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Human immunodeficiency virus (HIV) infection is associated with increased systemic microbial translocation, neuroinflammation, and 
occasionally, neuronal injury. Whether systemic lipopolysaccharide (LPS) penetrates into the brain and contributes to neuroinflammation 
remain unknown in HIV. Here, we measured plasma and cerebrospinal fluid (CSF) LPS levels along with biomarkers of neuroinflammation 
(white blood cell counts and 40 soluble markers) and neurofilament light chain (NfL). Notably, CSF LPS was undetectable in all samples, 
including 3 HIV-infected individuals with dementia. Increased plasma LPS, neuroinflammation, and blood-brain barrier (BBB) dysfunc-
tion were found in untreated HIV-infected individuals, but not in healthy or treated HIV-infected individuals. Plasma LPS levels were 
directly correlated with various markers of inflammation in both plasma and CSF, as well as with degree of BBB permeability but not with 
CSF NfL in HIV-infected subjects. These results suggest that the magnitude of microbial translocation associates with neuroinflammation 
and BBB permeability in HIV without direct penetration into the central nervous system.
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Human immunodeficiency virus (HIV) infection is associated 
with a “permeable” gut, increased systemic microbial transloca-
tion, and persistent inflammation even in the presence of viral-
suppressive antiretroviral therapy (ART) [1]. HIV-associated 
neurocognitive disorder (HAND) is more frequently found in 
patients with abundant systemic and central nervous system 
(CNS) immune activation, potentially a consequence of micro-
bial translocation [2–4]. While neuroinflammatory responses 
are primarily a protective mechanism in the brain, persistent 
inflammation may accelerate neural injury [5]. Indeed, dis-
eases other than HIV infection (eg, inflammatory bowel dis-
eases) with increased systemic microbial translocation may 

also associate with accelerated neurocognitive impairment 
[6, 7]. Furthermore, the plasma levels of markers of mono-
cyte activation (eg, soluble CD14 [sCD14] and soluble CD163 
[sCD163]) through microbial Toll-like receptor (TLR) 4 agon-
ists are associated with neurocognitive impairment in HIV [3, 
4]. Monocytes and macrophages are considered to play a key 
role in HAND, and CD14+CD16+ monocytes are increased in 
HIV-infected (HIV+) patients with dementia and may preferen-
tially migrate through the blood-brain barrier (BBB) [8].

Lipopolysaccharide (LPS) is the major component of the 
gram-negative bacterial outer membrane, which binds to TLR4 
expressed on the cell surface. Notably, TLR2 and TLR4 are ex-
pressed on the human and rat BBB [9], suggesting that ligation 
of TLR2 and TLR4 may alter the permeability of BBB and induce 
proinflammatory cytokines to the CNS. Indeed, systemic LPS 
exposure resulted in increased BBB permeability both in vitro, 
using human brain microvascular endothelial cells (BMECs), 
and in vivo in animals [10–13]. Moreover, intraperitoneal in-
jection of LPS resulted in neuroinflammation and behavioral 
changes [14–16]. However, whether LPS can directly enter and 
impact the CNS remains controversial.
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We undertook this exploratory cross-sectional study meas-
uring plasma and cerebrospinal fluid (CSF) LPS to examine 
the questions of whether systemically increased LPS is accom-
panied by increased CSF LPS and whether plasma LPS, as an 
indicator of microbial translocation, associates with CNS in-
flammation and CNS injury in HIV infection.

MATERIALS AND METHODS

Study Subjects

This was a cross-sectional exploratory study using paired plasma 
and CSF samples from 16 healthy individuals; 32 untreated HIV+ 
individuals, including 3 who had presented clinically with suba-
cute HIV-associated dementia (HAD); and 27 ART-treated, virally 
suppressed HIV+ individuals. These samples were collected from 
2 academic centers: Sahlgrenska University Hospital (Gothenburg, 
Sweden) and San Francisco General Hospital (University of 
California, San Francisco), in the context of research protocols ap-
proved by the local institutional review boards with informed con-
sent obtained by all participants.

CSF and Blood Sampling

CSF was obtained according to standard protocols as previ-
ously described [17–20]. Subjects also underwent phlebotomy 
for concurrent blood sampling along with general medical and 
neurological assessments at the study visit as previously de-
scribed [21]. CSF was placed immediately on wet ice and subse-
quently subjected to low-speed centrifugation to remove cells, 
aliquoted, and stored within 2 hours of collection at ≤ –70°C 
until the time of HIV-1 RNA and biomarker assays. Blood was 
collected either in ethylenediaminetetraacetic acid or as serum, 
aliquoted, and stored in parallel with CSF for later batch assays.

Clinical Evaluations

All subjects underwent routine clinical bedside screening for 
symptoms or signs of CNS opportunistic infections or other 
conditions that might impact CSF biomarker concentrations; 
individuals with CNS opportunistic infections or other condi-
tions confounding these analyses were omitted. Designation as 
AIDS dementia complex (ADC)/HAD was based on clinicians’ 

assessment at the time of diagnostic presentation, character-
istically with subacute onset and progression of cognitive and 
motor symptoms and signs. This met American Academy 
of Neurology criteria in place at the time [22]. Most of these 
subjects were studied before publication of the more formal 
Frascati criteria [23] and were diagnosed with ADC stages 2–4 
[24] but met the functional criteria for the Frascati diagnosis of 
HAD without the requisite extensive formal neuropsycholog-
ical assessment.

Background Laboratory Methods

The salient clinical characteristics of these individuals are 
shown in Table  1. HIV-1 RNA levels were measured in cell-
free CSF and plasma using the ultrasensitive Amplicor 
HIV Monitor assay (versions 1.0 and 1.5; Roche Molecular 
Diagnostic Systems, Branchburg, New Jersey), Cobas TaqMan 
RealTime HIV-1 (version 1 or 2; Hoffmann-La Roche, Basel, 
Switzerland), or the Abbott RealTime HIV-1 assay (Abbott 
Laboratories, Abbott Park, Illinois). All recorded viral loads 
that were below a LLQ of 20 copies/mL were standardized to 
a defined “floor” value of 19 copies/mL (log10 value of 1.279) 
for descriptive purposes. Each study visit included assessments 
by local clinical laboratories using routine methods to measure 
CSF white blood cell (WBC) count, CSF, and blood albumin in 
order to assess BBB integrity [25], and blood CD4+ and CD8+ 
T-lymphocyte counts by flow cytometry. BBB permeability was 
evaluated by the CSF to serum albumin quotient [26, 27]. CSF 
(mg/L) and serum (g/L) albumin levels were analyzed by neph-
elometry (Behring Nephelometer Analyzer; Behringwerke, 
Marburg, Germany). CSF neurofilament light chain (NfL) con-
centration was measured by a sensitive immunoassay using an 
enzyme-linked immunosorbent assay (ELISA) kit (NF-light 
ELISA kit, UmanDiagnostics, Umeå, Sweden) in the Clinical 
Neurochemistry Laboratory, Sahlgrenska University Hospital 
(Gothenburg, Sweden); intra-assay coefficients of variation 
were below 10% [26]. Since CSF NfL changes with age, CSF 
NfL levels were age-adjusted to 50 years for comparisons across 
subjects, and considered normal if <967 ng/L [28].

Table 1.  Clinical Characteristics

 Characteristic HIV-Negative Control HIV+/Untreated HIV+/ART-Treated/Sup
P Value (HIV+/Untreated vs  

HIV+/ART-Treated Sup)

Total No. of subjects 16 32 27  

Age, y 54 (37–62) 49 (35–55) 42 (36–53)  

CD4+ T-cell count, cells/μL 799 (690–914) 255 (98–490) 570 (500–670) <.0001

Plasma HIV RNA load, log10 copies/mL  … 4.9 (4.3–5.5) 1.3 (1.3-1.3) <.0001

CSF HIV RNA load, log10 copies/mL  … 3.9 (2.9–5.1) 1.3 (1.3-1.3) <.0001

CSF WBCs, cells/uL 1.5 (1.0–2.8) 10 (1.5–19) 0 (0–2.0) <.0001

BBB permeability, ratio 4.65 (3.9–6.6) 6.3 (4.5–7.3) 4.9 (3.5–5.8) .004

QNZP4, score –0.06 (–0.42 to 0.45) –0.4 (–2.85 to 0.16) 0.29 (–0.31 to 0.88)  

Data are presented as median (interquartile range) unless otherwise indicated.

Abbreviations: ART, antiretroviral therapy; BBB, blood-brain barrier; CSF, cerebrospinal fluid; HIV, human immunodeficiency virus; HIV+, human immunodeficiency virus infected; QNZP4, 
global cognition score.
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Evaluation of LPS

Plasma and CSF LPS levels were measured by endpoint chro-
mogenic limulus amebocyte lysate assays according to the 
manufacturer’s protocol (Lonza, Basel, Switzerland), described 
previously [29]. In brief, CSF samples were from 1:1 to 1:40, and 
plasma samples were 1:10 diluted with endotoxin-free water 
and subsequently heated to 85°C for 15 minutes to inactivate 
inhibitory proteins. LPS levels were calculated after subtracting 
the background values. The limit of LPS detection in both CSF 
and plasma was 10 pg/mL.

Evaluation of Biomarkers of Inflammation in CSF and Plasma Samples

Levels of sCD14 and sCD163 were assessed by ELISA (R&D 
Systems, Minneapolis, Minnesota). CSF concentrations were 
measured at the Vitalant Research Institute (San Francisco, 
California), and plasma measurements were performed in the 
Wei Jiang Laboratory. Neopterin was analyzed in Innsbruck, 
Austria, using an ELISA kit (BRAHMS, Berlin, Germany) [30]. 
Additionally, plasma and CSF levels of 37 inflammatory markers 
were evaluated using Neuroinflammation Panel 1 kits following 
the manufacturer’s instruction (MESO Scale Discovery, Rockville, 
Maryland). The 37 markers are listed in Supplementary Table 1.

Statistical Analysis

The differences in continuous measurements were analyzed 
by nonparametric Mann–Whitney U tests for 2-group com-
parisons and by the analysis of variance and Kruskal–Wallis 
tests for >2-group comparisons. Correlations were analyzed by 
Spearman correlation tests. Age-adjusted P values were calcu-
lated by analysis of covariance (ANCOVA) using SAS version 
9.3 software (SAS Institute, Cary, North Carolina). All tests 
were 2-sided, and P values of ≤ .05 were considered statistically 
significant.

RESULTS

LPS Was Increased in the Plasma of Viremic Subjects With HIV Compared 

to Uninfected Subjects but Was Not Detected in the CSF of Any Individual

Lipopolysaccharide was detected in all 64 plasma samples as-
sayed. By contrast, LPS was not detected in any of the matching 
CSF samples, including the 3 individuals with HAD (Figure 1A 
and 1B). Notably, plasma LPS levels were increased in ART-
naive HIV+ individuals compared to ART-treated patients and 
HIV-uninfected (HIV–) controls (Figure  1A). Because age is 
the key factor associated with CNS function, we calculated P 
values after adjusting for age by ANCOVA. The differences of 
plasma LPS between HIV– controls and untreated patients (ad-
justed P = .0002), as well as between the 2 HIV+ groups (ad-
justed P = .0004), were still significant after adjusting for age. 
The difference between ART-treated patients and controls was 
not significant. Plasma LPS levels of the 3 HAD patients were 
not different from the other untreated patients (n = 28), sitting 
within the middle of the range (Figure 1A).

Similar CSF Levels of Age-Adjusted NfL in HIV-Infected Individuals and 

HIV-Negative Individuals

To investigate active neuronal injury in HIV+ individuals, we 
evaluated age-adjusted NfL levels in the CSF samples. Overall, 
there was not a difference in age-adjusted NfL levels in CSF 
among the 3 study groups, though the 3 individuals with HAD 
had notably elevated levels (Figure 1C).

Correlations Between Plasma LPS Levels and the Magnitude of BBB 

Permeability as Well as CSF WBC Counts

To investigate the link between systemic microbial transloca-
tion and neuronal injury, we analyzed the correlations between 
plasma LPS levels and CSF NfL levels as well as the ratio of al-
bumin levels in the CSF vs serum, a marker of BBB permeability 
[26, 27]. Notably, the levels of BBB permeability were increased 
in HIV+ untreated individuals compared to ART-treated HIV+ 
individuals or HIV– individuals (Table 1). There was no differ-
ence of the degree of BBB permeability between ART-treated 
HIV+ individuals and healthy individuals (Table  1). Plasma 
LPS levels were correlated with the magnitude of BBB perme-
ability in all individuals (r = 0.24, P = .04), all HIV+ subjects 
(r = 0.42, P = .001), and untreated HIV+ subjects (r = 0.44, 
P = .01) but not in ART-treated HIV+ subjects or healthy con-
trols (Figure 1D). Plasma LPS levels were not correlated with 
CSF NfL levels in any study group (Figure  1D). Consistently, 
CSF WBC counts were increased in untreated patients com-
pared to treated patients or HIV– individuals, but no difference 
was shown between treated patients and healthy individuals 
(Table 1). Plasma levels of LPS were correlated with CSF WBC 
counts in all subjects (r = 0.34, P = .003) and all HIV+ subjects 
(r = 0.45, P = .0005), but not in any single HIV study group or 
healthy controls (Figure 1D).

Correlations Between Plasma LPS Levels and Levels of Proinflammatory 

Cytokines or Chemokines in the Blood and CSF Samples

Increased neuroinflammation has been observed in HIV+ in-
dividuals that was associated with neurocognitive impairment 
[2, 31]. We further evaluated 40 soluble markers related to 
neuroinflammation. Notably, most inflammatory markers were 
higher in plasma than in CSF, with the exception of interleukin 
(IL) 6, monocyte chemoattractant protein (MCP) 1, IL-8, and 
placenta growth factor (PIGF) (Supplementary Table 1). HIV 
infection was associated with increases of various inflamma-
tory markers in plasma and CSF; however, both plasma and 
CSF levels of Fms-like tyrosine kinase 1-1, bFGF, IL-13, IL-15, 
IL-5, and vascular endothelial growth factor (VEGF) D, and 
plasma levels of IL-1α, IL-1β, IL-4, MIP-1β, serum Amyloid 
A, thymus- and activation- regulated chemokine (TARC), 
Tie-2, tumor necrosis factor beta (TNF-β), and VEGF were 
similar in HIV+ subjects and controls (Supplementary Table 
1). Compared to untreated HIV, ART was associated more 
significantly with decreased CSF inflammation compared 
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to that in plasma (Supplementary Table 1). In contrast, com-
pared to untreated HIV, ART was associated with decreases 
in the plasma sCD14 and sCD163 levels but not those in the 
CSF (Supplementary Table 1); both plasma sCD14 and sCD163 
levels, but not CSF levels, were correlated with plasma LPS in 
all subjects (Figure 2).

Among the LPS-related inflammatory biomarkers associ-
ated with neural injury or HAND [3, 32–35], CSF neopterin 
levels were increased in untreated HIV+ subjects compared to 
the other 2 groups, but no difference was observed between 

treated patients and healthy controls (Supplementary Table 
1). Moreover, plasma sCD14 levels were increased in both 
treated and untreated HIV+ subjects compared to HIV– con-
trols, but CSF sCD14 levels were similar among the 3 study 
groups (Supplementary Table 1). There was a correlation be-
tween plasma LPS and CSF neopterin (r = 0.47, P < .0001) in 
all subjects, as well as in HIV+ subjects (r = 0.47, P = .0002), but 
not in the healthy control group (Figure 2). There was a correla-
tion between plasma LPS and plasma sCD14 in all subjects only 
(r = 0.38, P = .001; Figure  2). Furthermore, plasma sCD163 
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Figure 1.   Increased plasma level of lipopolysaccharide (LPS) in human immunodeficiency virus–infected (HIV+) individuals and its direct correlations with the magnitude of 
blood-brain barrier permeability, cerebrospinal fluid (CSF) levels of neopterin, and white blood cell (WBC) counts. A, Increased plasma level of LPS was found in HIV+ individ-
uals even after adjusting for age compared to controls. **P < .01, ***P < .0001. B, Central nervous system LPS was undetectable in all samples. C, CSF levels of age-adjusted 
neurofilament light chain (NfL). Three HIV+ individuals with dementia are shown in filled red circles. D, Correlations between plasma LPS and albumin ratio in CSF vs serum, 
CSF age-adjusted NfL level, and CSF WBC counts in HIV-negative controls and HIV+ individuals. Abbreviations: alb, albumin; ART, antiretroviral therapy; CSF, cerebrospinal 
fluid; HIV, human immunodeficiency virus; LPS, lipopolysaccharide; NfL, neurofilament light chain; WBC, white blood cell.
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levels were increased in untreated HIV+ subjects compared 
to the other 2 groups (Supplementary Table 1); CSF sCD163 
levels were increased in untreated HIV+ subjects compared to 
HIV-negative controls, but were similar to those in ART-treated 
HIV+ subjects (Supplementary Table 1). There was a correla-
tion between plasma LPS and plasma sCD163 in all subjects 
(r = 0.41, P = .0002) and HIV+ subjects (r = 0.36, P = .005) 
(Figure  2). However, no correlation was observed between 
plasma LPS and CSF sCD14 or sCD163 (Figure 2).

Intriguingly, various direct correlations were observed be-
tween plasma LPS and levels of inflammatory markers in 
both plasma and CSF in all subjects (Figure 2A) and all HIV+ 
subjects (Figure 2B), but few in HIV– controls (Figure 2C). The 
correlations between plasma LPS and CSF levels of neopterin, 
eotaxin, eotaxin-3, IL-10, IL-1β, IL-2, IL-7, IL-8, MCP-4, MDC, 
MIP-1β, TARC, TNF-β, and VEGF were stronger than those 
between plasma LPS and blood levels of inflammation in both 
all subjects and all HIV+ subjects (Figure 2A and 2B). In con-
trast, some correlations between plasma LPS and plasma levels 
of sCD163, Flit-1, IL-6, and MCP-1, were stronger than those 
between plasma LPS and CSF inflammation in both all subjects 

and all HIV+ subjects (Figure 2A and 2B). These results show 
the associations between long-term repeated circulating micro-
bial product translocation and inflammation in the blood and 
CNS in subjects with HIV disease.

DISCUSSION

A previous study showed that intravascular injection of LPS 
into the jugular vein of rats resulted in increased BBB perme-
ability; however, LPS was undetectable in the rodents’ CNS 
[13]. Another study showed that systemic exposure of LPS 
resulted in BBB impairment, but LPS did not cross the BBB 
[12]. In contrast, LPS has been reported to infiltrate to the 
CNS under certain physiologic conditions in rats [36]. Also, 
2 Alzheimer disease studies detected LPS in human primary 
brain tissues by immunohistochemistry [37, 38]. Moreover, 
a previous study showed that plasma levels of total bacte-
rial 16S rDNA, a marker of microbial translocation, were 
correlated with more structural brain abnormalities in HIV 
patients [39]. This raises the question about cause or con-
sequence of the link between plasma microbial transloca-
tion and neuroinflammation and cognitive performance. It 
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Figure 2.  Correlation coefficient r and P values between plasma lipopolysaccharide (LPS) levels and inflammation in plasma and cerebrospinal fluid (CSF) samples. Plasma 
and CSF levels of 40 proinflammatory cytokines and neuropathologic markers were evaluated using MSD neuroinflammation kit or enzyme-linked immunosorbent assay. 
The Spearman correlation coefficient (r values in red: positive correlations; blue: negative correlations) and P values between plasma LPS levels and levels of inflammatory 
markers in the plasma and CSF in all subjects (A), human immunodeficiency virus–infected (HIV+) subjects (B), and HIV-negative subjects (C). *P < .05; **P < .001; ***P < .0001.
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remains unknown whether systemic microbial products can 
enter the CNS in humans. In the current study, we found in-
creased plasma LPS in HIV+ individuals vs HIV– individuals; 
but LPS was undetectable in the CSF of all subjects including 
3 dementia patients (Figure 1A and 1B).

In our model (Figure  3), HIV-associated comprised 
gut mucosal barrier results in increased plasma LPS, a 
marker of systemic microbial translocation. The levels of 
neuroinflammation are low in the healthy individuals due to 
low plasma levels of LPS as well as an intact BBB barrier. In 
untreated HIV, high levels of plasma LPS promote a permeable 
BBB, systemic inflammation, and monocyte activation, which 
affect neuroinflammation. In virally suppressed ART-treated 
HIV, if the mucosal barrier is fully recovered and microbial 
translocation is limited to levels similar to those of healthy 
controls, then the neuroinflammation is likely low. However, 
some HIV+ subjects on virally suppressed ART may exhibit 
increased plasma levels of LPS, likely with poor CD4+ T-cell 
recovery (immune nonresponder) [40, 41]. Increased plasma 
LPS may contribute to neuroinflammation in the immune 
nonresponders, which deserves further investigation. Thus, 
mucosal barrier recovery may be a critical factor accounting 
for plasma LPS-mediated neuroinflammation.

Neuronal injury in HIV-infected individuals may result from 
persistent neuroinflammation, HIV viral replication, immune 

activation, oxidative stress, comorbidities, and other factors 
[42]. NfL is a structural component of axons that can be released 
from damaged neurons to the CSF; thus, increased CSF NfL 
levels indicate neuronal injury [28]. In the CSF of HIV+ subjects 
compared to controls, we found increased neuroinflammation 
and BBB permeability, but CSF NfL levels were similar among 
the 3 study groups (Figure 1 and Table 1). Previous studies show 
CSF NfL levels were increased in untreated HIV+ individuals 
compared to controls [31, 34]. In the other studies [20, 34, 43], 
HIV+ individuals with HAD had increased levels of CSF NfL, 
which was consistent with our results (Figure 1C). Nonetheless, 
our results suggest that increased neuroinflammation is not 
necessary to result in neural injury and neurodegeneration in 
HIV. The observation that elevated CSF NfL and HAD are not 
distinguished by plasma LPS is not consistent with the finding 
of LPS being associated with CNS injury [44, 45]. However, the 
cross-sectional nature of the study may limit the evaluation 
of duration of neuroinflammation and its effects on neuronal 
damage in HIV.

Systemic LPS exposure resulted in increased BBB perme-
ability in animals in vivo, and in vitro treatment of LPS in-
creased permeability of BMECs [10–13]. Consistently, we 
found a direct correlation between the plasma LPS level and 
the degree of BBB permeability in HIV+ subjects (Figure 1D). 
Furthermore, intraperitoneal injection of LPS in mice resulted 
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Figure 3.  The mechanisms of plasma lipopolysaccharide (LPS)–mediated neuroinflammation in human immunodeficiency virus (HIV) disease. HIV infection is associated 
with a comprised mucosal barrier (eg, gut), which results in systemic microbial translocation (eg, bacterial LPS). There are at least 2 potential mechanisms accounting for 
plasma LPS-mediated neuroinflammation in HIV: (1) increased circulating microbial LPS persistently activates monocytes to produce proinflammatory cytokines in the circu-
lation, which affect the brain as well; (2) increased circulating microbial LPS persistently activates monocytes to differentiate to M1 macrophages, which migrate to tissue 
sites such as brain and mediate neuroinflammation. Abbreviations: HIV, human immunodeficiency virus; IL, interleukin; LPS, lipopolysaccharide; sCD14, soluble CD14; sCD163, 
soluble CD163; TLR, Toll-like receptor; TNF, tumor necrosis factor. 
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in neuroinflammation [14–16]. LPS induced neopterin in 
human PBMCs and macrophages in vitro [46]. Consistently, 
we found that plasma LPS levels were correlated with blood 
and CSF levels of neopterin in HIV. In human studies, correl-
ations were observed between the degree of BBB permeability 
and CSF neopterin levels and CSF WBC counts, suggesting 
that CSF neopterin and WBC infiltration may be a conse-
quence of a permeable BBB in HIV [35]. Increased plasma 
LPS has been reported in HIV+ patients with dementia; 
plasma sCD14, produced by LPS stimulation in monocytes, 
is associated with neurocognitive impairment in HIV [32, 
47, 48]. Plasma, but not CSF sCD14 or sCD163, is a better 
marker to associate with HAND [3, 32]. In the current study, 
significant correlations were observed between plasma LPS 
and plasma but not CSF levels of sCD14 and sCD163 in all 
subjects. The disruption of BBB barriers by systemic LPS ex-
posure and TLR-downstream proinflammatory cytokines has 
been reported in both human and animal studies, but not in 
HIV [10–13, 49].

In addition to HIV, other diseases (eg, inflammatory bowel 
diseases) exhibit increased systemic microbial translocation, 
accompanied by accelerated neurocognitive disorders [7]. 
Notably, deletion of CD14+ monocytes attenuated Alzheimer 
disease pathology [50], suggesting that monocytes or macro-
phages play a role in neurocognitive impairment. In the cur-
rent study, we found that plasma LPS was directly correlated 
with plasma and CSF levels of serial proinflammatory cyto-
kines in all subjects and HIV+ subjects, but not in HIV– in-
dividuals. Some of these cytokines or chemokines can be 
released from monocytes or macrophages after LPS stimu-
lation. The link between plasma microbial translocation and 
monocyte activation and migration, as well as their contribu-
tion to CNS inflammation and dysfunction, deserves further 
investigation.

There are several limitations to this exploratory study. These 
include the relatively small sample size, particularly with re-
spect to the untreated HIV+ group with a limited range of sys-
temic disease progression, and only 3 individuals with HAD. 
However, even with this small number, it is clear that LPS does 
not (or only rarely) enter the CSF in the absence of bacterial 
infection in the brain or sepsis, so any direct effect of microbial 
translocation is seemingly confined to its systemic impact. The 
correlations of plasma LPS with various inflammatory markers 
in CSF and plasma should likely be considered as preliminary 
and bear examination in a larger and more broadly constructed 
group of untreated HIV+ subjects and treated HIV+ immune 
nonresponders.
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