
� 1Zuber PLF, et al. BMJ Global Health 2021;6:e003403. doi:10.1136/bmjgh-2020-003403

Evolving pharmacovigilance 
requirements with novel vaccines and 
vaccine components

Patrick L F Zuber  ‍ ‍ ,1 Marion Gruber,2 David C Kaslow,3 Robert T Chen,4 
Brigitte K Giersing,5 Martin H Friede5

Analysis

To cite: Zuber PLF, Gruber M, 
Kaslow DC, et al. Evolving 
pharmacovigilance requirements 
with novel vaccines and vaccine 
components. BMJ Global Health 
2021;6:e003403. doi:10.1136/
bmjgh-2020-003403

Handling editor Seye Abimbola

Received 9 July 2020
Revised 4 August 2020
Accepted 9 August 2020

1Access to Medicines and 
Health Products Division, World 
Health Organization, Geneva, 
Switzerland
2Center for Biologics Evaluation 
and Research, Food and Drugs 
Administration, Silver Spring, 
Massachusetts, USA
3Essential Medicines, PATH, 
Seattle, Washington, USA
4Brighton Collaboration, Task 
Force for Global Health, Decatur, 
Georgia, USA
5Immunization, Vaccines and 
Biologicals Department, World 
Health Organization, Geneva, 
Switzerland

Correspondence to
Dr Patrick L F Zuber;  
​zuberp@​who.​int

© Author(s) (or their 
employer(s)) 2021. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
This paper explores the pipeline of new and upcoming 
vaccines as it relates to monitoring their safety. Compared 
with most currently available vaccines, that are constituted 
of live attenuated organisms or inactive products, future 
vaccines will also be based on new technologies. Several 
products that include such technologies are either 
already licensed or at an advanced stage of clinical 
development. Those include viral vectors, genetically 
attenuated live organisms, nucleic acid vaccines, novel 
adjuvants, increased number of antigens present in a 
single vaccine, novel mode of vaccine administration and 
thermostabilisation. The Global Advisory Committee on 
Vaccine Safety (GACVS) monitors novel vaccines, from the 
time they become available for large scale use. GACVS 
maintains their safety profile as evidence emerges from 
post-licensure surveillance and observational studies. 
Vaccines and vaccine formulations produced with novel 
technologies will have different safety profiles that will 
require adapting pharmacovigilance approaches. For 
example, GACVS now considers viral vector templates 
developed on the model proposed by Brighton 
Collaboration. The characteristics of those novel products 
will also have implications for the risk management 
plans (RMPs). Questions related to the duration of active 
monitoring for genetic material, presence of adventitious 
agents more easily detected with enhanced biological 
screening, or physiological mechanisms of novel adjuvants 
are all considerations that will belong to the preparation of 
RMPs. In addition to assessing those novel products and 
advising experts, GACVS will also consider how to more 
broadly communicate about risk assessment, so vaccine 
users can also benefit from the committee’s advice.

INTRODUCTION
As compared with the 20th century many 
recent vaccines, and others currently under 
development, present several novel features 
that will also impact their safety profile. While 
older vaccines included live attenuated organ-
isms or inactive substances (such as inactivated 
germs, subunits, modified toxins or recombi-
nant proteins), it is now also possible to apply 
newer technologies. The recent COVID-19 
pandemic has led to the largest and most 

diverse ever vaccine development effort. As at 
end July 2020, less than 7 months after iden-
tification and characterisation of the virus, 
close to 200 different vaccine products are 
at different stages of development, including 
at least five in phase III trials.1 Candidate 
COVID-19 vaccines encompass a broad spec-
trum of products, including classic products 
but also the use of several novel technologies 
such as viral vectors, genetically attenuated 
live organisms or nucleic acid vaccines. In 
addition, future vaccines may also include 
novel adjuvants, increased number of anti-
gens, novel mode of vaccine administration 
and thermostabilisation. Those technological 
developments will also affect untoward reac-
tions to vaccine administration, sometimes 
towards better tolerance, and will require 
additional monitoring approaches to account 
for the novel characteristics.

For over 20 years, the Global Advisory 
Committee on Vaccine Safety (GACVS) has 
monitored new vaccines from the time they 
reach market authorisation. GACVS does 

Summary box

►► Novel vaccine technologies include genetic mod-
ifications of micro-organisms, viral vectors, use 
of nucleic acids or novel adjuvants, they also in-
clude increased valences and different routes of 
administration.

►► Those new characteristics will modify untoward 
reactions, specific and non-specific, and will also 
require new pharmaco-epidemiological approaches.

►► The risk management plans for those products will 
have to factor those new theoretical concerns and 
propose ways of monitoring them during the prod-
ucts life-cycle.

►► As several novel vaccines are developed against 
diseases prevalent in countries with weak phar-
macovigilance systems, vaccine introductions will 
require establishing active monitoring to rule out se-
rious untoward effects in early adopter populations.
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characterise and maintain the safety profile of WHO-
recommended vaccines as evidence emerges from postli-
censure surveillance and observational studies. GACVS 
also provides advice of priorities for vaccine safety 
research and normative guidance about preferred meth-
odologies. In this review, we describe novel vaccine tech-
nologies, with a perspective over the next 10 years. We 
discuss known and theoretical implications with respect 
to monitoring their safety and also examine how this will 
impact the risk management of novel vaccine products.

SITUATION ANALYSIS
Vaccines and vaccine technologies pipeline
WHO supports vaccines and novel technologies from 
early product development through to the publication 
of global policy recommendations.2 WHO’s Product 
Development for Vaccines Advisory Committee (PDVAC) 
facilitates early assessment of pipeline products, typically 
in clinical phase I or II, for which there is the greatest 
unmet public health need.3 Since its inception in 2014, 
PDVAC has reviewed 36 pathogen areas and prioritised 
10 urgently required vaccines (figure 1). A key compo-
nent of PDVAC’s remit is horizon scanning of novel 
candidates, an increasing number of which are based 
on innovative manufacturing, product presentation 
or delivery technologies. These assessments provide a 

landscape analysis of the most advanced and applicable 
novel platforms. Since these candidates are typically 5–10 
years away from licensure, they present a forward-looking 
perspective on innovations to come for WHO to proac-
tively prepare guidance.

As the number of WHO-recommended vaccines 
increases,4 there is a critical need for more effective 
products that are cheaper and easier to deliver. On the 
production side, healthy markets that provide afford-
able essential products in sufficient quantity, with the 
ability to rapidly manufacture and scale up in response to 
disease outbreaks, remain an elusive goal. These require-
ments prioritise technologies that offer one or more of 
the following advantages: (1) increased vaccine efficacy 
that enables dose sparing, or a reduction in the number 
of doses per regimen, such as with genetic attenuation 
of live organisms, novel adjuvants and potentially novel 
delivery routes; (2) ability to combine multiple antigens, 
either from the same pathogen or different pathogens 
within the same formulation, possibly with the inclusion 
of genetic adjuvants to reduce the number of vaccina-
tions, such as through the use of viral vectors and nucleic 
acid vaccines, or combinations of individual antigens; 
(3) ability to rapidly manufacture low-cost vaccines with 
new antigen sequences in a matter of weeks rather than 
months, such as with nucleic acid-based platforms and 

Figure 1  Overview of the PDVAC pipeline by novel antigen presentation platform. Regimens involving heterologous prime 
boost approaches, or candidates incorporating more than one platform are shown as stripped bars. Ebola virus vaccines 
are overseen by the R&D blueprint, but are included in this PDVAC overview to reflect the pipeline status of novel platforms 
for this antigen. ETEC, enterotoxigenic Echerichia coli; GAS, group A streptococcus; GBS, group B streptococcus; HSV, 
herpes simplex virus; PDVAC, product development for vaccines advisory committee; R&D, research and development; RSV, 
respiratory syncytial virus; TB, tuberculosis.
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(4) improved safety and acceptability of vaccines at the 
point of delivery, such as through the use of needle-free 
and integrated reconstitution technologies.

Figure 1 presents an overview of the vaccine candidates 
for the PDVAC priority pathogens by phase of clinical 
development. It also highlights those that are based on 
novel technologies, either not previously licensed or 
for which there is currently limited human safety data 
available. The most clinically advanced candidates are 
for respiratory syncytial virus (RSV), tuberculosis (TB) 
and HIV vaccines. For example, one HIV candidate is 
based on a novel technology, namely a viral vector, and 
is being administered through heterologous prime boost 
which is itself a novel delivery approach.5 Approximately 
half of the candidates in phase II clinical development 
for priority pathogens are based on novel technologies, 
including three based on nucleic acids (DNA, mRNA), 
eight based on viral vectors (modified Vaccinia Ankara 
and chimpanzee adenovirus), and several on live atten-
uated and on novel adjuvants (Matrix M, etc). The TB,6 
RSV and Shigella pipelines are predominantly based on 
novel technologies.

Safety considerations
Viral vectors
Recombinant viral vectors are attractive platforms for 
developing novel vaccines. They provide an efficient 
means for heterologous antigen expression in vivo and 
induce robust cellular and humoral immunity, both 
without need for exogenous adjuvant.7 Targeted deletion 
of specific genes allows dampened or complete elimina-
tion of viral replication thereby increasing safety. Viral 
vectors are the most popular approach among the many 
new approaches emerging from the biotechnology revo-
lution. About half (n=11) of the 20 awards for vaccine 
development by the Coalition for Epidemic Prepared-
ness and Innovation (CEPI) to date support use of viral 
vectors and several of the others support use of recom-
binant nucleic acids. Several veterinary and human viral 
vector vaccines (Japanese encephalitis, dengue and Ebola 
virus vaccines) have been licensed with many others in 
the pipeline.7 There is an increasing but still limited 
clinical experience about the efficacy and safety of such 
vectors in humans, however.

Much has been learnt about viral vectors since the first 
studies with Vaccinia in 1984.8 9 Several issues of critical 
importance about this platform remained unknown 
and warranted investigation per a 2003 WHO informal 
consultation.10 These included issues such as recombina-
tion with wild-type pathogenic strains and public accep-
tance (box  1). With increasing numbers of viral vector 
vaccines entering human clinical trials, new regulatory 
measures to ensure their quality, safety and efficacy have 
been established.11 12

On occasion, vector-based vaccines have been associ-
ated with unexpected higher rates of the disease they are 
designed to prevent. This has been the case with HIV 
infection acquisition among participants of the STEP and 

Phambili13 trials who had received a replication-defective 
Ad5 vector vaccine candidate. Despite these setbacks, 
the overall advantages of viral vector vaccines seem to 
outweigh the disadvantages.14 The first HIV vaccine 
candidate to show (modest) protection in large human 
trials consisted of a recombinant canary pox virus vector 
vaccine (ALVAC-HIV (vCP1521)) and a recombinant 
glycoprotein 120 subunit vaccine. Follow-on trials using 
multiple updated viral vector vaccines are underway in 
Southern Africa. A recombinant rhesus cytomegalovirus 
vaccine vector engineered to express simian immuno-
deficiency virus (SIV) proteins has resulted in progres-
sive clearance of a pathogenic SIV infection in rhesus 
macaques in Africa.15 An Ebola vaccine based on the 
vesicular stomatitis virus (VSV) vector has proven to be 
highly efficacious16 and is now registered in some African 
countries.

Since 2008, the Brighton Collaboration has been 
working to improve our ability to anticipate safety 
issues and meaningfully assess and interpret safety data 
from clinical trials of new viral vector vaccines, thereby 
enhancing public confidence in their safety and efficacy, 
and in turn the vaccines’ acceptance and uptake.17 This 
work has provided guidance on several issues of critical 
importance needing further investigation. These include 
to date: (1) archiving samples of biological materials for 
retrospective analysis18; (2) potential for and theoret-
ical consequences of recombination with wild type virus 
strains19 and (3) defining the interval for monitoring 
potential adverse events following immunisation after 
receipt of live viral vectored vaccines.20

In addition to extending the paradigm of standardised 
case definitions to this realm, another major activity has 
been to adapt and use a standardised template for collec-
tion of key information for benefit–risk assessment of a 

Box 1  Issues of critical importance for viral vector 
vaccines (adapted from reference17)

►► Potential recombination with wild-type pathogenic strains.
►► Impact of prior infections on the immunogenicity of vectored 
vaccines.

►► Genetic stability of replicating recombinant viruses in vivo.
►► Impact of addition of foreign genes on a viral vector compared with 
parent virus.

►► Reversion to virulence of attenuated vectors.
►► Demonstration of sustained absence of replication for replication 
incompetent vectors.

►► Public acceptance of vectored vaccines with specific safety 
concerns.

►► Possible induction of immunosuppressive window or alternatively 
immune activation.

►► Defining duration of monitoring for adverse events following immu-
nisation after administration of vectored vaccine.

►► Archiving vectored vaccine samples to allow future assessment of 
adventitious agents.

►► Assessing possible secondary transmission of vectored vaccine 
virus.
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novel vaccine vector or vector-based vaccine. Since this 
domain of vaccine development is highly technical with 
many acronyms and since key stakeholders (eg, regula-
tors, institutional review boards, public health practi-
tioners, public at large) lack technical training, the risk 
for misunderstanding is high. By organising the key 
questions in understandable language, the standardised 
template will hopefully facilitate scientific discourse 
among key stakeholders and increase the transparency 
and comparability of vital information. The templates 
published to date include the yellow fever 17D vaccine 
vector, the recombinant VSV and its application to the 
Ebola virus.16 At its 6 June2019 meeting the GACVS 
recognised the value of the structured information 
conveyed Brighton Collaboration template to policy-
makers and urged other new vaccine developers to also 
complete such template, starting with the most advanced 
Ebola vaccine candidates.21

As COVID-19 vaccine developers are using a broad 
range of technology platforms beyond viral vectors, the 
Brighton Collaboration is developing standardisation 
templates for nucleic acid, protein, inactivated viral and 
live attenuated viral vaccines as well. At ist May 27–28 2020 
meeting, the GACVS recommended that any review of 
new vaccine safety be based on the appropriate Brighton 
Collaboration standardised templates for benefit–risk 
assessment of vaccines. GACVS advised that templates be 
pilot tested in a number of scenarios and then adapted 
accordingly.21

Genetic attenuation of live organisms
Most licensed viral vaccines and those in development 
are live, attenuated viruses derived from virulent clin-
ical isolates through multiple passage in culture (eg, 
measles, mumps, yellow fever, polio). Attenuated viral 
vaccine strains have the potential to mutate and regain 
virulence during growth in cell substrates resulting in 
an unacceptable safety profile of the vaccine, potential 
reduction in potency and efficacy. State of the art tech-
nology allows genetic modification of wild-type viruses, 
bacteria and other micro-organisms to generate atten-
uated vaccine strains that can replicate the pattern of 
natural infection without causing disease or other unto-
ward side effects. Examples include reassortant influ-
enza vaccines combining RNA segments from different 
strains,22 chimeric flaviviruses,23 including a recently 
licensed dengue vaccine,24 as well as genetically modi-
fied enteric bacteria.25 New strains for oral polio vaccine 
(OPV) represent another prominent example of the use 
of targeted systematic genetic modifications to improve 
vaccine safety as described below.

Genetic mutations occurring in Sabin poliovirus from 
conventional OPV strains result in regaining of virulent 
properties and can cause cases of vaccine associated para-
lytic polio.26 Following eradication of wild-type 2 poliovi-
ruses paralytic cases were caused by virulent circulating 
type 2 vaccine derived polioviruses (cVDPV).27 Even 
though trivalent OPV was withdrawn and replaced with 

bivalent vaccine that no longer contained the type 2 polio 
component, outbreaks of type 2 cVDPV that occurred 
prior to the switch cannot be controlled by inactivated 
polio virus vaccine nor monovalent type 2 OPV. State of 
the art technology combined with knowledge of polio-
virus biology and genetics were used to rationally design 
and generate two genetically modified strains of polio-
virus predicted to be safe and immunogenic, but with 
increased genetic stability compared with conventional 
Sabin strains. The modifications included re-coding the 
RNA element in the 5’-untranslated region (5’-UTR) that 
is a critical determinant of attenuation and virulence, to 
decrease the potential for mutations to occur.28 Second, 
a critically important cis-acting replicative element29 was 
transplanted from the centre of the molecule into the 
5’-UTR to prevent elimination of this stabilised element 
due to recombination. Third, mutations were intro-
duced to the viral RNA-replicase to increase its fidelity 
to prevent the emergence of mutations and to limit the 
ability of these genetically engineered viruses to recom-
bine with other enteroviruses.30 Finally, RNA sequences 
coding for the viral capsid proteins were recoded using 
different combination of codons, while preserving the 
same amino acid sequence.31 Phase 1 clinical trials32 that 
evaluated shed polioviruses using deep sequencing and 
the transgenic mouse neurovirulence test have demon-
strated that these strains are indeed more genetically 
stable than the original Sabin virus. It is expected that 
after the phase 2 clinical immunogenicity evaluations 
are complete, these new OPV constructs will be used in 
final polio eradication efforts. This project represents the 
first example of targeted rational design of vaccine virus 
genomes, which may serve as a future paradigm for the 
development of viral vaccines against other diseases. It 
also illustrates that use of new technologies, such as de 
novo chemical synthesis of vaccine genomes and next-
generation (deep) sequencing to evaluate the genetic 
composition of the entire genome of vaccines viruses, 
are important tools for monitoring the molecular consis-
tency and genetic stability of polio vaccines and vaccine 
products in general.33 The use of vaccines derived by 
genetic engineering will require safety surveillance and 
environmental monitoring to confirm that these modi-
fications increase product safety in large-scale public 
immunisation campaigns.

Adjuvants and novel formulations
Adjuvants have been added to vaccines for nearly a 
hundred years, initially with aluminium salts and more 
recently oil emulsions (notably squalene-containing oil-
in-water emulsions such as MF59 and AS03), bacterial 
membrane extracts such as monophosphoryl lipid A 
(MPL) or synthetic derivatives, plant extracts such as the 
Quillaia saponins used in AS01 and MatrixM adjuvants, 
and synthetic oligonucleotides such as CpG. These adju-
vants enhance the antibody titres to the antigen (such as 
aluminium in most childhood vaccines), and some also 
enhance the breadth of the response (such as the MPL 
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in HPV vaccines) permitting antigen-dose reduction and 
enabling immunisation in older adults.

Numerous allegations of safety issues have been 
directed at vaccine adjuvants. Aluminium salts have the 
longest and largest safety track record of all vaccine adju-
vants. Cases of macrophagic myofasciitis (MMF) in which 
aluminium was found within intracytoplasmic inclusions, 
has led some researchers to suggest that alum in vaccines 
was the cause of clinical manifestations.34 After a review 
of the presence of aluminium and clinical MMF GACVS 
did not find credible association and concluded that 
there was no basis for recommending a change in vacci-
nation practices.35

Oil-in-water emulsions were added to two monovalent 
pandemic influenza vaccines that were used during the 
2009 H1N1 pandemic (Pandemrix and Focetria). These 
emulsions contained squalene, an oil purified from 
sharks, and the emulsion in Pandemrix further contained 
alpha-tocopherol (vitamin E). The public acceptance 
and uptake of these vaccines was hampered by media 
claims of the dangers of squalene, a concern that derived 
from a 2002 claim that soldiers returning from the Gulf 
War with the so-called ‘gulf war syndrome’ had antis-
qualene antibodies induced through receiving vaccines 
allegedly containing squalene.36 Although vaccines used 
in the Gulf War did not apparently contain squalene, the 
GACVS reviewed all available data including data from 
clinical trials with the approved squalene-containing 
influenza vaccine Fluad and did not find evidence that 
squalene could induce pathological antisqualene anti-
bodies.37 During the 2009 influenza ‘pandemic’, one of 
the adjuvant-containing pandemic influenza vaccines 
(Pandemrix, containing AS03) was associated with an 
observed increase in narcolepsy rates in several Euro-
pean countries. Proposed mechanisms whereby the adju-
vant heightened and broadened the immune response 
to include induction of pathological mimicry responses38 
are difficult to reconcile with the uneventful use of the 
same adjuvant in another H1N1 pandemic influenza 
vaccine (Arepanrix).39 A more recent hypothesis is that 
it could have occurred from an interaction among popu-
lations being vaccinated in Europe during wild-type virus 
circulation.40

Other adjuvant-associated concerns include the 
observed increase in solicited local symptoms with AS01 
adjuvant.41 A nasally delivered inactivated influenza 
vaccine, containing a mutated heat-labile toxin from 
Escherichia coli as an adjuvant, was found to be associated 
with increased rates of Bell’s palsy resulting in the vaccine 
being withdrawn.42 Subsequent studies43 showed that the 
adjuvant can induce transient facial nerve paralysis.

Combination vaccines and increasing valency
Adding antigens to an existing vaccine formulation 
increases the protection against additional germs and 
simplifies vaccine administration. The number of anti-
gens in individual vaccines has increased for several 
combinations including measles, mumps and rubella 

vaccines in various bivalent to tetravalent combinations 
and combined products with diphtheria, tetanus and 
pertussis (whole cell or acellular) vaccines with other 
non-live vaccines. The diphtheria-tetanus-acellular-
pertussis-inactivated polio-hepatitis B-Haemophilus influ-
enzae type b (DTaP-IPV-HepB-Hib) vaccine referred to as 
a hexavalent vaccine currently protects against the largest 
number of diseases (six different micro-organisms). One 
available presentation contains five different antigens 
against pertussis and three types of poliomyelitis vaccines 
and is therefore composed of 12 antigens in total.44

Multivalent vaccines are more complex to produce 
than monovalent ones. Each component must be 
manufactured, and quality tested separately and then 
in combination. Clinical development requires demon-
strating non-inferiority of the combination for each 
component of the vaccine.45 In most cases, multivalent 
vaccines have been found to be equally immunogenic as 
the same components administered separately. This was, 
for example, essentially the case with measles, mumps 
and rubella.46 A quadrivalent live influenza vaccine was, 
however, found to have lower efficacy than non-live prepa-
rations.47 More antigen per dose administered is some-
times related with increased vaccine reactogenicity. For 
example, the measles-mumps-rubella-varicella vaccine 
causes more febrile seizures than measles-mumps-rubella 
and varicella vaccines administered separately at the 
same time.48 When compared with similar products with 
fewer antigens, DTaP-IPV-HepB-Hib safety profile has a 
slightly higher risk of fever.49

Multivalent vaccines are composed of different types 
of the same micro-organism. Trivalent live and inacti-
vated poliovirus vaccines were the first example of such 
products. Today, pneumococcal polysaccharide vaccine 
(33 components) has the largest valence and a 20-valent 
pneumococcal conjugate is under clinical development.50

A larger antigen charge, the impact of higher carrier 
protein levels, and occasionally the need for higher 
adjuvant titres, can increase the frequency and intensity 
of non-specific local and systemic reactions. With HPV 
vaccines, a recent 9-valent product induces a higher 
frequency of adverse events than its 4-valent predecessor. 
Higher amounts of antigen and adjuvant are a likely 
explanation for this observation. On the other hand, 
polyvalent vaccines can replace older components with 
less reactogenic ones. The prime example being use of 
acellular pertussis instead of whole cell. This, however, 
appears to come at the expense of actual protective 
efficacy. GACVS did review the increasing number of 
vaccines administered and concluded that immune over-
load is not a real concern.51

Innovative vaccine delivery technologies
At present, most injectable human vaccines are presented 
as liquid or lyophilised formulations, in single or multi-
dose vials, the latter of which often contain preserva-
tives for non-live products. Doses are typically admin-
istered via the intramuscular or subcutaneous routes. 
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These conventional presentations include potential 
safety hazards: vaccine reconstitution with an incorrect 
diluent, contamination of multidose vials52 and needle-
stick injury and consequent disease transmission.53 These 
risks, as well as the need to improve ease of administration 
and ensure vaccine potency at the point of delivery, are 
driving the development of innovative vaccine delivery 
technologies with a potential to improve vaccine and 
vaccination safety.

One of the most compelling innovations in the devel-
opment pipeline is the microarray patch (MAP). A MAP 
consists of hundreds or thousands of projections, coated 
with or composed of dry vaccine formulation, on a ‘patch’ 
backing. The most clinically advanced vaccine MAPs 
either have no applicator,54 or an integrated applicator55 
and when pressed on the skin, deliver the vaccine to the 
dermis or epidermis over seconds or a few minutes. MAPs 
are ‘pre-filled’, needle-free, single use presentations 
that reduce the risks of contamination, use of incorrect 
diluent or needle stick injuries. In addition, novel antigen 
formulations that will need to be developed for the MAP 
presentation presents an opportunity to improve vaccine 
thermostability so that it can be stored outside a regular 
cold chain.56 57

Since the intradermal compartment is rich in 
antigen-presenting cells, it is conceivable that MAPs 
may offer the opportunity for dose sparing. This has 
been demonstrated in animal models for several anti-
gens58 and in the clinic with a monovalent influenza 
antigen.56 However, this increase in immunogenicity 
may be associated with high and unacceptable levels 
of reactogenicity. Minor local reactions lasting several 
days following application have been observed in clin-
ical studies54 59 60 and may be more pronounced with 
adjuvanted vaccines. To date, there have only been clin-
ical studies with influenza vaccine and data with addi-
tional antigens are needed.

For liquid vaccines, next-generation compact prefilled 
autodisable devices are in the pipeline. Their presenta-
tion is similar to the commercially available Uniject58 but 
they can be manufactured by an automated, continuous, 
aseptic process known as Blow-Fill-Seal. This reduces the 
potential for contamination during manufacturing. This 
presentation is envisaged to be composed of a blister 
package containing a single dose of vaccine, a preas-
sembled needle hub with an auto disable feature and 
a removeable vaccine shield. If all these elements are 
included in the final presentation, they offer the poten-
tial to reduce vaccine contamination, needle stick inju-
ries and disease transmission.

While these innovations, and others in the pipeline, 
offer the potential of significant safety benefits, they are 
likely to incrementally increase the procurement cost per 
dose of the vaccine. Efforts are needed to evaluate these 
trade-offs, and to further rationalise the programmatic 
and public health benefit that can be offered.

Nucleic acid vaccines
In 1990, direct gene transfer into mouse muscle in vivo 
demonstrated that plasmid DNA (pDNA) containing a 
gene of interest when directly inoculated into host tissue 
resulted in in situ production of the corresponding 
protein.61 In the context of vaccination, this observation 
suggested that nucleic acid technology (NAT) could 
deliver and express target immunogens and genetic adju-
vants as a simple and versatile platform for vaccination. 
A promising feature of NAT vaccines is the potential 
to induce both humoral and cellular immunity to the 
target immunogen. There is also an apparent absence 
of adaptive immune response (although not the absence 
of certain innate immune responses) against the vector. 
For a variety of technical reasons (eg, stability and ease 
of manufacturing), the focus of early NAT vaccine efforts 
was directed to pDNA rather than other DNA or RNA 
approaches and hundreds of clinical trials with pDNA 
ensued.62 Although no NAT vaccines have been licensed 
for use in humans, three have been licensed to date for 
veterinary use to prevent infectious diseases.

Not unexpectedly for a novel immunogen and vaccine 
delivery system, early on there was uncertainty about both 
efficacy and safety of pDNA in humans. Safety concerns 
included somatic chromosomal integration, germline 
alterations, autoimmunity and immunopathology. Initial 
guidance documents called for extensive nonclinical 
studies, including biodistribution, chromosomal inte-
gration, germline evaluation, in addition to more typical 
vaccine toxicology studies. There is abundant nonclin-
ical evidence that pDNA does not biodistribute or persist 
throughout the host when delivered parenterally into 
muscle, subcutaneous tissue or various dermal layers. 
Published data from hundreds of clinical trials indicate 
that pDNA vaccine candidates have been generally safe, 
with acceptable reactogenicity profiles. Clinical reacto-
genicity relates more to delivery method than to pDNA 
(eg, electroporation, particle-mediated bombardment). 
As such, both the nonclinical and clinical sections of the 
WHO Guidelines for assuring the quality, safety and effi-
cacy of DNA vaccines are being revised in light of existing 
non-clinical and clinical data.63

Clinical evaluation suggests that pDNA alone in most 
instances does not induce enough immune response 
in humans to warrant late-stage clinical development. 
To enhance the immune response optimisation of the 
primary and secondary structure of the pDNA, addition 
of excipients that enhance delivery or have an adjuvant 
effect, and changes in the mode or route of administra-
tion are being evaluated. More effective immunogenicity 
seems to be induced when pDNA is used to prime immune 
responses that are subsequently boosted by delivery of 
a heterologous vaccine candidate (protein antigen or 
gene-based viral vectors). In recent years, there has been 
a decline in publications on pDNA and a recent increase 
in publications and clinical evaluation of a variety of 
RNA-based NAT vaccine approaches (figure 2).



Zuber PLF, et al. BMJ Global Health 2021;6:e003403. doi:10.1136/bmjgh-2020-003403 7

BMJ Global Health

RNA vaccines now being clinical tested incorporate the 
use of modified nucleosides and novel delivery excipi-
ents. Those appear to have overcome previous limitations 
of instability, transient production of encoded protein, 
and undesired innate immune responses.61 Like pDNA, 
the current uncertainty of both efficacy and safety of 
RNA-based vaccine candidates in humans have yielded 
to more streamlined evaluations, as evidenced by the 
unprecedented speed from sequence availability to first 
subject enrolled in phase 1 safety and immunogenicity 
study of a mRNA-based SARS-CoV-2 candidate vaccine.64

Evolving risk-management plans
Modern regulatory review of health products includes 
examination and continued monitoring of risk manage-
ment plans (RMPs). RMPs have a product life cycle 
perspective. They typically include information on a 
product’s safety profile, based on data from clinical eval-
uation, possible safety signals and any other theoretical 
considerations. If by the time of marketing authorisation, 
no significant issues are identified, risks are primarily 
monitored using passive safety surveillance systems after 
products have reached the market. When safety issues 
have been identified or when safety data are limited, 
RMPs will include the conduct of pharmacoepidemio-
logic studies and other activities to gain more knowledge 
about the safety and efficacy of a product.65 Council for 
International Organizations of Medical Science recently 
published a guide specifically dedicated to such active 
vaccines safety surveillance.66 RMPs also discuss how risks 
will be prevented or minimised in patients and measure 
the effectiveness of risk-minimisation measures.

Novel vaccines, based on genetic modifications, open a 
whole new field of research. The Brighton Collaboration 
standardised viral vector templates provide an illustration 
of the many dimensions related to assessing stability of 
the new constructs and their potential for recombina-
tion and interaction that will have to be factored in and 
similar issues will have to be considered for nucleic acid 
vaccines. RMPs of the next decade will also include novel 
methods to characterise products. Questions related to 
the duration of active monitoring for genetic material, 
presence of adventitious agents as has been observed 

with several viral vaccines67 more easily detected with 
enhanced biological screening, or physiological mecha-
nisms of novel adjuvants are all considerations that will 
belong to the preparation of RMPs.

Consideration for use in emergency settings and fragile 
states
The routine evaluation of a new candidate vaccine in low-
income and middle-income country settings with limited 
resources, infrastructure, regulatory and clinical trial 
experience is already very challenging.68 69 Conduct such 
vaccine trials under emergency settings and in fragile 
states does compound these difficulties exponentially. 
While these challenges may have been most apparent 
during the recent Ebola outbreaks in West and Central 
Africa,69–71 they presumably were present historically with 
clinical trials of vaccines against any epidemic disease in 
such settings.72 73 Several papers documenting how inter-
locking challenges for conducting phase 2b trial from 
infrastructure, to staffing, participant communication 
and technology integration were designed, planned, 
tackled and solved during the constantly evolving West 
African Ebola outbreak from various perspectives are 
now available, including some key lessons learnt.69 71 74 75

In 2015, two additional emerging infections, Zika 
and Middle East Respiratory Syndrome (MERS) struck 
the globe.76 77 Plotkin78 argued that a ‘Global Vaccine 
Development Fund’ was urgently needed to provide the 
resources and momentum necessary to carry candidate 
vaccines against such pathogens from their conception 
through development and licensure—thereby averting 
future Ebola crisis. These ideas have gelled into the 
formation of the CEPI (​www.​cepi.​net), a new initiative 
targeted at developing candidate vaccines against Lassa 
fever, MERS, SARS, Nipah virus, Rift Valley fever, chiku-
ngunya and now SARS-CoV-2 on list of deadly pathogens 
without a vaccine.74 79

CEPI has funded the Brighton Collaboration’ Safety Plat-
form for Emergency vACcines (SPEAC) to help assess the 
safety of various CEPI-funded vaccine candidates undergoing 
clinical trials. SPEAC will help provide members with safety 
expertise to independent data safety monitoring boards 
(DSMB). It will also constitute a ‘meta-DSMB’ that will help 

Figure 2  Publications on DNA and RNA vaccines 1990–2019.

www.cepi.net
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oversee across vaccine platform against the same pathogen, 
as well as across pathogens using the same vaccine platform. 
The quality of safety data will be optimised by creating an 
online vaccine safety resource, which will include technical 
guidance, tools, a platform for information exchange and 
training modules. A Brighton Collaboration standardised 
viral vector template will be completed for each CEPI vaccine 
candidate.17

CONCLUSION
There is an exciting evolving vaccine pipeline that will display 
very different characteristics than those of currently available 
products. Changes in non-specific vaccine reactogenicity can 
be expected: stronger, as could be the case with more potent 
adjuvants; or milder, if doses can be reduced or new delivery 
methods are used. Use of genetically modified organisms 
and nucleic acids will require attention to any possibilities of 
mutation or recombination, an area for which the current 
vaccine experience is primarily around the evolution of oral 
polioviruses.

GACVS has started reviewing new vaccines using 
the Brighton Collaboration standardised template for 
benefit-risk assessment of vaccines, now available for the 
major technology platforms, as they offer a structured 
approach to evaluating safety.21 The challenges of moni-
toring genetic modifications will possibly require adding 
expertise on this area to the committee. The rapid devel-
opment and urgent need for COVID-19 vaccines will 
likely require enhanced safety monitoring of vaccine 
products beyond phase III trials with close alignment of 
immunisation policies. Finally, as new vaccine combina-
tions will likely be proposed, understanding the reactoge-
nicity of each individual component will remain essential 
before assessing their effects when combined. In addition 
to assessing those novel products and advising experts, 
GACVS will also consider how to more broadly commu-
nicate about risk assessment, so vaccine users can also 
benefit from the committee’s advice.
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