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Background. Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants. The causes and cor-
relates of severe illness in the majority of infants are poorly defined. 

Methods. We recruited a cohort of RSV-infected infants and simultaneously assayed the molecular status of their airways and 
the presence of airway microbiota. We used rigorous statistical approaches to identify gene expression patterns associated with dis-
ease severity and microbiota composition, separately and in combination. 

Results. We measured comprehensive airway gene expression patterns in 106 infants with primary RSV infection. We identified 
an airway gene expression signature of severe illness dominated by excessive chemokine expression. We also found an association 
between Haemophilus influenzae, disease severity, and airway lymphocyte accumulation. Exploring the time of onset of clinical 
symptoms revealed acute activation of interferon signaling following RSV infection in infants with mild or moderate illness, which 
was absent in subjects with severe illness. 

Conclusions. Our data reveal that airway gene expression patterns distinguish mild/moderate from severe illness. Furthermore, 
our data identify biomarkers that may be therapeutic targets or useful for measuring efficacy of intervention responses.

Keywords.  RSV; airway transcriptome; host response; nasal transcriptome; severity.

Respiratory Syncytial Virus (RSV), a negative-strand RNA virus 
in the Pneumoviridae family, is the most important cause of res-
piratory tract infection during infancy, causing annual winter 
outbreaks [1–6]. In the United States, approximately half of the 
4 million newborns are infected with RSV during their first 
winter, with 1%–3% hospitalized and an additional 4%–7% and 
10%–16% seen in emergency departments or physician offices, 
respectively [7]. Mortality is uncommon in the United States 
(approximately 50 deaths annually); however, in developing 
countries it is estimated that annually RSV causes 118 thousand 
deaths, 6 million cases of severe acute lower respiratory illness, 
and 3 million hospitalizations in children younger than 5 years 
[8, 9]. Currently, there is no available vaccine for RSV, although 
several candidate vaccines are in clinical trials.

Long-established major risk factors for severe RSV illness 
include prematurity, chronic lung disease of prematurity, con-
genital heart disease, neuromuscular disease, and immune com-
promise [4, 10]. However, approximately 70% of hospitalized 
infants in the United States have no overt risk factors for severe 
illness, although young age at infection, environmental influ-
ences such as tobacco smoke exposure, viral load and strain, low 
levels of maternally derived RSV-neutralizing antibody, as well 
as a multitude of genetic host factors have been associated with 
severe disease in some but not all studies [4, 11–20]. Recently, 
the presence of Haemophilus influenzae and Streptococcus 
pneumoniae in the nasal microbiota during RSV infection has 
been associated with greater severity [21–23].

Finally, and importantly, the infant’s immune response to RSV 
is thought to be a major driver of disease pathogenesis, especially 
during primary infection [24, 25]. Several studies in infants suggest 
that T helper 2 (Th2) biased responses and Th17 responses during 
primary infection may contribute to a more inflammatory and se-
vere outcome [26–28]. Innate immune responses by immune cells, 
such as neutrophils, and respiratory epithelial cells are also likely 
to play pivotal roles in both eliminating virus replication as well 
as enhancing or moderating the inflammatory response [29, 30].
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The AsPIRES (Assessing and Predicting Infant RSV Effects and 
Severity) study is a comprehensive study designed to identify fac-
tors associated with disease severity in full-term healthy infants 
younger than 10 months undergoing primary RSV infection. In 
this report we analyze gene expression of nasal respiratory epi-
thelial cells, in addition to the influence of respiratory microbiota, 
in relation to illness severity during primary RSV infection.

METHODS

Please see Supplementary Methods for details regarding the 
study cohort, procedures, and methods used for data anal-
ysis. The transcriptional and microbiota data described in this 
manuscript are available in the database of Genotypes and 
Phenotypes (dbGaP) accession phs001201.v2.p1. An analysis 
of the predictive potential of nasal gene expression, using an 
overlapping and related transcriptional data set, is described in 
Wang et al [31]. A study of the chronology of airway microbiota 
dysbiosis associated with RSV infection, using an microbiota 
data set, is described in Grier et al [32].

Study Subjects

RSV infected infants were identified and enrolled into the 
AsPIRES cohort as previously described [33, 34]. Briefly, RSV 
was identified in a prospectively enrolled birth cohort, a second 
group of infants with respiratory illness seen in pediatric of-
fices and emergency rooms, and a hospital cohort diagnosed 
with RSV on admission. Ill subjects were previously healthy 
full-term infants (>36 weeks’ gestation at birth) younger than 
10 months of age at the time of primary RSV infection. Parental 
informed consent was obtained and the study was approved by 
the institutional review boards of the University of Rochester 
and Rochester General Hospital.

Study Protocol and Procedures

Initial RSV infection was confirmed by quantitative reverse 
transcription polymerase chain reaction (RT-PCR) as de-
scribed [11]. For the prospectively enrolled birth cohort a di-
agnostic nasal swab was performed in the research laboratory. 
For the hospital cohort, RSV was identified by standard-of-care 
RT-PCR in the clinical laboratory. Infants enrolled in office or 
emergency rooms were diagnosed by either standard-of-care or 
a research assay. Once identified as RSV infected, all enrolled 
infants had a nasal swab for analysis of respiratory microbiota 
from one nostril and a nasal wash followed by collection of 
nasal epithelial cells for nasal transcriptome studies from the 
contralateral nostril performed within 24 hours of initial viral 
diagnosis, as previously described [35]. Nasal samples were col-
lected with a flocked swab by gentle rubbing at the level of the 
inferior turbinate.

Defining Illness Severity

Illness severity was defined on a continuous scale (from 0 to 
10) using a global respiratory severity score (GRSS) [33]. For 

some secondary analyses, severe illness was dichotomously de-
fined as GRSS > 3.5.

Library Preparation and Sequencing

We have previously described methods for sequencing infant 
nasal RNA samples [35]. Sequences were aligned to reference 
genome GRCh38, normalized to FPKM (fragments per kilobase 
of exon per million reads), and filtered for nominal expression. 
Twenty-five samples were removed from the analytical data set 
for poor quality. We used ComBat [36] to remove batch effects. 
To avoid spurious findings due to outliers, we also winsorized 
the data at 1% and 99% levels.

Gene Significance Analyses

Univariate and multivariate significance analyses were 
conducted using the R package limma [37] with a robust 
M-estimator [38]. Benjamini-Hochberg multiple testing cor-
rection was applied to control the false discovery rate (FDR) at 
.05 level [39].

Functional Classification

Ingenuity Pathway Analysis [40], ToppGene Suite [41] and 
CTen [42] were used for ontological analyses.

Gene Expression Validation

Quantitative real-time polymerase chain reaction (qPCR) was 
performed as we have previously described [35].

Cytokine Determination Multiplex Assay

Nasal wash samples were tested for cytokines and chemokines 
using R&D Systems Human Luminex assay following the 
manufacturer’s protocol.

Detection of Pathogenic Virus and Bacteria

TaqMan Array Card (TAC) technology was used to detect 
common respiratory pathogens as well as Hemophilus influenzae 
and Streptococcus pneumoniae, as previously described [43–45].

Microbiome Analysis

Airway microbiota analysis from infants was performed essen-
tially as previously described [35]. Reads were analyzed using 
phylogenetic and operational taxonomic unit (OTU) methods 
in the Quantitative Insights into Microbial Ecology software 
[46], and normalized using the cumulative sum stabilization 
method from the metagenomicSeq R package [47].

Transcriptome and Microbiome Integration

We limited analyses to those 83 subjects for whom both tran-
scriptome and microbiome samples were available, and who 
were not on antibiotics. A  multivariate linear regression was 
conducted on GRSS as the outcome variable including visit age, 
a single OTU marginally associated with GRSS (H. Influenzae), 
and the expression profiles of each gene marginally associated 
with GRSS (1185 genes in total).

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa576#supplementary-data
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Statistical Analysis of Clinical Data

Descriptive characteristics of the study cohort were reported 
in Table  1. For binary variables, percentages and frequencies 
were reported; for continuous variables, means and standard 
deviations were reported. Appropriate statistical tests were per-
formed to test the association between each clinical variable and 
disease severity. Specifically, for dichotomous severity (mild vs 
severe), we used 2-sample Welch t test and Fisher exact test for 
continuous and binary variables, respectively; for continuous 
severity (GRSS), 2-sample Welch t test and Pearson correla-
tion test were used for the binary and continuous clinical vari-
ables, respectively. A P value < .05 was considered statistically 
significant. All analyses were performed with SAS (version 9.3; 
SAS Institute) and the R programming language (version 3.5; R 
Foundation for Statistical Computing).

RESULTS

Subject Demographics

We sought to understand target organ resident cell responses 
during primary RSV infection in infants displaying the full 
spectrum of illness severity. We used a nasal cell sampling 
procedure [35, 48] to measure infant airway transcriptional 
responses in 106 subjects from the AsPIRES study [33, 34]. 
Demographic data for these 106 infants are described in 
Table  1. Subjects were assigned a GRSS [33]. There was no 
association between severity and RSV strain, family-reported 
environmental tobacco smoke exposure, or the presence of 
other viral pathogens or bacterial colonization based on a pos-
itive RT-PCR. The severity was only associated with subject 

age at the time of infection, and only when the severity was 
defined as a continuous variable.

Airway Transcriptional Correlates of Disease Severity

We assessed the expression of 13 688 genes by RNAseq fol-
lowing standard quality control-based sample and gene fil-
tering [26, 35]. Gene expression was enriched in canonical 
(eg, CDH1, EPCAM) and upper airway-specific (eg, BPIFs, 
MUCs) marker genes, with lower levels of expression for leu-
kocyte markers (Supplementary Figure 2). Univariate anal-
ysis indicated that many variables were not associated with 
significant differences in gene expression after appropriate 
adjustments for multiple testing (Table 2). As previously re-
ported [35], the presence of known bacterial pathogens had a 
large impact on airway gene expression (n = 470 genes), ap-
pearing to be driven more by the presence of S. pneumoniae 
(n = 691 genes) than Moraxella or H. influenzae when iden-
tified by TAC. Interestingly, the presence of any additional 
pathogen during acute infection, defined by TAC tech-
nology, was not significantly associated with clinical severity 
(P = .319, data not shown). Notably, the time elapsed from 
the onset of clinical symptoms (time) also had a major im-
pact on gene expression (n = 216 genes). No gene was mar-
ginally identified as significantly associated with severity 
when defined dichotomously (mild vs severe). However, 142 
genes were significantly associated with GRSS when used as 
a continuous score. We completed a multivariate analysis in-
cluding sex, race, bacterial pathogen colonization, and time 
since onset of clinical symptoms. This analysis identified 252 

Table 1. Subject Demographics 

Characteristic Total (n = 106) Mild (n = 42) Severe (n = 64) 

Mild vs Severe Correlation With GRSS

t Statistics P Value Pearson Correlation Coefficient P Value

Continuous variable, mean ± SD   

 Age, mo 3.35 ± 2.22 3.52 ± 1.99 3.24 ± 2.37 0.6579 .5122 −0.2081 .0323

 Gestational age, wk 38.90 ± 1.37 39.05 ± 1.25 38.8 ± 1.44 0.9515 .3437 −0.1003 .3064

 Birth weight, kg 3.34 ± 0.61 3.32 ± 0.68 3.36 ± 0.57 −0.3240 .7468 0.0721 .4625

 Family size 4.16 ± 2.25 4.43 ± 2.86 3.98 ± 1.73 0.9027 .3703 −0.0494 .6150

 Viral load, log10 NS titer 2.43 ± 1.16 2.48 ± 1.11 2.40 ± 1.20 0.3191 .7504 0.0209 .8346

Mild vs Severe Comparison With GRSS

Fisher Odds Ratio P Value t Statistics P Value

Categorical variable, No. (%)        

 Sex, female 54 (51) 19 (45) 35 (55) 0.687 .4275 0.5493 .584

 White 62 (58) 23 (55) 39 (61) 1.5276 .3115 −0.5511 .5832

 Tobacco smoke exposure, true 36 (34) 14 (33) 22 (34) 1.0472 1 −0.7605 .4492

 RSV strain, A 59 (56) 23 (55) 36 (56) 0.9939 1 0.207 .8365

 Bacterial colonization, true 79 (75) 30 (71) 49 (77) 1.3033 .6498 −1.2747 .2092

 Viral coinfection, truea 18 (17) 9 (21) 9 (14) 0.603 .4285 0.6068 .5495

Data represent samples collected at the time of acute infection (1–10 d after onset of clinical symptoms) from 106 subjects. Data are mean ± SE for continuous variables and the frequency 
in both groups for categorical variables. P values were computed by statistical tests that are appropriate to the nature of the variables (see section “Statistical Analysis of Clinical Data”).

Abbreviations: GRSS, global respiratory severity score; NS, neutralization serum; RSV, respiratory syncytial virus.
aCoinfecting viruses were adenovirus (3), bocavirus (1), coronaviruses (11), human metapneumovirus (1), parechovirus (1), and rhinovirus (6).

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa576#supplementary-data
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genes significantly associated with GRSS, 728 genes associ-
ated with time since illness onset, and 135 genes associated 
with the presence of any bacterial pathogen (Table  2 and 
Supplementary Figure 3).

Genes significantly associated with severity were rich in 
chemokines, cytokines, and interleukin-related molecules 
(Supplementary Figure 4). Ontological analysis of this gene 
set identified multiple biological functions related to viral in-
fection (Figure 1A), and suggested biomarkers of severity are 
associated with pneumonia (Figure  1A). This observation is 
consistent with the lower respiratory track pathogenesis of se-
vere RSV infections. We next assessed cell signatures in these 
severity biomarkers. Unlike the epithelial predominant signa-
ture of the healthy asymptomatic infant [35], severe responses 
to RSV infection were associated with signatures of multiple 
immune cells (Figure  1B). The most predominant cell sig-
natures were related to CD14+ and CD33+ myeloid lineages. 
Pathway analysis confirmed increases in expression of myeloid 
cell-related genes in severe cases, and strongly implicated inter-
leukin-17 (IL-17)-related responses (Figure 1C).

We validated severity-associated gene expression changes 
by qPCR (Supplementary Table 1). We also performed multi-
plex enzyme-linked immunosorbent assay (ELISA) analysis 
using nasal washes. As shown in Figure 1D, we validated sig-
nificant differences in the level of multiple inflammatory bio-
markers associated with severity (eg, CXCL1, CXCL2, IL-6), 
and nonsignificant differences in others (eg, IL-16).

Effects of Airway Microbiota on Severity Biomarkers

Recent work by others has demonstrated the specific presence 
of H.  influenzae in the airway as a correlate to severe clinical 

responses in infants with RSV. We completed unbiased mi-
crobiota analysis of the airway of our subjects. H.  influenzae 
(Supplementary Figure 5), was the only OTU significantly as-
sociated with severity following adjustment for multiple testing 
in this cohort (Figure  2A and Supplementary Table 2). This 
presumably represents nontypable H.  influenzae because the 
incidence of H. influenzae type B is uncommon. Interestingly, 
9 OTUs (not including H. influenzae) were significantly asso-
ciated with age, suggesting the nasal microbial communities 
evolve extensively during infancy in this cohort [49].

Given the impact of bacterial pathogens on airway gene expres-
sion [35] (Table 2), and the singular association of H. influenzae 
with severity, we sought to identify severity-associated gene 
expression independent of the impact of H.  influenzae. We 
modified our multivariate analysis by including the relative 
abundance of H.  influenzae in the model. We identified 643 
genes significantly associated with GRSS independent of the 
presence of H. influenzae (and visit age). Many of these genes, 
pathways (Supplementary Figures 6–8), and cell types were 
identified in our analysis not including H. influenzae. However, 
ontological analysis of this gene set identified a greater associ-
ation with bacterial infection (Figure 2B). Additionally, when 
including H. influenzae, we note that cell type signatures were 
attenuated for myeloid lineages and inflated for both CD4+ and 
CD8+ lymphocyte lineages (Figure 2C). These data suggest that 
H. influenzae influences the clinical severity of RSV infection in 
infants by modifying the nature of the inflammatory response.

Effects of Timing on Severity Biomarkers

As indicated above, the samples were collected across the 
acute phase of infection, following the onset of clinical 

Table 2. Number of Genes With Significant Changes Associated With Individual Clinical and Demographic Variables

Clinical Variable
Value  

(n = 106)

No. of Associated Genes

Univariate, BH P < .05 Multivariate, BH P < .05

Continuous variables, mean ± SD    

 Clinical severity, GRSS 4.35 ± 2.66 142 252

 Days since onset of illness 4.60 ± 0.20 216 728

 Gestational age, wk 38.90 ± 1.37 0 0

 Age, months 3.35 ± 2.22 5 1

Categorical variables, No. (%)    

 GRSS, mild 42 (40) 0 …

 Sex, female 54 (51) 18 60

 White, true 62 (58) 13 17

 Tobacco smoke exposure 36 (34) 0 0

 Viral coinfection 18 (17) 7 3

 Bacterial colonization 79 (75) 470 135

  Streptococcus pneumoniae 39 (37) 691 …

  Haemophilus influenzae 29 (27) 22 …

 Moraxella 67 (63) 0 …

We performed univariate and multivariate regression model to identify gene expression changes associated with intrinsic (age, GRSS, days since onset of illness) and extrinsic (tobacco 
smoke exposure and bacterial colonization or viral coinfection) factors. Shown are the number of genes identified as significant for each variable in the model.

Abbreviations: BH, Benjamini-Hochberg; GRSS, global respiratory severity score.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa576#supplementary-data
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symptoms, and the timing of sample collection had a signifi-
cant impact on gene expression (Table 2 and Supplementary 
Figures 9). We interrogated timing biomarkers to better un-
derstand the airway response to infection. Pathway analysis 
(Figure 3A and Supplementary Figures 10 and 11) identified 
increasing EIF2 and mTOR signaling, and alterations in mito-
chondrial and oxidative phosphorylation activity. There was 

also diminishing innate interferon signaling over time. The 
genes contributing to this signature included intracellular in-
terferon (IFN) signaling molecules (MX1, IFIT1, STAT2), but 
not the ligands or receptors themselves. We performed explor-
atory analysis of these IFN pathway-related genes, which re-
vealed a surprising dichotomy between severe and nonsevere 
subjects (Figure  3B). Significant increases in IFN pathway 
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gene expression in nonsevere subjects occurred only during 
the first 3–4  days following the onset of clinical symptoms, 
whereas little to no evidence for interferon signaling was 
noted in any subjects at later time points. qPCR confirmed a 
complex relationship between IFN pathway gene expression, 

clinical severity, and the ontogeny of illness (Supplementary 
Table 3).

Analysis of regulators for timing biomarkers implicated both 
type 3 (IFNL1; P < 10−35) and type 1 (IFNA2; P < 10−30) ligands, 
as well as the canonical interferon-associated transcription 
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factors IRF-3, -7, and -5 (P < 10−15) (Supplementary Figure 12). 
We performed a post hoc analysis and found evidence for in-
duced expression for both type 1 and 3 IFN ligands (partic-
ularly IFNB1, IFNL1, IFNL2, IFNL3) in nonsevere subjects, 
but not in severe subjects (Figure  3C). Multiplex ELISA of 
nasal washings confirmed induced levels of IFNB and IFNL in 
nonsevere subjects (Figure 3D). These data suggest that inter-
feron signaling responses and/or interferon production, within 
the first few days of infection, contribute to establishing clinical 
severity in RSV-infected infants.

DISCUSSION

We applied our novel approach to comprehensive molecular 
analysis of the airways to understand correlates of clinical se-
verity for infant RSV illness. Our data support the utility of this 
biospecimen as a reasonable surrogate for pathophysiological 
responses occurring in the lower airway. In addition, the data 
provide novel insight into disease responses related to the se-
verity of clinical symptoms, the presence of co-occurring mi-
crobes and the timeline of clinical symptoms.

We were not surprised to identify many chemokines that are re-
flective of a more robust inflammatory response in subjects with 
severe illness. Somewhat more insightful is the ontological analysis 
that implicates airway changes in IL-1, -8, -10, and -17 signaling in 
severe patients. Our data also suggest the inflammatory response 
in the airway differs in infants with severe RSV-associated illness, 
including an enrichment in CD14+ and CD133+ myeloid cells.

We were interested in understanding the role of the airway 
microbiota in clinical responses to RSV in infants. We failed to 
find a strong association between the presence/absence of mi-
crobial pathogens and severity. However, we confirmed a re-
port published during our studies indicating a higher burden of 
H. influenzae in infants with severe clinical symptoms requiring 
hospitalization [23]. Although other taxa were associated with 
airway gene expression, we were somewhat surprised to find 
no other OTUs were significantly associated with severity. It 
is worth noting microbiome analysis was unable to identify 
S. pneumoniae at the species level. Given our prior studies re-
vealing a large impact of the microbiota upon gene expression 
in the airway, we studied the interrelationships between the 
airway microbiome, airway gene expression, and clinical se-
verity. In general, these analyses confirmed that the presence of 
known pathogens, particularly bacteria, are strongly associated 
with gene expression in asymptomatic [35, 48] and symptomatic 
[48] infants. We considered the specific effect of the microbiota 
H. influenzae on the relationship between gene expression and 
RSV severity. The results are consistent with H.  influenzae al-
tering the inflammatory response, from myeloid-predominant 
to CD4/8 T-lymphocyte predominant. These data provide a cur-
rently untested hypothesis for a potential mechanism whereby 
H. influenzae contributes to severe responses at the molecular 
and cellular level, which is a focus of current investigation.

Our identification of distinct, time-dependent changes in 
IFN signaling only in nonseverely affected infants is both novel 
and consistent with the fundamental biology of viral responses. 
Perhaps this was not readily apparent in prior studies focusing 
on severely affected infants as they show limited evidence for 
activation of this pathway. We also draw attention to the narrow 
time window in which differences in IFN signaling between 
these groups is evident. Even in our own data, differences in ex-
pression do not reach the level of statistical significance without 
restricting our analyses to the first few days following the onset 
of clinical symptoms. We should emphasize that our primary 
observation is not that severity is associated with IFN ligand 
production, but with estimated levels of signaling activation in 
the airway. However, we also show differences in IFN ligand ex-
pression at both the RNA and protein levels.

The above results are consistent with a pathogenesis model 
of RSV in which early airway neutrophil infiltration medi-
ated by IL-8 and the emergence of T-cell responses including 
Th17 CD4 cells playing a role at the peak of disease severity. 
This is not surprising given the association of Th17 responses 
and wheezing, a hallmark of severe RSV infection. Given the 
relationship between H. influenzae abundance and disease se-
verity, and the influence of bacterial colonization on airway epi-
thelia gene expression, one might speculate about the effect on 
RSV severity by preventing early infancy colonization by this 
organism. Finally, the finding that early induction of genes in 
the innate IFN pathway is associated with less severe disease 
is notable because the RSV NS1 and NS2 proteins are potent 
and early inhibitors of antiviral type I IFN [50]. Whether this 
is related to viral strain differences or intrinsic host differences 
should be explored.

Our evaluation of human biospecimen-derived RNAseq data 
has utilized multiple analytical and statistical approaches, in an 
effort to thoroughly interrogate the in vivo responses they re-
flect. Critically, we have applied appropriately conservative cor-
rections for multiple testing in each case. We believe that use 
of these analytical approaches is justified, as they each provide 
distinct yet important insight. Univariate analyses are used to 
estimate the direct associations between one covariate and in-
dividual genes. These analyses are easy to perform and inter-
pret, and do not suffer from potential collinearity issues among 
covariates. As such, they are useful to initially explore the 
overall pattern of associations between clinical covariates and 
transcriptome profiles. On the other hand, a multivariate model 
considers the influence of several covariates on gene expression 
simultaneously; therefore, the estimated association between the 
response variable and a given covariate is less likely to be affected 
by interdependences. Arguably, a multivariate model is more 
natural than multiple univariate models because it more closely 
approximates the complex biological processes that collectively 
influence the transcriptome. That being said, more caution 
must be exercised when using complex multivariate models. 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa576#supplementary-data
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When uninformative covariates are included in a multivariate 
model, they may mask true associations and reduce the statis-
tical power to detect informative associations. A more serious 
issue is the potential collinearity among the covariates, which 
may prevent modeling certain combinations of covariates and 
produce unstable estimates. Therefore, we believe it is a prac-
tical strategy to first use univariate analyses to identify a subset 
of important covariates, and then use them to build a lean and 
robust multivariate model.

We acknowledge this study is not without limitations. We 
have focused our efforts in identifying gene expression re-
sponses that distinguish infants severely affected by RSV infec-
tion as compared to infants who are not severely ill and have 
not included noninfected controls. Therefore, we are unable to 
address the specificity of the responses we observe and report. 
Other studies by our group [48] and unpublished data sug-
gest that responses to viral infection can be robustly identified. 
Another limitation is the associative nature of the in vivo data 
presented. One must resist presuming that the correlative ob-
servations we report are mechanistic, rather than hypothesis 
generating.

In conclusion, analysis of gene expression by RNAseq in nasal 
epithelial cells coupled with measurement of the upper airway 
microbiota at the time of infection offers a minimally invasive 
method to understand the complex pathogenesis of a common 
pediatric respiratory pathogen. Results can be used to propose 
potential interventions that may moderate disease severity.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are 
not copyedited and are the sole responsibility of the au-
thors, so questions or comments should be addressed to the 
corresponding author.
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