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Abstract

Lung cancer is a prevalent and lethal cancer type that leads to more deaths than the next four major 

cancer types combined. Metastatic cancer spread is responsible for most cancer deaths but the 

cellular changes that enable cancer cells to leave the primary tumor and establish inoperable and 

lethal metastases remain poorly understood. To uncover genes that are specifically required to 

sustain metastasis survival or growth, we performed a genome-scale pooled lentiviral-shRNA 

library screen in cells that represent non-metastatic and metastatic states of lung adenocarcinoma. 

Mitochondrial ribosome and mitochondria-associated genes were identified as top gene sets 

associated with metastasis-specific lethality. Metastasis-derived cell lines in vitro and metastases 

analyzed ex vivo from an autochthonous lung cancer mouse model had lower mitochondrial 

membrane potential and reduced mitochondrial functionality than non-metastatic primary tumors. 

Electron microscopy of metastases uncovered irregular mitochondria with bridging and loss of 

normal membrane structure. Consistent with these findings, compounds that inhibit mitochondrial 

translation or replication had a greater effect on the growth of metastasis-derived cells. Finally, 

mice with established tumors developed fewer metastases upon treatment with phenformin in vivo. 

These results suggest that the metastatic cell state in lung adenocarcinoma is associated with a 

specifically altered mitochondrial functionality that can be therapeutically exploited.
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INTRODUCTION

Lung cancer is the most lethal cancer type, causing over 145,000 deaths per year in the 

United States alone (1). Metastatic cancer spread is a major reason for cancer-related deaths. 

However, despite the importance of targeted therapies directed against advanced stage 

cancer, treatment options for metastatic cancer remain limited. Genomic analysis of human 

lung adenocarcinoma, which is a major lung cancer sub-type, has led to the identification of 

targetable oncogenic alterations including EGFR mutations and ALK translocations (2–7). 

Despite the clinical value of targeted therapies directed towards these cancer-specific 

alterations, many tumors do not contain genomic alterations that can be targeted for 

therapeutic benefit. Furthermore, even when targeted therapies exist, responses are often 

short lived. Hence there remains a critical need to better understand the metastatic cancer 

state and uncover targetable pathways that are specific to late-stage cancer.

Global gene expression analysis of human tumors has uncovered changes in gene expression 

programs that predict patient outcome. These studies have contributed to our understanding 

of the mechanisms that lead to cancer progression and drug resistance (8). Unfortunately, 

these studies have only rarely identified key therapeutic targets as gene expression does not 

necessarily implicate function. Alternatively, functional genomics focuses on unbiased 

screening coupled with functional readouts to uncover pathways that could have therapeutic 

potential (9). Extensive efforts to quantify the effect of pooled shRNA and sgRNA libraries 

across panels of human cell lines have revealed important mediators of cancer cell survival 

(10, 11). However, the relatively small number of cell lines from individual cancer types, 

extensive genomic heterogeneity, and derivation from primary tumors and metastases of 

different origins often render these studies underpowered to identify molecular features that 

uniquely distinguish the non-metastatic from the metastatic cell state. These complications 

suggest that more defined models may have increased sensitivity and specificity to uncover 

novel aspects of valuable therapeutic targets.

To better understand the biological forces that drive lung cancer progression, genetically 

engineered mouse models of human lung adenocarcinoma have been generated with 

conditional alleles to express oncogenic Kras and inactivate the p53 tumor suppressor (12–

14). Notably, this KrasG12D;Trp53KO lung adenocarcinoma model recapitulates the genetic 

events and histological appearance of early and late stage human tumors (3, 15). Thus, this 

model system represents a useful in vivo and ex vivo tool to identify novel regulators of lung 

adenocarcinoma progression and metastasis (16).

We previously generated cell lines from non-metastatic primary lung tumors (TnonMet) and 

metastases (Met) from the KrasG12D;Trp53KO mouse model (14, 16). These TnonMet and 

Met cell lines maintain their differences in metastatic ability, exhibit dramatic differences in 

gene expression programs, and analysis of these cell lines has contributed to the discovery of 

several regulators of the metastatic process (14, 17–19). Expression of individual regulators 

and the overall gene expression program can predict human lung adenocarcinoma patient 

outcome, suggesting that these cell lines recapitulate at least some aspects of the metastatic 

state of human lung tumors (14, 17–19). This unique set of cell lines from early stage non-
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metastatic tumors and late-stage metastases provides an opportunity to investigate whether 

cancer progression creates unique vulnerabilities that can be exploited therapeutically.

To systematically uncover genes that are specifically required to sustain the growth and/or 

survival of cancer cells in the metastatic cell state, we performed a pooled genome-scale 

lentiviral-shRNA library screen. A targeted secondary in vivo screen validated top 

candidates, including a highly significant enrichment for mitochondria and mitochondria 

ribosome gene-sets associated with metastasis specific lethality. Analyses of mitochondrial 

membrane potential, reactive oxygen species (ROS) levels, mitochondrial respiration, 

glycolytic, and fuel utilization assays, as well as electron microscopy confirmed 

dysfunctionality of mitochondria as a discriminating feature of the metastatic state. These 

observations highlight a metastasis-specific vulnerability that can be therapeutically 

exploited with pharmacological targeting to block metastasis in vivo.

MATERIALS AND METHODS

Selected methods are detailed in this section. An extensive version of this section is available 

as Supplementary Methods within the Supplementary Material of this manuscript.

Mice

KrasLSL-G12D, Trp53flox and Rosa26LSL-tdTomato mice have been described previously (12, 

16). Tumors were initiated by intratracheal infection of mice with lentiviral vectors 

expressing Cre-recombinase as previously described (20). All animal studies and procedures 

were performed according to and approved by the Stanford Institute of Medicine Animal 

Care and Use Committee. Animals of both sexes were used.

Cell lines

The 368T1 and 394T4 cell lines were generated from primary lung tumors, the 238N1 and 

482N1 cell lines were generated from lymph node metastases, the 404M1, 2691M1 cell lines 

were generated from distant organ metastasis, the 889PF from disseminated cancer cells 

within the pleural cavity, and the 579DLN cell line was generated from a distant lymph node 

metastasis of lung-adenocarcinoma-bearing KrasLSL-G12D/+;Trp53flox/flox 

(KrasG12D;Trp53KO) KrasLSL-G12D/+;Trp53flox/flox;Rosa26LSL-Tomato/+ 

(KrasG12D;Trp53KO;R26Tomato) mice (14, 16). All cell lines were regularly (~ monthly) 

confirmed to be mycoplasma negative. 293T cell lines were obtained from ATCC (ATCC 

Cat# CRL-3216, RRID:CVCL_0063) and identity was regularly confirmed by STR analysis. 

All cell lines were passaged at least once after thawing before use in subsequent 

experiments. The average time in culture was 4 weeks (range between 2 and 6 weeks), then 

a new vial was thawed.

Cell line RNA-sequencing library preparation and analysis

Total RNA was isolated from 1×106 cells of each line (368T1, 394T4, 238N1, and 482N1) 

using the Qiagen RNeasy mini kit. For each sample, 1 μg of total RNA was used for library 

construction. The integrity and quality of RNA was assessed prior to library construction 

using an Agilent Bioanalyzer. RNA-sequencing libraries were prepared using the Illumina 
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TruSeq RNA kit according to manufacturer’s instructions. High-throughput sequencing was 

performed on Illumina HiSeq. For analysis of the RNA-seq reads, we performed differential 

gene and transcript expression analysis using TopHat (TopHat, RRID:SCR_013035) and 

Cufflinks (Cufflinks, RRID:SCR_014597). RNA-seq reads were separately aligned to the 

mouse genome (mm9) and the aligned RNA-seq reads were assembled into transcripts. 

Annotated transcripts were obtained from the UCSC genome browser (http://

genome.ucsc.edu, UCSC Genome Browser, RRID:SCR_005780) and the Ensembl database 

(Ensembl, RRID:SCR_002344). Transcript abundances were measured in Fragments Per 

Kilobase of exon per Million fragments mapped (FPKM). Finally, Cuffdiff (Cuffdiff, 

RRID:SCR_001647) was used to define differential expression. The data have been 

deposited in NCBI’s Gene Expression Omnibus ((GEO), RRID:SCR_005012) and are 

accessible through GEO Series accession number GSE159169 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159169).

Genome-wide shRNA screen

Lentiviral particles from the 100K mouse shRNA pool (obtained from Broad Institute: The 

RNAi Consortium (21)) were transduced at low MOI (0.3; each shRNA was stably 

integrated into an average of 600 cells) into 4 cell lines (368T1, 394T4, 238N1 and 482N1; 3 

replicates per cell line). Virus transduction and cell line passaging were performed according 

to the method described by Chueng et al. (22) with minor modification. In brief, the virus 

and cell mixture was seeded into a 12-well plate at ~2 mL per well, and cells were 

transduced by spinoculation at 1000 g for 2 hours with 12 μg/ml polybrene at 30 °C. After 

24 hours, the 12 wells from each replicate transduction were pooled, and the combined cells 

were transferred into a 15-cm dish. Cells were selected with 4 μg/ml puromycin starting day 

4 post-transduction. For all subsequent passages, 7.2 × 107 cells per replicate were carried 

over. The remaining cells for all passages were collected, resuspended in 1 mL of PBS, and 

stored at −20 °C for genomic DNA isolation. Passaging for each cell line was continued for 

at least 22 population doublings. Puromycin selection was maintained for the entire 

experiment.

To identify the shRNA sequences enriched in screened cells, genomic DNA was isolated 

from cells collected at each timepoint, and hairpin sequences were quantified using Illumina 

DNA sequencing (23).

Statistical analysis of the screen

We applied the RNAi Gene Enrichment Ranking (RIGER), Kolmogorov-Smirnov (KS), and 

Weighted Sum (WS) algorithms to evaluate candidate genes from the pooled shRNA 

screens. Kolmogorov-Smirnov (KS) is nonparametric and calculates gene scores from a 

collection of shRNA phenotype profiles, similar to the method described by Luo et al. (24). 

Weighted Sum (WS) algorithms takes the combined sum of the first and second best ranks 

for hairpins for each gene. The best ranking hairpin is given a weight of 0.25 and the second 

best ranking hairpin is given a weight of 0.75. The weighted values (WS score) are 

determined by the sum of the first and the second weighted ranks, and genes are ranked by 

this WS score (https://software.broadinstitute.org/GENE-E/extensions.html). We considered 

all three ranking approaches to generate a list of top 50 candidate genes (Supplemental Fig. 
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S2A) whose knock-down was found to impact only the Met cell lines in the screen (238N1 

and 482N1), or only the Non-Met cell lines (368T1 and 394T4), or each cell line 

individually. Heatmaps for each set of genes were generated using the heatmap.2 function 

from the R package gplots (V 3.0.3). Clustering (depicted in Figures 1C and D) was 

performed according to https://software.broadinstitute.org/GENE-E/doc.html. Each box 

represents the measure of global correlation between the entire dataset for one cell line 

versus another.

Secondary screen

A list of candidate genes was generated from the initial screen as described above. 

Additionally, control genes (12 “lethal to all” and 5 “advantageous to all”, as well as 32 inert 

genes) were chosen (Supplemental Fig. S2A). For the secondary validation screen, a pooled 

library of 512 TRC shRNA clones was produced by cherry picking these clones from the 

sequence-validated TRC shRNA library used in the first screen. Each gene was targeted by 2 

shRNAs.

The viral packaging and collection procedure was established based on the manufacturer’s 

guidelines (https://portals.broadinstitute.org/gpp/public/resources/protocols). In brief, 293T 

cells were plated in ten 15cm dishes (Falcon/Corning, Tewksbury, MA, USA) at 80.000 cells 

per cm2 in DMEM (Gibco, Grand Island, NY, USA, Carlsbad, CA, USA) supplemented with 

10% FCS (Invitrogen), 2 mM L-Glutamine (Invitrogen) and Penicillin-Streptomycin 

(Invitrogen). The next day, for each plate separately, a Packaging-Plus Mix was prepared 

consisting of 6 μg of shRNA library, 10 μg psMD2.G, 20 μg psPAX2 and 60 μL PLUS 

Reagent (Invitrogen) in a total volume of 1.3 ml OptiMEM (Invitrogen) and incubated for 15 

minutes. In order to obtain a transfection mix, 1.4 ml of OptiMEM containing 90 μL of 

Lipofectamine (Invitrogen) was added to the Packaging-Plus Mix and incubated for another 

15 minutes before adding dropwise to the plated 293T cells. The medium was changed 24 

hours post-transfection. The medium from both the 48 hours and the 72 hours harvests after 

transfection was combined and filtered through a 0.45 μm PES filter (Nalge Nunc, 

Rochester, NY, USA). Lentivirus aliquots were stored at −80 °C until used for transduction 

of the selected cell lines.

To perform large-scale infections, 3.6×106 target cells (MOI 0.3; each shRNA was stably 

integrated into an average of 2000 cells) were transduced for each replicate. The virus-cell 

mixture was split across a 12-well plate at 2 ml per well. A spin infection was performed by 

centrifugation at 1000 g for 2 h at 30 °C. After 20 h, the 12 wells from each replicate 

infection were pooled, and the combined cells were transferred into a 15 cm dishes. 

Transduced cells were selected with 4 μg/ml puromycin from day 4 after infection. For all 

subsequent passages, 1.2×106 cells per replicate were carried over. The remaining cells for 

all passages were collected, resuspended in 1 mL of PBS, and stored at −20 °C for genomic 

DNA isolation. Passaging for each cell line was continued for at least 22 population 

doublings. Puromycin selection was maintained for the entire experiment.

To validate genes that were specifically required for the survival or growth in vivo, 3×106 

puromycin-selected transduced cells (238N1, 482N1) were injected into back flanks of 3 

NSG recipient mice. Mice were analyzed 4 weeks after transplantation. Tumors were 
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disaggregated to single-cell suspensions by mincing with razor blades and treated with 

collagenase IV, dispase, and trypsin at 37°C for 30 minutes. Genomic DNA was isolated 

from cells collected from each tumor, and hairpin sequences were quantified using Illumina 

DNA sequencing as described above.

Statistical analysis of secondary screen

To normalize the read count of each hairpin, raw read counts were divided by total counts of 

each sample (per million). Hairpins with normalized count values < 10 for across all early 

time point samples were eliminated from downstream analyses. Changes in shRNA 

representation over time were calculated by average read counts of late time points minus 

early time points.

GO Term and Gene Set Enrichment Analysis (GSEA)

To discover pathways driving pan- or metastasis-specific lethality top candidate genes 

identified in the screen were mapped to their direct human ortholog using information 

provided in the Mouse Genome Database (25) at www.informatics.jax.org. For GSEA 

analysis (26) (SeqGSEA, RRID:SCR_005724), a rank-ordered list of candidate genes was 

analyzed using GSEA v2.2.0 software available from the Broad Institute (http://

www.broad.mit.edu/gsea) and GO term analysis from The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/, DAVID, 

RRID:SCR_001881). Only genes with a human homolog were used for this analysis.

Tumor dissociation and cell sorting

For cell sorting, primary tumors and metastases were dissociated using collagenase IV, 

dispase, and trypsin at 37 °C for 30 minutes. After dissociation, the samples were 

continually on ice, in contact with ice-cold solutions, and in the presence of 2 mM EDTA 

and 1 U/ml DNase to prevent aggregation. Cells were stained with antibodies to CD45 

(BioLegend Cat# 103133, RRID:AB_10899570), CD31 (BioLegend Cat# 102423, 

RRID:AB_2562186), F4/80 (BioLegend Cat# 123131, RRID:AB_10901171), and Ter119 

(BioLegend Cat# 116233, RRID:AB_10933426) to exclude hematopoietic and endothelial 

cells (defined in combination as Lineagenegative). To analyze mitochondria membrane 

potential, cells were stained with 200 nM Mitotracker deep red (Invitrogen) for 15 min at 37 

°C. A fixed number of GFP-positive control cells was spiked into each sample for 

normalization to account for staining artifacts due to different cell numbers in the samples. 

DAPI was used to exclude dead cells. FACSAria™ sorters (BD Biosciences) were used for 

analysis. To analyze ATP levels, equal numbers of cells were analyzed with the reversed 

CellTiter-Glo Luminescent Cell Viability Assay (Promega) according to manufacturer’s 

instructions, using an ATP standard curve for calibration.

Cell line transplantation and analysis

6- to 10-week-old NSG mice of similar weights, randomized for both male and female 

animals, were used for cell transplantation experiments. For the subcutaneous injections, 

5×104 889PF or 579DLN cells were injected into both flanks of NSG recipient mice. 

Treatment of mice was started 7 days after transplantation with either 100 mg/kg phenformin 
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or vehicle by oral gavage or 9 days after transplantation with either 1mg/kg doxycycline or 

vehicle by intraperitoneal injection once daily. Mice were analyzed 3 or 4 weeks after 

transplantation, respectively. For the intravenous injections 579DLN cells were treated with 

either phenformin [200 μM] or vehicle for 48 hours in vitro. Then cells were trypsinized and 

1×105 cells were injected intravenously into the lateral tail vein. Starting at the day of 

injection, mice were treated daily either with 100 mg/kg phenformin or with vehicle control 

by oral gavage. For the short-term intravenous experiment, 579DLN cells were treated with 

either phenformin [200 μM], doxycycline [15 μg/ml], FCCP [2 μM], or vehicle for 48 hours 

in vitro. Then cells were trypsinized and 5×105 cells were injected intravenously into the 

lateral tail vein of immunocompetent 129/Bl6 F1 mice. Mice were sacrificed either three or 

seven days after injection and lungs were harvested, weighed, and analyzed by fluorescence 

microscopy and flow cytometry. During analysis of the animals the performing scientist was 

blinded towards experimental groups. No statistical method was used to predetermine 

sample size. The Stanford Institute of Medicine Animal Care and Use Committee or the 

Landesamt für Natur, Umwelt- und Verbraucherschutz des Landes Nordrhein-Westfalen 

(LANUV) approved all animal studies and procedures, respectively.

Statistics

Graphs and statistics were generated using the GraphPad Prism software (GraphPad Prism, 

RRID:SCR_002798). Significance, where indicated, was calculated using the Wilcoxon test 

for non-normally distributed data. Significance was determined as a p-value < 0.05. No 

statistical method was used to predetermine sample size.

RESULTS

To systematically uncover genes that are specifically required for survival or growth of 

metastatic cancer cells, we performed a pooled lentiviral-shRNA library screen in two 

TnonMet (368T1 and 394T4) and two Met (238N1 and 482N1, both from lymph node 

metastases) lung cancer cell lines derived from the KrasG12D;Trp53KO mouse model (Fig. 

1A,B). This screen included > 92,000 shRNAs targeting ~20,000 genes thus enabling a 

broad interrogation of cancer cell states and having the potential to uncover genes essential 

for growth of metastatic cells. Importantly, both TnonMet and Met lines share similar 

oncogenic and tumor suppressor alterations which likely increases our ability to detect 

significant effects and implicate candidate genetic targets. To identify genes that are 

essential for each cell line, we used high-throughput sequencing of the shRNAs in the cancer 

cell populations before and after 22 population doublings (“Early time point” and “Late time 

point”, respectively, Fig. 1A). As anticipated, many shRNA targets were lethal to all cell 

lines, which led to clustering of the “Early time point” samples away from the “Late time 

point” samples (Fig. 1C, Supplementary Data Table S1). Among “Late time point” samples, 

the diversity between Met cell lines was greater when compared to each other than the 

diversity among TnonMet cell lines (Fig. 1D). shRNAs that were underrepresented in all cell 

lines were greatly enriched for genes with known essential pathway functionality (Fig. S1A–

D). Importantly, this genome-scale screen identified genes specifically required for the 

survival or growth of cancer cells in either the non-metastatic state or the metastatic state as 
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well as for individual cell lines (Fig. 1E, Supplementary Fig. S1E, Supplementary Data 

Table S2).

Comparative analyses using Kolmogorov-Smirnov (KS), Weighted Sum (WS), and best-

ranking shRNA algorithms revealed a list of shRNAs and genes most prominently 

differentially affecting the growth of TnonMet versus Met cell lines (Supplementary Data 

Tables S3–S5). To investigate the expression of these genes in the TnonMet (368T1 and 

394T4) and the Met (238N1 and 482N1) cell lines, we also performed RNA-sequencing 

based gene expression analysis (Supplementary Data Table S6). We incorporated pathway-

level analysis based on identified shRNA effect and expression levels to define candidates 

for further functional validation. Based on these analyses, we performed a secondary screen 

using 2 of the initially used shRNAs targeting each of 240 top metastasis-specific lethal 

candidate genes in two TnonMet cell lines (368T1 and 394T4) and four metastasis derived 

cell lines (238N1 and 482N1 from lymph node metastases, as well as 404M1 and 2691M1 

from distant metastases). This secondary screen included positive control shRNAs that were 

lethal to all cell lines, control shRNAs (inert) that should have no effect, and shRNAs that 

were found to provide a competitive growth advantage to all cell lines (Supplementary Fig. 

S2A). This focused secondary screen was performed in the same manner as the initial screen 

and generated a robust readout of the effect of candidate gene knockdown, with high 

reproducibility among replicates (Supplementary Fig. S2B). All the control shRNAs 

performed as anticipated: lethal shRNAs had reduced representation in all cell lines, 

advantageous shRNAs gained representation in all cell lines, and inert shRNAs had no 

effect. Importantly, many of the candidate metastasis-specific lethal shRNAs had reduced 

representation specifically in metastasis-derived cancer cells, validating our findings from 

the initial screen (Fig. 2B–E, Supplementary Fig. S2C, D, and Supplementary Data Table 

S7). Furthermore, in parallel with this in vitro screen, we also transplanted two of the Met 

cell lines (238N1 and 482N1) transduced with the lenti-shRNA validation pool 

subcutaneously into mice to assess the effect of each shRNA on growth in vivo 
(Supplementary Data Table S8). The data obtained from this in vivo screen were consistent 

with the results obtained in vitro, further validating our screening results (Fig. 2F, G).

Our primary and secondary shRNA screens, including data from both in vitro and in vivo 
experiments, uncovered several top candidate genes whose shRNA-mediated suppression 

was specifically detrimental to cancer cells in a metastatic state (Fig. 3A and B, 

Supplementary Fig. S3A and Supplementary Data Table S9). To prioritize hits and 

investigate cellular programs specifically required for the growth of Met cells, we performed 

gene set enrichment and GO-term analyses of our initial screening data. Interestingly, both 

analyses revealed mitochondria (mt), the mitochondria ribosome and mitochondria 

ribosomal subunit gene sets as the top gene sets that, when targeted, were specifically lethal 

to Met cells (Fig. 3C). Indeed, RNA-Sequencing of TnonMet and Met cell lines revealed that 

mitochondria-encoded genes were more highly expressed in Met cells whereas most of the 

nuclear-encoded mitochondrial ribosome proteins were more highly expressed in TnonMet 

cells (Supplementary Fig. S3B).

We initially tested whether this distinct response to mt-targeting shRNAs might be 

attributable to mitonuclear imbalance. Mitonuclear imbalance is the stoichiometric 
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imbalance between nuclear genome and mt genome-encoded oxidative phosphorylation 

proteins (27). Interestingly, RNA-Seq on primary tumors and metastases isolated from the 

KrasG12D;Trp53KO mouse model (16) did not uncover significant differences in the overall 

expression of mt-encoded genes (Supplementary Fig. S3C), and western blot analysis of 

TnonMet and Met cells for nuclear (Atp5a, Uqcrc2, Sdhb) and mt-encoded (mt-Co1) proteins 

of the respiratory chain complex did not identify differences in expression levels or patterns 

(Supplementary Fig. S3D). Thus, mitonuclear imbalance is unlikely to have driven the 

distinct response in our shRNA screen.

To further interrogate whether the metastatic cell state is characterized by altered 

mitochondrial functionality, we generated fluorescently labeled TnonMet and Met cells and 

performed in vitro competition assays. Treatment with ethidium bromide (which impairs 

mitochondria DNA replication and transcription (28–30)), high concentrations of 

doxycycline (which inhibits mitochondrial translation (31, 32)), phenformin (a complex I 

inhibitor of the respiratory chain which causes lactic acidosis, a hallmark of mitochondrial 

impairment (33, 34)), or FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone, a 

protonophore which dissociates electron transport from ATP synthesis and allows transport 

to proceed without synthesis (35)) were each consistently more detrimental to Met cells 

compared to TnonMet cells, as the Met/TnonMet ratio was decreasing in each treatment. 

Furthermore, also under more physiological low oxygen conditions (1% oxygen) all 

treatments affected Met cells more than TnonMet cells, though to a lesser extent (Fig. 4A–D 

and Supplementary Fig. S4A–D). Thus, these pharmacological data were consistent with 

differences in mitochondrial functionality between primary tumor-derived and metastasis-

derived lung cancer cells and suggest that mitochondria are a critical and pharmacologically 

targetable Met cell-specific vulnerability.

To determine whether the differential sensitivity to mitochondria-targeted therapy is indeed 

due to differences in mitochondria functionality, we performed Seahorse assays for oxygen 

consumption rate and mitochondrial function. Met cells (n = 3 cell lines per group) had 

reduced spare respiratory capacity and coupling efficiency compared to TnonMet cells (Fig. 

4E–G). Furthermore, higher ECAR/OCR (extracellular acidification rate/oxygen 

consumption rate) ratio and higher ECAR levels pointed to a higher use of glycolysis as 

primary metabolic pathway in Met cells (Fig. 4H, Supplementary Fig. S4E). In addition, 

Seahorse assays for fuel dependency revealed that, while fatty acids do not appear to play a 

significant role as a fuel source in either TnonMet or Met cells, Met cells showed a higher 

dependency on glycolysis-derived pyruvate and were less able to utilize glutamine (Fig. 4I–

L, Supplementary Fig. S4F and S4G). Analysis of relative ATP levels produced in galactose 

containing media revealed no significant difference in the capacity to perform oxydative 

phosphorylation between Met and TnonMet cells (Fig. 4M) and the ratio of ATP production in 

glucose versus galactose containing media was also not significantly different (Fig. 4N). 

However, comparing relative growth rates of cells growing in glucose or galactose 

containing media revealed that TnonMet cell were less affected when solely being able to 

perform oxydative phosphorylation instead of glycolysis compared to Met cells (Fig. 4O). 

Taken together, these results suggest that metastatic lung cancer cells have a reduced usage 

rate of glutamine as fuel during oxidative phosphorylation, reduced fuel flexibility and might 

primarily utilize glycolysis to produce ATP but are not completely dependent on it.
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Furthermore, we performed flow cytometry to assess mitochondria membrane potential in 

TnonMet and Met cell lines using the JC1 dye. Met cells in vitro had significantly more 

depolarized mitochondria indicating lower membrane potential and functionality (Fig. 4P). 

However, treatment with any of the three mt-targeting compounds (phenformin, 

ethidiumbromide, or doxycycline) did not reveal significant differences in the relative 

change of depolarization levels between TnonMet and Met cells (Supplementary Fig. S4H and 

S4I). This observation was further validated by analysis of reactive oxygen species (ROS) 

production. Met cells had higher baseline ROS levels in steady-state culture, yet under 

treatment conditions the relative changes in ROS level between Met and TnonMet cells did 

not differ (Fig. 4Q, Supplementary Fig. S4J and S4K). Similarly, neither treatment with 

doxycycline nor ethidium bromide revealed a differential effect on TnonMet or Met cell 

mitonuclear imbalance (Supplementary Fig. S4L). Finally, no distinct effects of phenformin 

on major signalling pathways between Met and TnonMet cells were detectable by western 

blot analysis (Supplementary Fig. S4M), and neither phenformin, nor doxycycline or 

ethidiumbromide significantly altered proliferation of either Met or TnonMet cells 

(Supplementary Fig. S4N–Q). Interestingly, migratory capacity was generally higher in 

TnonMet than Met cells, independent of normoxic, hypoxic (1% O2) or acidic (pH 6.5) 

conditions (Supplementary Fig. S4R–U), and we confirmed that Met cells might be partially 

reprogrammed towards a more “stem-like” phenotype as they all could form and grow 

spheres in three-dimensional culture whereas only one out of three TnonMet cells was able to 

grow (Supplementary Fig. S4V, W). Collectively, these results indicate that the net-effect of 

mt-targeting drugs is the same in both cancer states, but the steady-state of mt function is 

lower in Met cells, rendering them more susceptible to treatment.

To determine whether this altered mitochondrial functionality is also present in vivo, we 

initiated lung tumors in KrasG12D;Trp53KO;R26Tomato mice, sorted Tomatopositive cancer 

cells from primary tumors and distant metastases, and measured the mitochondrial 

membrane potential using Mitotracker deep red. Cancer cells isolated from metastases had 

significantly more depolarized mitochondria than cancer cells from primary tumors, 

indicating a higher fraction of dysfunctional mitochondria (Fig. 5A), even though ATP-

production was not significantly affected (Fig. 5B). Indeed, electron microscopy analysis of 

tissue sections from primary tumors and pleura metastases from 

KrasG12D;Trp53KO;R26Tomato mice revealed that while the total number of mitochondria is 

the same in primary tumors and metastases, the number of abnormal mitochondria 

(characterized by loss of density and bridging of cristae, indicating a disturbed respiratory 

chain setup) is significantly higher in metastasis cells (Fig. 5C–E). These results indicate 

that the altered mitochondria functionality discovered in Met cells in vitro is also present in 

metastatic cancer cells in vivo.

To further explore whether this change in mitochondria functionality of Met cells creates a 

specific and pharmacologically addressable vulnerability in vivo, we utilized a subcutaneous 

transplantation mouse model which recapitulates several aspects of the metastatic cascade 

(16). In this model, Met cells are grown as primary subcutaneous tumors and the cancer cells 

metastasize spontaneously to the lung and liver. We treated mice with established primary 

tumors (7 days after transplantation) with either vehicle or 100 mg/kg phenformin p.o. once 

daily for three weeks and then quantified primary tumor weight and size, lung weight, and 
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the number and size of Tomatopositive metastases in the lungs. While primary subcutaneous 

tumors were of similar size and weight in both the control and phenformin treated groups, 

the number of metastases in the lungs of phenformin treated animals (as assessed by both 

macroscopic fluorescent stereomicroscope and microscopic IHC analysis) was reduced by 

~3-fold (Fig. 5F–H). Furthermore, we repeated this experimental setup and treated animals 

with established primary subcutaneous tumors (9 days after transplantation) with either 

vehicle or 1 mg/kg doxycycline i.p. once daily for three weeks. Here, primary subcutaneous 

tumors were slightly reduced in weight in doxycycline-treated animals, yet in 6 out of 8 

mice the number of Tomatopositive cancer cells in the lungs was strongly decreased compared 

to control treated animals (Supplementary Fig. S5A–C). This indicates that mitochondria-

targeting treatments reduce metastatic ability in vivo which is consistent with the Met-

specific effect of mt-targeting compounds in vitro.

To further investigate the effect of phenformin on the later stages of the metastatic cascade in 
vivo, we intravenously injected mice with Met cells that were pre-treated with phenformin 

for 48 hours in vitro and subsequently continued dosing the mice with phenformin for 7 

days. Tomatopositive cancer cells were reduced ~3-fold in the lungs of phenformin treated 

animals compared to control-treated mice (p = 0.0002). However, proliferation rates of 

cancer cells in the lungs did not differ between the groups (Fig. 5I–K). We then expanded 

the experimental setup into four groups: Met cells were either pre-treated with phenformin 

or vehicle in vitro and subsequently injected intravenously into recipient mice that received 

either further treatment with phenformin or vehicle for 3 days in vivo. Interestingly, pre-

treatment of Met cells with phenformin before intravenous injection significantly reduced 

the number of Tomatopositive cancer cells in the lungs compared to controls, independent of 

whether the recipient mice were further treated with phenformin or vehicle (Supplementary 

Fig. S5D, E). This is consistent with a cancer cell autonomous effect of phenformin on 

metastatic ability, that was not due to induction of apoptosis or anoikis (Supplementary Fig. 

S5F, G). To further validate that other mitochondria-targeting compounds can impact 

metastatic ability, we intravenously injected Met cells pre-treated in vitro with either 

phenformin, doxycycline, FCCP or vehicle for 48 hours. After 3 days, lungs were harvested 

and analyzed by flow cytometry. Importantly, all three mitochondria-targeting agents 

reduced the number of Tomatopositive cancer cells in the lungs of recipient mice 

(Supplementary Fig. S5H, I). Taken together, mitochondrial function is significantly altered 

in metastatic cancer cells and this “Achilles heel” can be therapeutically exploited for 

benefit in vivo.

DISCUSSION

Loss-of function genetic screens have been widely applied as a powerful discovery tool in 

biology (36). We chose to take this approach using a high-throughput shRNA screen to 

functionally characterize the metastatic cell state and to potentially identify novel 

therapeutically exploitable targets that are specifically lethal to metastatic lung 

adenocarcinoma cells. For this we used TnonMet and Met cell lines that were isolated from 

the well-established autochthonous KrasG12D;Trp53KO mouse model of lung 

adenocarcinoma and are distinguished by their metastatic ability (14, 16–19). These cell 

lines have fewer confounding variables such as different origins and genetic diversity, thus 
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enabling us to identify genes that are differentially important for maintaining growth and/or 

viability of metastatic cells.

Here, we identify mitochondria as a cellular structure with a distinct functionality in non-

metastatic primary tumor cells and metastatic cancer cells. We found that mitochondria in 

Met cells are functionally altered, both in vitro and in vivo. Mitochondria in Met cells have a 

disturbed morphology and lower membrane potential. In vitro, we found that this modified 

mitochondria functionality leads to reduced spare respiratory capacity and coupling 

efficiency, independent from specific cellular signaling. In addition, we found that treatment 

with mitochondria-targeting drugs results in Met and TnonMet cells being affected at similar 

absolute levels, further strengthening our conclusion that mitochondria are structurally and 

functionally compromised in steady-state metastatic cancer cells and that upon further 

targeting are less able to compensate.

At first glance, it seems counterintuitive that the disruption of a vital cell organelle such as 

the mitochondria would lead to cells that are seemingly better adapted for metastasis. 

However, mitochondrial dysfunction has been observed in multiple types of cancer cells 

during the metastatic process (37). Mitochondria dysfunction can either describe changes in 

mitochondria metabolism or refer to changes in mitochondria dynamics. The former is a 

well-known and thoroughly studied topic (38), with the most prominent alteration being the 

Warburg effect, where dysfunctional mitochondria generate ATP by glycolysis even in the 

presence of oxygen (39). With the balance between glycolysis and oxidative phosphorylation 

disturbed, metabolite levels change and can promote hypoxia, enhancing further tumor 

progression (37, 38, 40). In addition, elevated levels of glycolysis increase the acidity of the 

tumor environment, further promoting invasion and metastasis by breaking down the 

extracellular matrix and driving apoptosis of normal cells (41, 42). On the other hand, recent 

efforts have focused on mitochondria structure and dynamics: alterations in mitochondrial 

proteostasis, bioenergetics, and trafficking is associated with extensive bioenergetic defects, 

including reduced oxygen consumption, decreased ATP generation, and aberrant production 

of reactive oxygen species (ROS) which have been suggested to promote tumor progression 

and metastasis by directly affecting tumor cell motility (43). Most recently, it was shown 

that mitochondrial dynamics are dysregulated in a variety of cancers, which in turn leads to 

specific and therapeutically exploitable sensitivities (44).

In our study, metastatic cancer cells show a higher dependency on glycolysis-derived 

pyruvate, primarily utilize glycolysis, and are less able to use glutamine, as indicated by a 

reduced rate of glutamine consumption as fuel during oxidative phosphorylation. Yet, while 

recent studies have shown that the monocarboxylate transporter-1 (MCT1) is responsible for 

providing lactate as a fuel of the TCA cycle in lung cancer (45) and both MCT1 and MCT2 

have been found in melanoma and breast cancer to be important for their metastatic ability, 

respectively (46, 47), we did not identify either MCT1 or MCT2 as metastasis-specific hits 

in our screen. This could be either due to different metabolic functions in this tumor entity, 

due to an upregulation of these genes during the metastatic process when mitochondria 

become dysfunctional, or due to a metastasis-independent function of MCT1 and MCT2 so 

that their respective depletion is also lethal for non-metastatic tumor cells.
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Classical anti-tumor approaches have largely focused on targeting DNA replication or DNA 

damage repair and the interruption of cell division to induce apoptosis (48). However, these 

processes are not cancer-specific and their therapeutic inhibition leads to severe side effects. 

Finding metastasis specific vulnerabilities, even if those vulnerabilities are related to 

conserved cellular functions, could allow for lower dosing and reduced patient side effects. 

Because of the importance of mitochondria during carcinogenesis and disease progression, 

researchers have started focusing on mitochondrial metabolism as a more selective target to 

induce cancer cell death. Utilizing this concept, multiple clinical studies have been, or are 

being, conducted mainly around the dual α-ketoglutarate dehydrogenase (KGDH) and 

pyruvate dehydrogenase (PDH) inhibitor CPI-613 and a compound called DCA, that inhibits 

pyruvate dehydrogenase kinase (PDK) and activates pyruvate dehydrogenase (PDH) (49). 

Yu and colleagues repurposed the FDA-approved arthritis drug leflunomide, which promotes 

mitochondrial elongation through its function as an agonist of the fusion GTPase MFN2 in 

pancreatic cancer (50).

We utilized phenformin as a proof-of-concept tool to specifically target Met cells in vitro 
and in vivo. Phenformin is an antidiabetic drug belonging to the class of biguanides. Due to 

its side effect of lactic acidosis it was withdrawn from the market in most countries in the 

1970s. In contrast to metformin, phenformin has a lipophilic structure which allows a rapid 

entrance to the cell and mitochondria without transporters. Once assimilated in the 

mitochondria, phenformin inhibits the mitochondrial complex I in a manner similar to 

metformin (51). The biguanide-induced lactic acidosis results from insulin deficiency which 

leads to protein as well as fat catabolism and therefore accumulation of pyruvate. Because 

biguanides such as phenformin and metformin inhibit the pyruvate carboxylase, pyruvate 

cannot be metabolized in gluconeogenesis. In addition, pyruvate cannot be catabolized 

through the citric acid cycle because of the massive amount of acetyl-CoA derived from the 

fatty acid oxidation. Thus, the increased pyruvate is metabolized to lactate (33). Due to its 

higher affinity for mitochondrial membranes and the side effect of severe lactic acidosis, it 

was hypothesized that phenformin could have a higher anti-cancerous effect than metformin 

(51, 52). Since Met cells have a higher dependency on pyruvate it seems logical that they are 

more sensitive to phenformin treatment, as we observed both in vitro and in vivo. As many 

shRNA-”hits” in the initial and secondary screen were against mitochondria ribosomal 

proteins (Mrp) and other mitochondria-essential genes and reduced proliferation and/or 

induced cell death, choosing phenformin as therapeutic option to target mitochondria with a 

more specific mode of action may be a more valid therapeutic option.

Phenformin was proposed previously as a specific treatment for Lkb1-deficient but not p53-

deficient lung tumors (53). In our system, both primary tumor and metastasis-derived cells 

are p53-deficient and we did not observe an effect of phenformin on tumor cell growth in 
vitro or in vivo. Instead, we showed that phenformin specifically targets the mitochondria in 

metastatic cancer cells which reduces early metastatic ability. In recent years it has been 

discussed whether the most prominent mitochondrial alteration in cancer — the Warburg 

effect — is caused by mitochondria that have been damaged over the course of tumor 

development, or whether the Warburg effect and the functionally altered mitochondria are a 

mere consequence of a favorable adaptation in order to proliferate under hostile conditions. 

Likewise, it remains unclear whether the change in mitochondria functionality in Met cells 
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observed in our study are required for their metastatic ability or if they are a result of the 

collateral damage that occurs during the metastatic process. Nevertheless, our findings 

provide novel insight into the metastatic cell state, identifying underlying functional 

differences and potentially therapeutic intervention opportunities for lung adenocarcinoma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

This study characterizes altered mitochondria functionality of the metastatic cell state in 

lung cancer and opens new avenues for metastasis-specific therapeutic targeting.
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Figure 1. A genome-scale shRNA screen identifies candidate metastasis-specific lethal genes
A. Outline of the in vitro genome scale shRNA screen performed in two TnonMet and two 

Met cell lines.

B. Cell lines derived from non-metastatic primary tumors (TnonMet) and metastases (Met) 

used in this screen.

C. Clustering based on differential shRNA representation. Late time point samples have 

distinct global shRNA representation (driven by the loss of shRNAs that are lethal to all 

cells). Each box represents the measure of global correlation between the entire dataset for 

one cell line versus another.

D. Clustering based on differential shRNA representation. TnonMet cell lines respond 

differently to shRNA treatment from Met cell lines, and Met cell lines are more divergent in 

their responses than TnonMet lines. Each box represents the measure of global correlation 

between the entire dataset for one cell line versus another.
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E. Top 50 genes that are specifically required for non-metastatic (top panel) and metastatic 

cancer cell viability (bottom panel). Heatmap shows the Weighted Sum metric of shRNA 

representation for each gene after knockdown
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Figure 2. Validation of metastasis specific lethal/sick genes
A. Criteria for choosing genes for validation. Three methods were performed to uncover 

genes with a differential effect on Met cells lines and 240 candidate genes were chosen 

based on the depicted criteria.

B, C. Representation before (Early) and after (Late) 20 doubling in vitro. In both TnonMet (B, 

368T1) and Met (C, 238N1) cells the representation of lethal genes is reduced, inert genes 

are unchanged, and advantageous genes increase. Candidate genes have a great reduction in 

representation in the Met cells. Each dot represents one shRNA.

D. Differential effect of each shRNA on Met versus TnonMet cells. The difference in the 

change in representation between the Early and Late timepoint for each cell line is indicated 

as Met-specific effect with many genes having a > 4x greater effect in the Met cells. Each 

dot represents one shRNA.
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E. Differential effect on Met cells plotted against an un-normalized p-value uncovers top 

candidate genes with the greatest fold effect and high reproducibility. Each dot represents 

one shRNA. The boxes indicate candidate shRNAs that are at least two-fold (blue box) or at 

least four-fold (red box) increased in Met cells, meaning they are at least two-fold or four-

fold more lethal for Met than for TnonMet cells.

F. Outline of a parallel in vivo screen to assess the impact of candidate genes on cancer cell 

growth in vivo.

G. General agreement of in vitro and in vivo effects on Met cells (482N1).
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Figure 3. Metastasis specific effect of mitochondria-targeting strategies.
A. Heatmap of the changes of shRNA representation in the secondary in vitro screen, ranked 

by their highest effect on Met cells (red). The corresponding data tables with gene/shRNA 

names and data values can be found in Data Table 9. The top 20 shRNAs that had the 

highest metastasis-specific effect in vitro are listed next to the heatmap. The numbers behind 

the gene name indicate which of the two shRNAs against that gene were identified, as two 

shRNAs per gene were used in the second screen.

B. Heatmap of the changes of shRNA representation in the secondary in vivo screen, ranked 

by their highest effect on Met cells (red). The corresponding data tables with gene/shRNA 

names and data values can be found in Data Table 9. The top 20 shRNAs that had the 

highest metastasis-specific effect in vivo are listed next to the heatmap. The numbers behind 

the gene name indicate which of the two shRNAs against that gene were identified, as two 

shRNAs per gene were used in the second screen.
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C. Gene set enrichment analysis (GSEA) of genes that lose representation specifically in 

Met cell line samples during in vitro culture. The top panel illustrated an example of the 

most Met-specific lethal pathway. Vertical bars are genes represented in the gene set/

pathway sorted by essentiality (left: more essential) and the enrichment score is graphed 

above (green trace). The middle panel lists the pathways that elicit the most Met-specific 

lethal shRNA treatment response determined by GSEA analysis, the only significant top 

gene sets (p < 0.05, FDR < 0.25) represent the mitochondria ribosome and are highlighted in 

pink. The bottom panel lists the results of the Gene Ontology (GO) Term analysis. It 

identifies the mitochondrion and the mitochondrial ribosome as top cellular complexes to 

target for metastasis-specific lethality.
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Figure 4. Metastasis cell lines are more susceptible to mitochondria targeting therapy due to 
altered mitochondria functionality.
A-D. In vitro competition assay of Met (482N1) and TnonMet (394T4) cell lines treated with 

50ng/ml ethidium bromide (A), 15 μg/ml doxycycline (B), 200 μM phenformin (C), or 2 μM 

FCCP (D) shows higher treatment effect on Met cells. Data normalized to untreated control; 

one representative experiment of at least three independent experiments tested in triplicate is 

shown. Error bars indicate S.D.; if the error bar is missing, the symbol was larger than the 

error bar.

E-H. Seahorse analysis of Met and TnonMet cell lines (n = 3 each) to measure oxygen 

consumption rate. Cells were treated with compounds as indicated in (E), according to assay 

instructions. Met cell lines show lower spare respiratory capacity (F, p = 0.0039) and 

reduced coupling efficiency (G, p < 0.0001). Analysis of ECAR/OCR ratio illustrates the 

higher use of gylcolysis in Met cells (H). Three independent experiments measured in 

quadruplicate, one representative experiment is shown. Error bars indicate SEM.
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I-L. Seahorse MitoFuelFlexTest analysis of Met and TnonMet cell lines (n = 3 each) to 

measure fuel capacity and dependency. Met cells show a higher dependency on glycolysis-

derived pyruvate (I, p < 0.001; and J, p = 0.0094) and they are less able to use glutamine, 

indicating reduced rate of glutamine as fuel during oxidative phosphorylation (K, p = 

0.0057; and L, p < 0.0001). Error bars indicate SEM.

M. Analysis of ATP levels by reversed cell titer glow assay normalized to cell number in 

Met and TnonMet cell lines cultured in galactose containg media (n = 3 each). Three 

independent experiments measured in triplicate, one representative experiment is shown. 

Error bars indicate SEM.

N. Analysis of relative by reversed cell titer glow assay normalized to cell number in Met 

and TnonMet cell lines cultured in galactose containg media and glucose-containing media (n 

= 3 each, p = 0.1377). Data is calculated as ratio galactose/glucose. Error bars indicate SEM.

O. Analysis of relative cell growth in glucose-containing media and galactose-containing 

media. Data is calculated as delta [glucose-galactose]. Three independent experiments 

measured in triplicate, one representative experiment is shown. Error bars indicate SEM.

P. JC1 staining of Met (n=2) and TnonMet (n=2) cell lines to measure relative depolarization 

by flow cytometry. Error bars indicate SEM; p = 0.0032

Q. Reactive oxygen species (ROS) staining of TnonMet (H) and Met (I) cell lines to measure 

relative ROS production by flow cytometry. Five independent experiments (exp. #1 through 

5) were performed, each with 2 TnonMet and 2 Met cell lines. Shown are the means of each 

independent experiment normalized to the mean of TnonMet cells per respective experiment. 

Error bars indicate SD.
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Figure 5. Mitochondria of metastasis in in vivo mouse models of lung cancer have reduced 
functionality and are a target for anti-metastatic treatment.
A. Mitotracker deep red analysis by flow cytometry of Lineagenegative;DAPIpositive cells 

sorted from primary tumors and metastasis in KrasG12D;Trp53KO;R26Tomato lung cancer 

mice (n = 5 mice) shows significantly reduced membrane potential in metastasis cells 

compared to primary tumor cells (p < 0.001). Cell number staining artifacts were controlled 

for by spiked in GFP+ cells as staining control. Each dot represents one primary tumor or 

one metastasis sample, the red line indicates the mean.

B. Analysis of ATP levels by reversed cell titer glow assay of Lineagenegative;DAPIpositive 

cells sorted from primary tumors and metastasis in KrasG12D;Trp53KO lung cancer mice (n = 

3 mice) shows no significant difference in ATP levels between primary tumor and metastasis 

cells. Each dot represents one primary tumor or metastasis sample.

C-E. Electron microscopy analysis of tissue sections from primary tumors and pleura 

metastasis in KrasG12D;Trp53KO lung cancer mice (n = 2). Mitochondria in metastasis tissue 
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samples show destroyed morphology with less density and bridging (C, upper panels 2000x 

resolution, middle panels 6000x resolution, lower panels show corresponding H&E staining, 

error bars = 400nm upper panel, error bars = 100 μm lower panel). Quantification of total 

number of mitochondria in EM sections (D) shows no significant (p = 0.5455) difference 

between sections from primary tumors and metastasis, but a significantly higher (p < 

0.0001) number of abnormal mitochondria in metastatic tissue sections (E). Error bars 

indicate SEM. At least 15 pictures per sample were analyzed.

F-H. Mice were subcutaneously injected with a metastatic lung cancer cell line and treated 

with either phenformin (100 mg/kg p.o., n = 9 mice) or vehicle control (n = 9 mice) daily 

starting 7 days after injection. 21 days after injection, lungs were harvested and analyzed by 

fluorescent stereomicroscope (F, upper panel, scale bar = 1 mm), H&E staining (F, middle 

panel, scale bar = 100 μm), and IHC for Tomato (F, lower panel, scale bar = 100 μm). While 

primary tumor weight was not significantly different between treated and control animals 

(G, p = 0.86), the number of metastasis in the lungs was significantly reduced upon 

phenformin treatment (H, p = 0.0025). Each dot represents one sample, the red line indicates 

the mean.

I-K. 579DLN Met cells were pretreated in vitro with phenformin (200 μM) or vehicle 

control for 48 hours and then intravenously injected into recipient mice. Mice were then 

treated with either phenformin (100 mg/kg p.o., n = 8 mice) or vehicle control (n = 8 mice) 

daily starting at the day of injection. 8 days after injection, lungs were harvested and 

analyzed by fluorescent stereomicroscope (I, upper panel, scale bar = 1 mm), H&E staining 

(I, second, panel, scale bar = 500 μm, third panel, scale bar = 50 μm), and IHC for Tomato 

and BrdU (I, lower panel, scale bar = 50 μm) and flow cytometry (J). The percentage of 

Tomatopositive cancer cells in the lungs was significantly reduced upon pretreatment with 

phenformin (p = 0.0002). Each dot represents one sample, the red line indicates the mean. 

(K) Quantification of BrdU positive cancer cells normalized to tumor area, p = 0.7338 = 

n.s.; each dot represents one analyzed random IHC image, 4 images per mouse were 

analyzed; the red lines indicate the mean.
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