AT1G51680), 4CL2 (AT3G21240), 4CL3
(AT1G65060), 4CL4 (AT3G21230), C30H/REF8 (AT2G40890),
CCR1 (AT1G15950), F5H/FAH1 (AT4G36220), CADC
(AT3G19450), CADD (AT4G34230), OMT (AT5G54160),
CHS/TT4 (AT5G13930), MED5a/RFR1 (AT3G23590), and
MED5b/REF4 (AT2G48110).

Supplemental data
Supplemental Figure S1. The number of peak-pairs
detected for m/z differences of M + 1 to M + 12.

Supplemental Figure S2. PODIUM optimally extracts
likely Phe-derived MS features.

Supplemental Table S1. Mutants used in this study
Supplemental Table S2. Number of Phe-derived MS fea-

tures detected after each filtering procedure
Supplemental Table S3. Top associations between a Phe-

derived MS feature and genes with known or suspected
functions in the phenylpropanoid pathway

Supplemental Data Set S1. Likely sources of non + 6
peak-pairs.

Supplemental Data Set S2. Information about metabolite
features identified as Phe derived.

Supplemental Data Set S3. Grouping of Phe-derived me-
tabolite features to detect fragments, artifacts, and identify
putative parental metabolites.

Supplemental Data Set S4. Pairing of metabolite features
between the FDM and GWA datasets.

Supplemental Data Set S5. Summary of rationale for col-
lapsing Phe-derived MS features by shared SNP associations.

Supplemental Data Set S6. Phe-derived MS feature abun-
dance across Arabidopsis natural accessions.

Supplemental Data Set S7. Arabidopsis SNP markers
associations to stem Phe-derived MS features.

Supplemental Data Set S8. Arabidopsis SNP markers in
or linked to core phenylpropanoid pathway genes and their
associations to Phe-derived MS features.

Supplemental Data Set S9. All Phe and predicted non-
Phe SNP–MS-feature associations to core phenylpropanoid
pathway genes.

Supplemental Data Set S10. Ion intensity values for MS
features detected across Arabidopsis natural accessions.

Supplemental Data Set S11. Supporting ANOVA and T
test results for Figure 4 and Supplemental Figure S2.

Supplemental File S1. Description of the PODIUM
pipeline.

Supplemental File S2. MS/MS spectra for selected
phenylalanine-derived metabolites.
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