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Abstract

Tyrosine phosphorylation (pTyr) plays a pivotal role in signal transduction and is commonly 

dysregulated in cancer. As a result, profiling tumor pTyr levels may reveal therapeutic insights 

critical to combating disease. Existing discovery and targeted mass spectrometry-based methods 

used to monitor pTyr networks involve a tradeoff between broad coverage of the pTyr network, 

reproducibility in target identification across analyses, and accurate quantification. To address 

these limitations, we developed a targeted approach, termed “SureQuant pTyr,” coupling low input 

pTyr enrichment with a panel of isotopically labeled internal standard (IS) peptides to guide data 

acquisition of low-abundance tyrosine phosphopeptides. SureQuant pTyr allowed for reliable 

quantification of several hundred commonly dysregulated pTyr targets with high quantitative 

accuracy, improving the robustness and usability of targeted mass spectrometry assays. We 

established the clinical applicability of SureQuant pTyr by profiling pTyr signaling levels in 

human colorectal tumors using minimal sample input, characterizing patient specific oncogenic 

driving mechanisms. While in some cases pTyr profiles aligned with previously reported 

proteomic, genomic, and transcriptomic molecular characterizations, we highlighted instances of 
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new insights gained using pTyr characterization and emphasized the complementary nature of 

pTyr measurements with traditional biomarkers for improving patient stratification and identifying 

therapeutic targets. The turn-key nature of this approach opens the door to rapid and reproducible 

pTyr profiling in research and clinical settings alike and enables pTyr-based measurements for 

applications in precision medicine.
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INTRODUCTION

Protein posttranslational modifications (PTMs) provide a fundamental mechanism to 

regulate protein function. The most common PTM, phosphorylation, is reversibly mediated 

by a network of protein kinases and phosphatases. Phosphorylation can cause conformation 

changes that activate or inactivate proteins, while also recruiting adaptor proteins and 

substrates that initiate downstream signaling cascades, thus altering the cell state (1–3). 

While over 250,000 unique phosphorylation sites have been reported, nearly all 

phosphorylation sites occur on serine and threonine residues, and less than ~1% occur on 

tyrosine residues (4–6). Thus, deep profiling of tyrosine phosphorylation (pTyr)-mediated 

signaling requires pTyr enrichment and substantially higher sensitivity than standard 

phosphoproteomic or protein expression profiling approaches. Despite the rarity of pTyr, 

tyrosine kinases play a critical role in the signal transduction of pathways controlling 

proliferation, apoptosis, and survival, and their dysregulation through mutation, 

hyperactivation, or overexpression can lead to tumorigenesis (7,8).

Many cancer therapeutics target oncogenic tyrosine kinases (9). While kinase inhibitors have 

demonstrated clinical success, identifying patients that may benefit from specific therapies 

remains challenging, as a majority of clinical molecular characterization efforts rely on 

genomic-based methods, which do not necessarily reflect protein or pathway activation 

status and are unable to capture the complex dynamics of innate and acquired therapeutic 

resistance (10,11). Tyrosine phosphoprotein measurements have proven valuable in 

identifying aberrantly activated signaling pathways and characterizing therapeutic resistance 

mechanisms (12–15), which should provide biomarkers to help inform personalized 

therapies. Unfortunately, measuring low abundance tyrosine phosphorylated peptides 

remains challenging, particularly from limited amounts of sample material.

Existing methods to profile pTyr levels are well documented, but each requires a 

compromise between sensitivity, reproducibility, broad coverage, and quantitative accuracy. 

Phosphorylation site-specific antibodies have been applied in a variety of formats, including 

multiplex immunoassays and reverse phase protein arrays, among others. While these assays 

are relatively straightforward and reproducible, it remains difficult to measure low 

abundance targets and distinguish between similar phospho-epitopes on distinct proteins due 

to poor antibody specificity (16,17). High sensitivity, mass spectrometry (MS)-based pTyr 

methods provide an attractive alternative, although each of the three typical data acquisition 
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strategies has limitations. Data-dependent acquisition (DDA) or “shotgun” MS-methods 

offer deep sequencing of the tyrosine phosphoproteome without requiring previous 

knowledge of peptide targets, enabling novel discovery (12,18,19). However, DDA methods 

can be biased towards peptides of higher abundance, and also result in inconsistent 

reproducibility of detected peptides arising from stochastic sampling of precursor ions, 

resulting in many missing values across multi- analysis studies (20,21). Targeted methods 

like parallel or multiple-reaction monitoring (PRM/MRM) are well suited to quantify a 

known panel of peptides with high accuracy and reproducibility, but such traditional targeted 

acquisition schemes often require a tradeoff between the number of peptides that can be 

reliably measured and the sensitivity and selectivity of those measurements, restricting depth 

of coverage (22). These methods also commonly require complex method acquisition 

structures and peptide retention-time scheduling, which limits ease of use (21). Finally, pTyr 

data-independent acquisition (DIA) methods aim to improve run-to-run overlap while 

maintaining depth of coverage (5,23). However the complexity of DIA spectra make 

quantitative accuracy challenging, and DIA methods have demonstrated lower sensitivity 

than PRM approaches, a critical consideration with low abundance, tyrosine phosphorylated 

peptides (24).

To address these limitations in existing pTyr profiling strategies, we describe a novel, high-

density, targeted MS approach, termed “SureQuant pTyr,” that leverages isotopically labeled, 

tyrosine phosphorylated internal standard (IS) trigger peptides to efficiently guide MS 

acquisition in real-time. Adapted from traditional IS-PRM (25), the use of trigger peptides 

eliminates the need for retention time scheduling to expand the capacity of targetable nodes, 

allowing for the reliable and accurate quantification of several hundred tyrosine 

phosphorylated peptide targets commonly dysregulated in cancers. This platform 

accommodates low sample input for pTyr enrichment (800 μg total protein) and utilizes 

commercially available pTyr enrichment reagents, nano-HPLC columns, and data 

acquisition method templates for a streamlined, “plug and play” implementation.

We apply this approach to profile the pTyr signatures of human colorectal cancer (CRC) 

tumor specimens to identify dysregulated signaling pathways and reveal potential drug 

targets not identified with genomic or other proteomic measurements, such as tumors 

susceptible to anti-epidermal growth factor receptor (EGFR) therapy. Furthermore, we 

demonstrate the tumor-extrinsic nature of pTyr profiling on tumor specimens, quantifying T 

cell activation levels on low abundance immune cell-specific pTyr sites, which may be an 

effective indicator of immune cell infiltration and immunotherapy response. With the 

reproducibility and sensitivity of SureQuant pTyr, we highlight the potential of this approach 

to be used in clinical settings to rapidly profile pTyr signaling as a complementary strategy 

to enhance biomarker identification and tumor characterization for applications in precision 

medicine.

MATERIALS AND METHODS

Cell lines

Lung cancer cell line A549 (CCL-185) was purchased from ATCC and routinely tested for 

mycoplasma contamination (Lonza). Cells were cultured in RPMI-1640 (Gibco) 
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supplemented with 10% FBS (Gibco), 1% penicillin/streptomycin (Gibco) and maintained at 

37°C, 5% CO2. Prior to harvesting (passages 4–6), cells were stimulated with 5 nM EGF 

(PeproTech), and early time point samples (0, 0.5, and 2 minutes stimulation) were flash 

frozen in liquid nitrogen, as previously described.(26)

Tumor samples

Tumor samples were collected by several tissue source sites in strict accordance to the 

CPTAC-2 colon procurement protocol with an informed written consent from the patients. 

The Washington University in St. Louis Institutional Review Board (IRB) reviewed the 

individual informed consent documents at each tissue source site and determined that the 

materials sent to the CPTAC biospecimen core resource met the requirements. All other 

information related to procurement of these samples is detailed in Vasaikar et al. In this 

analysis, samples were obtained as tumor curls through the Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) Biospecimen Core Resource and stored at −80°C prior to 

analysis.

Sample processing

Cell line samples/ frozen tissues samples were lysed/homogenized in lysis buffer [8 M urea, 

1x HALT Protease/Phosphatase Inhibitor Cocktail (Thermo Scientific)]. Lysates were 

cleared by centrifugation at 5000 g for 5 min at 4°C and protein concentration was measured 

by bicinchoninic acid assay (BCA) (Pierce). In our hands, protein yield for frozen tumors is 

~10% of the tumor wet weight. Proteins were reduced with 10 mM dithiothreitol for 30 min 

at 56°C, alkylated with 55 mM iodoacetamide for 45 min at room temperature (RT) 

protected from light, and diluted 4-fold with 100 mM ammonium acetate, pH 8.9. Proteins 

were digested with sequencing grade modified trypsin (Promega) at an enzyme to substrate 

ratio of 1:50 overnight at RT. Enzymatic activity was quenched by acidifying with glacial 

acetic acid to 10% of the final solution volume, and peptides were desalted using C18 solid 

phase extraction cartridges (Sep-Pak Plus Short, Waters). Peptides were eluted with aqueous 

60% acetonitrile in 0.1% acetic acid and dried using vacuum centrifugation. Protein 

concentration was again measured by BCA to account for variation in sample processing, 

and peptides were subsequently lyophilized in 800 μg aliquots for label-free DDA, PRM, & 

SureQuant analysis and stored at −80°C until analysis. Samples for TMT-labeled analyses 

were lyophilized in 150 ug aliquots and resuspended in 50 mM hepes (pH 8.5). TMT 10-

plex (0,4 mg) (Thermo Scientific) was resuspended in 15uL of anhydrous acetonitrile and 

subsequently added to each sample, followed by a 1-hour incubation at RT. Reactions were 

quenched with 0.3% hydroxylamine, pooled, dried by vacuum centrifugation, and stored at 

−80°C prior to analysis.

Peptide Synthesis

Peptides were purchased from Thermo Scientific Custom Peptide synthesis service. All 

synthetic peptides used in this study were produced as a PEPotec Custom Peptide Libraries 

using FMOC solid-phase technology. The peptides were synthesized with the following 

specifications: crude purity, synthetic isotope-labeled c-terminal lysine (K) or arginine (R) or 

proline (P) or alanine (A) or isoleucine (I) or valine (V). The crude peptides after synthesis 

were dissolved in 0.1% TFA in 50% (v/v) acetonitrile/water and stored at −20 °C. A pool of 
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first heavy peptide mixture was prepared by mixing an equimolar amount of each peptide 

with the final concentration at 1pmol /μl in 0.1% TFA and 3% (v/v) acetonitrile and 

subjected to nanoLC-MS/MS analysis to determine the intensity response of 340 peptides. A 

final heavy peptide mixture was prepared by increasing the concentration of the 58 “low-

intensity” heavy peptides with low intensity response values. The final concentration of 58 

heavy peptides ranged from 1.8 to 5.5 pmol /μl. Exact concentrations are specified in 

Supplementary Table S1.1. To avoid batch effects or repeated freeze/thaw cycles, upon 

receival the final heavy peptide mixture was divided into individual analyses aliquots and 

stored at −80 °C prior to use.

Tyrosine phosphorylated peptide enrichment

Lyophilized tryptic peptide aliquots were resuspended in 400 μL of immunoprecipitation 

(IP) buffer [100 mM Tris-HCl, 0.3% NP-40, pH 7.4] and supplemented with a mixture of ~1 

pmol of each IS peptide standard. The light/heavy peptide mixture was incubated with 60 μL 

protein G agarose bead slurry (Calbiochem) conjugated to an antibody cocktail containing 

12 μg 4G10 (Millipore), 12 μg PT66 (Sigma) and 6 μg of pY100 (Cell Signaling 

Technologies), rotating overnight at 4°C. Of note, samples 1 and 2 of the A549 enrichment 

analysis were only incubated for 6h at 4°C, whereas sample 3 followed the described 

protocol with overnight incubation. Beads were washed 1x with IP buffer, 3x with 100 mM 

Tri-HCl, pH 7.4, and eluted in 2 rounds of 25 μL 0.2% TFA. Phosphopeptides were further 

enriched using High-Select Fe-NTA Phosphopeptide Enrichment Kit (Thermo Scientific) 

following manufacturer’s instructions with minor adjustments. Modifications include 

reducing the peptide volume initially added to the Fe-NTA column (50 μL) and reducing the 

elution volume to 2 rounds of 20 μL elutions. Peptide elutions were dried down using 

vacuum centrifugation to <2 μL total volume and resuspended in 5% acetonitrile in 0.1% 

formic acid for a total volume of 10 μL.

LC-MS/MS Analysis

Samples for SureQuant analyses were analyzed using an Orbitrap Exploris 480 mass 

spectrometer (Thermo Scientific) coupled with an Easy-nLC 1200 (Thermo Scientific) or 

UltiMate 3000 RSLC Nano LC system (Dionex), Nanospray Flex ion source (Thermo 

Scientific), and column oven heater (Sonation). A 10 μL injection volume of sample was 

directly loaded onto a 25 cm Aurora Series emitter column (IonOpticks) with a column oven 

temperature of 40°C. Peptides were eluted at a flow rate of 400 nL/min across a linear 

gradient consisting of 0.1% formic acid (buffer A) and 80% acetonitrile in 0.1% formic acid 

(buffer B). The gradient is as follows: 3–19% B from 1–37 mins, 19–29% B from 37–51 

mins, 29–41% B from 51–60 mins, 41–95% B from 60–63 mins, and 95–3% B from 70–

70:05 mins.

Survey MS analyses

A flowchart describing the pTyr SureQuant method build and analysis workflow can be 

found in Supplementary Fig. S1. Prior to SureQuant acquisition, the IS peptides were first 

characterized by data dependent acquisition (DDA) with an inclusion list of the precursor 

ions under +2, +3, and +4 charge states for each IS trigger peptide to select optimal charge 

states and product ions for subsequent targeted experiments (Supplementary Table S1.2). For 
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this analysis, a mixture containing approximately 700 fmol of each IS peptide was directly 

injected. Next, a “survey run” was performed, still based on directed DDA but with an 

inclusion list focused on the optimal charge state for each peptide, to capture the precursor 

ion intensity responses and derive the intensity thresholds for MS2 scan triggering in 

subsequent SureQuant analyses. To take sample losses from pTyr enrichment steps into 

account in determining triggering thresholds, a nominal amount (~1 pmol) of each IS 

peptide was added to 800 ug of the A549 processed cell line standard, followed by pTyr 

enrichment as a representative sample. Parameters obtained in these survey analyses were 

used in all subsequent pTyr SureQuant analyses. MS parameters can be found in the 

supplementary methods.

Targeted MS analyses for A549 and tumor samples

The SureQuant method combines various scan events and filters, depicted in Supplementary 

Fig. S2A. During SureQuant analyses, a high resolution MS1 scan is acquired to monitor the 

predefined optimal precursor ions of the IS heavy peptides, based on the list of associated 

m/z values and intensity thresholds. If any targeted m/z from the inclusion list is detected 

and meets the minimum intensity threshold specified, a short fill time, low resolution MS2 

scan of the IS peptide is performed in the subsequent MS cycle. If the scan contains at least 

5 of 6 specified product ions, a high resolution MS2 scan of the endogenous peptide at the 

defined mass offset is performed with longer fill times to improve measurement sensitivity. 

In the current implementation of SureQuant acquisition on the Exploris 480 MS, all trigger 

peptides scans are performed first, followed by target peptide scans in any given MS cycle in 

order to optimize parallelization of trapping and Orbitrap-FT processing in sequential scans 

(Supplementary Fig. S2B).

To implement this method, the custom SureQuant acquisition template available in Thermo 

Orbitrap Exploris Series 1.0 was utilized. The template is structured such that the acquisition 

parameters for each unique isotopically labeled amino acid and charge state (defining the 

m/z offset) is contained within a distinct 4-node branch stemming from the full scan node 

(Supplementary Fig. S2C). We utilized the default template, which contains 6 branches for 

the +2, +3, and +4 charge states of SIL lysine and arginine residues and added four 

additional branches for the +2 charge states of SIL proline, valine, isoleucine, and alanine 

for a total of 10 branches. In each branch, the peptide m/z and intensity thresholds are 

defined in the “Targeted Mass” filter node. Next, parameters for the low resolution, IS 

peptide MS2 scan are defined, followed by the “Targeted Mass Trigger” filter node, which 

defines the 6 product ions used for pseudo-spectral matching. To connect each set of product 

ions within the targeted mass trigger node to a given precursor mass, we utilize the group ID 

feature to define the precursor m/z associated with each group of product ions is related to. 

Finally, along with the scan parameters for the second MS2 scan of the endogenous peptide, 

we define the isolation offset (m/z) within each node.

Standard mass spectrometry parameters for SureQuant acquisition are as follows: spray 

voltage: 1.5kV, no sheath or auxiliary gas flow, heated capillary temperature: 280°C. Full-

scan mass spectra were collected with a scan range: 300–1500 m/z, AGC target value: 300% 

(3e6), maximum IT: 50 ms, resolution: 120,000. Within a 5 second cycle time per MS1 scan, 

Stopfer et al. Page 6

Cancer Res. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heavy peptides matching the m/z (within 10 ppm) and intensity threshold defined on the 

inclusion list were isolated [isolation width of 1.0 m/z] and fragmented [nCE: 28%] by HCD 

with a scan range: 100–1700 m/z, maximum IT: 10 ms, AGC target value: 1000% (1e6), 

resolution: 7,500. A product ion trigger filter next performs pseudo-spectral matching, only 

triggering an MS2 event of the endogenous, target peptide at the defined mass offset if n ≥ 5 

product ions are detected from the defined list. If triggered, the subsequent light peptide 

MS2 scan has the same CE, scan range, and AGC target as the heavy trigger peptide, with a 

higher maximum injection time and resolution (for example, max IT: 180 ms, resolution, 

60,000), however these parameters vary slightly across samples in order to optimize 

acquisition speed and sensitivity. Maximum IT and resolution for each sample are defined in 

Supplementary Table S1.3.

Additional data acquisition parameters for the discovery colorectal tumor samples and 

DDA/PRM A549 analyses can be found in the Supplementary methods.

SureQuant data analysis

Peak area ratios of endogenous light peptides and corresponding heavy IS peptides for the 6 

selected product ions were exported from Skyline, and peptides were filtered according to 

the following criteria: First, only IS peptides with an integrated peak area > 0 for n ≥ 5 

product ions were considered. Of these remaining targets, only endogenous targets with an 

integrated peak area > 0 for n ≥ 3 product ions were considered. For quantification, the peak 

area values of the 3 highest intensity product ions present for both the light/heavy peptides 

were summed, and the ratio of light endogenous to heavy IS peptide signal was taken across 

samples. We selected 3 product ions for quantitation to balance specificity with the ability to 

retain lowly abundant targets. For tumor sample analysis, L:H ratios of peptides quantifiable 

in all tumors were included in the full matrix, and peptides quantifiable in ≥ 16/31 tumors 

were included in the expanded matrix. Both matrixes were z-score normalized for specified 

analyses. Analyses were performed using Python 3.6.0.

RNA-sequencing

RNA-sequencing data was analyzed by Vasaikar et al., as previous described (15). RSEM 

upper-quartile normalized values for the tumor panel used in this study were extracted and z-

score normalized for subsequent analyses.

Principal component analysis

PCA was performed in Matlab R2019b using z-score normalized L:H ratios of the 26 tumors 

with a defined unified molecular subtype. Only peptides identified across all tumors were 

used (165 unique sites).

Enrichment analysis

For tumor-specific pathway enrichment analyses (TPEA), Source proteins of phosphorylated 

peptides were rank ordered from highest to lowest z-score. In cases where more than one 

peptide mapped to the same source protein, the maximum/minimum was selected, 

depending on the directionality of the enrichment analysis. We utilized gene set enrichment 

analysis (GSEA) 4.0.3 (27) pre-ranked tool against a custom database of 12 pathways 
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(Supplementary Table S2.1), obtained from gene ontology (GO) biological processes terms, 

Reactome pathways, and KEGG pathways with 1000 permutations, weighted enrichment 

statistic (p=1), and a minimum gene size of 12. Results were filtered according to p < 0.05, 

FDR q-value < 0.25.

Similarly, for pTyr-specific kinase-substrate enrichment analysis (KSEA) all peptides were 

ranked ordered by z-score and pre-ranked GSEA was performed using a custom library of 

12 phosphosite specific kinase-substrate sets (Supplementary Table S2.2) from the Substrate 

Kinase Activity Inference (SKAI) library (28) using parameters listed above and a minimum 

gene set size of 10. Global phosphorylation/pTyr KSEA analysis used a minimum gene set 

size of 15, using the full kinase-substrate human library from Strasser et al. Results were 

filtered according to p < 0.1 and datasets with FDR q-value < 0.25.

GSEA using RNA-sequencing and protein-expression profiling data was similarly 

performed by rank-ordering genes by z-score and analyzed against the Molecular Signatures 

Database hallmarks gene sets with parameters listed for TPEA and a minimum gene size of 

15. Results were filtered according to p < 0.05, FDR q-value < 0.25.

Protein-protein interaction network analysis

Significantly enriched pathways and biological processes (FDR q-value < 0.05) were 

identified within clusters of co-regulated phosphopeptides using STRING v11 and 

visualized using Cytoscape v3.7 (29,30). Nodes are annotated by pTyr peptide gene name, 

and edges represent protein-protein associations experimentally determined.

Data Availability

Mass spectrometry data files have been deposited to the ProteomeXchange Consortium via 

the PRIDE partner repository with the dataset identifier PXD021857. Detailed protocols for 

sample processing and pTyr enrichment are available on github.com/white-lab.

RESULTS

Targeted pTyr proteomic workflow utilizing internal standard driven data acquisition

In order to profile pTyr signaling events in human cancers, we curated a panel of 340 

tyrosine phosphorylated peptides to target and synthesized the corresponding synthetic 

isotope labeled (SIL) phosphopeptides to serve as ISs (Fig. 1A, Supplementary Table S1.1). 

Selected peptides were primarily chosen from discovery analyses performed on a cohort of 

CRC samples with matched adjacent normal tissue, with priority given to peptides identified 

across multiple analyses, sites with differential phosphorylation levels between tumor and 

non-tumor tissue, and sites known to be implicated in oncogenic signaling (Supplementary 

Table S3). Of note, the discovery analyses illustrate the central limitation of DDA: variation 

in the number and identify of peptides across multiple discovery analyses. Discovery 

analyses identified between 552 and 297 unique pTyr sites, yet only 127 sites mapping to 

102 unique proteins were identified across all 4 analyses (Supplementary Fig. S3A–B). The 

poor reproducibility of this approach restricts depth of analysis across many samples, 

underscoring the need for a targeted approach. Selected pTyr sites from the discovery 
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analyses primarily cover two branches of the kinome: tyrosine kinases and CMGC kinases 

(cyclin-dependent kinases (CDK), mitogen-activated protein (MAP) kinases, glycogen 

synthase kinases, and CDK-like kinases)(7). This list was then supplemented with additional 

peptides from the literature mapping to EGFR and T cell signaling pathway, as EGFR 

inhibitors and immune checkpoint blockade (ICB) are two common therapies within CRC 

and other cancer types (26,31–33).

For SureQuant pTyr analysis, tumors or cell line samples were first digested into tryptic 

peptides, and stable isotope-labeled, tyrosine phosphorylated IS (i.e., “heavy”) peptides were 

added to the endogenous (i.e., “light”) peptide mixture. (Fig. 1B). Both light and heavy pTyr 

peptides were subsequently isolated using two-step enrichment, with an 

immunoprecipitation against pTyr residues, followed by immobilized metal affinity 

chromatography (IMAC). Enriched light and heavy pTyr peptides were next analyzed by 

LC-MS/MS using a custom IS-triggered targeted quantitation method, leveraging the 

“SureQuant” acquisition mode native to the Orbitrap Exploris 480 MS (Thermo Scientific).

During SureQuant acquisition, the MS alternates between a “watch” mode and a 

“quantitative” mode (Fig. 1C). In watch mode, the MS continuously monitors for the 

presence of any heavy IS peptide. If an IS precursor ion is detected above a specified 

intensity threshold, a fast, low resolution MS2 scan is performed and pseudo-spectral 

matching against six pre-selected product ions is applied to verify the presence of the IS for 

enhanced selectivity. If the MS2 spectrum is a positive match, the MS initiates quantitative 

mode, triggering a high-quality MS2 scan of the light, endogenous peptide. With this 

framework, IS-guided acquisition ensures high selectivity, high sensitivity measurements of 

the endogenous peptide for enhanced data quality and reproducibility.

Product ions for both the heavy IS and light target peptides are monitored throughout the 

peptides’ chromatographic elution, and signal intensity is quantified by integrating the peak 

area for both light and heavy peptide product ions. Next, the ratio of light signal to heavy 

signal (L:H) is calculated, and L:H ratios are used for quantitative comparisons across 

samples. Adding IS peptides at defined concentrations prior to pTyr enrichment provides a 

number of additional benefits, including a normalization strategy to enable quantitative 

comparisons across a theoretically unlimited number of samples and data-collection sites. 

IS-peptides also double as a limit-of-detection control, as identification of the heavy IS but 

not the light peptide suggests the endogenous peptide was absent or below the limit-of-

detection. Importantly, all parameters necessary to implement this workflow are readily 

determined in a single survey run analysis and can be used for all subsequent SureQuant 

analyses of the same peptide panel, streamlining assay implementation.

SureQuant pTyr acquisition yields reproducible quantitation across replicate analyses

We first applied this workflow to measure pTyr levels in A549 lung carcinoma cells 

stimulated with epidermal growth factor (EGF) as an in vitro control. We isolated light and 

heavy pTyr peptides from three technical replicate samples while varying the length of 

immunoprecipitation to assess the quantitative reproducibility of the SureQuant pTyr 

approach across replicate samples (Fig. 2A, Supplementary Table S4.1). Using a catenin 

delta-1 (CTTND1-pY904) peptide as an example, multiple MS2 scans were captured across 
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the chromatographic peptide elution profiles for both the light and heavy peptide (Fig. 2B 

and C). Between replicates, the product ion intensities varied, with replicate 3 having over 3-

fold higher signal intensity than replicates 1 and 2, likely due to a longer incubation time 

during immunoprecipitation (Fig. 2D). Despite this dissimilarity in intensities, the L:H ratios 

across replicates remained consistent (Fig. 2E), demonstrating the ability of this workflow to 

account for variation in sample handling and absolute intensities. In fact, across all 

quantified peptides the correlation coefficient (r2) between analyses was 0.96 or greater (Fig. 

2F). To benchmark SureQuant pTyr against existing acquisition methods, we analyzed three 

additional EGF stimulated A549 cell line replicates by label-free DDA and three labeled 

with TMT and found that SureQuant pTyr has comparable quantitative reproducibility to 

TMT-labeled DDA (r2=0.97) and superior to label-free analysis (r2=0.88 & 0.90) 

(Supplementary Fig. S4A, Supplementary Table S4.2). We also analyzed three CRC tumor 

sample replicates with SureQuant pTyr, and found the method had equivalent quantitative 

accuracy in in vivo derived tissue (r2=0.98) (Supplementary Fig. S4B, Supplementary Table 

S4.3).

Finally, we assessed whether the L/H ratios, which can span several orders of magnitude, are 

able to accurately capture known quantitative dynamics, and whether the quantitation is 

comparable to traditional discovery and targeted MS acquisition methods. Three replicates 

of A549 cells were stimulated for 0, 0.5, or 2 minutes with EGF to create quantitative 

dynamics across the samples through activation of EGFR and downstream signaling nodes 

(Supplementary Fig. S4C). These samples were then analyzed in one of three ways: labeled 

with TMT for multiplexed DDA, analyzed with SureQuant pTyr, and analyzed by PRM, 

where 20 pTyr targets common to the SureQuant pTyr panel and the TMT-DDA analysis 

were selected for label-free, targeted analysis (Supplementary Table S5). These data follow 

expected phosphorylation dynamics of EGFR receptor activation, as EGFR phosphorylation 

is greatly increased following EGF-stimulation, which recruits and phosphorylates the 

adapter protein GAB1, creating a docking site for SHP2 (PTPN11), which is required for 

ERK activation (MAPK3/1) (Fig. 2G) (34). Importantly, the quantitation is highly similar 

between analysis techniques, with only the 0.5 min timepoint of EGFR-pY1197 being 

significant between SQ and TMT-DDA analyses, (21x vs. 24x average fold change, p=0.03), 

as replicates had low standard deviation. Noticeably, there is larger standard deviation 

between replicates in the label-free PRM data, as this acquisition method lacks an internal 

standard to account for variations in sample handling and analysis. Other peptides selected 

for PRM that exhibit dynamic changes in response to EGF stimulation likewise do not have 

statistically significant differences in quantitation across acquisition methods 

(Supplementary Fig. S4D).

Human colorectal tumors show distinct pTyr signatures

Thirty-one human CRC tumors that were previously characterized in a proteogenomic 

analysis by Vasaikar et al. (15) were selected for SureQuant pTyr profiling. The previous 

study did include a global phosphorylation analysis, but due to the lack of pTyr-specific 

enrichment, only 16/2183 sites (0.07%) measured across all 31 tumors were tyrosine 

phosphorylated, six of which were represented in the SureQuant pTyr panel. Consequently, 
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we hypothesized a pTyr-targeted analysis could provide an additional dataset for further 

tumor characterization and may reveal novel insights.

Using our panel of 340 tyrosine phosphorylated ISs, we collectively detected & quantified 

336 heavy peptides, representing 99% of the assay panel, and 325 light peptides, 

representing 96% of endogenous peptides from the assay panel across the tumor cohort (Fig. 

3A, Supplementary Fig. S5A). The four unmeasured heavy peptides exhibited fluctuating 

signal from run to run and did not systematically reach the signal intensity threshold defined 

in the initial survey analysis, while the eleven unquantifiable light peptides are assumed to 

be below the limit-of-detection, as the corresponding heavy peptide was detected. Across all 

tumors, an average of 91% of heavy peptides and 78% of light peptides were identified, 

highlighting the reproducibility of the method. While we did not see complete coverage of 

our panel in every tumor, this result was expected as pTyr peptides are often present at low 

levels, and some of the peptides included in the panel were hypothesis driven. For example, 

we included a T cell signaling peptide from ZAP70 (pY292) which was not identified in the 

discovery analyses but was quantifiable in 16/31 tumors. Due to the tumor-specificity of 

some of the signaling nodes, we analyzed the pTyr signaling in two ways. First, L:H ratios 

of peptides identified across all 31 tumors were quantified and z-score normalized (“full 

matrix,” Supplementary Table S6.1). Second, the L:H ratios for all sites identified in at least 

50% of tumors were z-score normalized to expand the datasets for individual tumor 

signaling analyses (“expanded matrix,” Supplementary Table S6.2–3).

Approximately 97% of identified peptides had a L:H ratio between 1:1 and 1:104, with just 

0.7% of sites having a L:H ratio above 1 (Fig. 3B). These highly abundant sites (L:H > 1) 

include MAPK3/1 (ERK1/2), EGFR, and MAPK14 (p38α), each of which is implicated in 

oncogenesis (7,9). Sites with the lowest L:H ratios include several T cell signaling 

associated peptides (CD3ζ, CD3δ, ZAP70), consistent with our hypothesis that a minority 

of cells in these tumors are infiltrating immune cells.

The biological variation in peptide pTyr levels between tumors is evident upon comparing 

the L:H ratios measured by this platform. For example, EGFR and ErbB3, two receptor 

tyrosine kinases (RTKs) in the epidermal growth factor receptor family, appear to have 

coordinated levels of receptor phosphorylation in some tumors (Tumor 2 (T2), T7, T8, T21, 

T25), while others have differential levels (Fig. 3C). ErbB3 is a non-autonomous receptor, 

requiring dimerization with another ErbB family member or RTK for phosphorylation. Thus, 

the higher ErbB3 and lower EGFR phosphorylation levels of T5 and T6 suggest ErbB3 may 

be dimerizing with another ErbB family member or activated RTK. Alternatively, T1, T26, 

and T30 show the opposite trend, implying ErbB3 is playing a less dominant role in driving 

ErbB family signaling in these tumors. To assess whether observed pTyr abundance 

differences could be explained by variation in the overall amount of pTyr signal among 

tumors, potentially due to differences in protein loading or sample processing, we evaluated 

the distribution of L:H ratios across tumors (Supplementary Fig. S5B). Only two tumors, T9 

and T10 had a significantly higher and lower distribution, respectively, of L:H ratios from 

the mean signal across tumors, suggesting differences in pTyr levels are indicative of 

biological variation as opposed to experimental variation.
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To visualize the pTyr signaling profiles across tumors, phosphorylation sites quantified in all 

tumors were analyzed by hierarchical clustering (Fig 3D). Two clear findings emerge from 

this analysis: each tumor possesses a unique pTyr signature, and tumor clustering is not 

readily explained by phenotypic information such as gender, histological subtype, or tumor 

stage (Supplementary Table S7). Previous work by Vasaikar et al. assigned each tumor in 

our panel to one of three unified multi-omics subtypes (UMS), characterizing tumors with 

microsatellite instability and hypermutation (“MSI”), chromosomal instability (“CIN”), and 

evidence of epithelial-to-mesenchymal transition (“mesenchymal”), based off of previous 

proteomic, genomic, and transcriptomic-based classifications developed for CRC tumors 

(15,35,36). These classifications revealed some stratification with hierarchical clustering: 

CIN tumors are primarily located in clusters one and two, whereas a majority of 

mesenchymal and MSI tumors group together in clusters three and four, respectively. Still, 

hierarchical clustering of tumors with the same UMS illustrates the high degree of 

individuality in each tumor’s pTyr signature, even within co-clustering subtypes 

(Supplementary Fig. S5C).

To understand which pTyr sites drive the UMS clustering of tumors, we utilized principal 

component analysis (PCA) (Fig. 3E). Principal component 1 (PC1), explaining 24% of the 

total variance, primarily separates T9 from the remaining tumors and is driven by T9’s high 

pTyr levels of EGFR signaling peptides (Fig. 3F, Supplementary Fig. S5D). Interestingly, 

PC2, explaining 11% of the total variance, separates CIN tumors from the MSI and 

mesenchymal tumors. The 20 highest scoring pTyr peptides derived from unique proteins on 

PC2 show enrichment for pathways related to innate immunity (Fig. 3F, Supplementary Fig. 

S5E). Vasaikar et al. found that MSI and mesenchymal tumors had higher levels of immune 

cell infiltration, in agreement with our pTyr findings.

Tumor-specific pathway analysis reveals enriched signaling pathways

We next performed a correlation analysis on the full peptide matrix and clustered peptides 

on this basis to identify groups of co-regulated peptides across tumors (Fig. 4A). A protein-

protein interaction network analysis on selected clusters revealed significantly enriched 

pathways and processes (Supplementary Fig. S6A). These included pathways related to 

immunity in cluster 1 (Fig. 4B), as well as cytoskeletal and actin binding proteins in cluster 

2 (Fig. 4C). Cluster 3 maps to ErbB and Ras signaling pathways, (Fig. 4D), along with 

migration signaling pathways like adherins junctions, focal adhesions, and RAP1 signaling 

(Fig. 4E). Using these findings, we curated a custom library of twelve gene sets and 

performed a tumor-specific pathway enrichment analysis (TPEA) (Supplementary Table 

S2.1). Phosphorylation site source proteins from the expanded values matrix were rank 

ordered and used to identify tumors with positive or negative enrichment in the selected 

pathways and biological processes relative to the other tumors (Fig. 4F), showcasing the 

pathway level information obtained with SureQuant pTyr. For example, T16 and T10 have 

significant positive and negative enrichment in actin binding phosphopeptides, respectively, 

and correspondingly have the highest and lowest phosphorylation levels of peptides 

identified in cluster 2 (Supplementary Fig. S6B). While some findings were redundant with 

insights obtained with hierarchical clustering, TPEA also identified signaling level 

similarities between tumors that were not obvious with clustering. For instance, T13 and 
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T29 both have significant positive enrichment of RAP1 signaling but clustered separately in 

Fig. 3D.

Additionally, we applied kinase-substrate enrichment analysis (KSEA) to each tumor which, 

in contrast to TPEA, uses site-specific information to identify the enrichment of 

phosphorylated kinase substrates to infer kinase activity (Fig. 4G) (28). The results were 

complementary in some cases, with T9 showing an enrichment in ErbB signaling pathways 

with TPEA and ErbB substrates with KSEA, but KSEA also revealed novel findings. T1 did 

not contain any significantly enriched pathways, but showed significant enrichment in 

several kinase-substrate datasets, including SRC, LCK, and FYN, which have been explored 

as therapeutic targets in metastatic CRC (37).

We subsequently combined the pTyr data with the global phosphorylation data generated by 

Vasaiker et al. and performed KSEA against a wider kinase-substrate library to evaluate 

whether this larger phospho-dataset might reveal additional kinase targets. Results identified 

CDK1/CDK1, previously reported by Vasaiker et al., along with ERK1/2, AKT1/MTOR, 

and PKCA, among others (Supplementary Fig. S6C). While some pathways contained a 

combination of pTyr/pSer/pThr sites (i.e., ERK1/2), SRC kinase enrichment was only 

identifiable using pTyr data (Supplementary Fig. S6D). SRC is a protein tyrosine kinase 

therefore all substrates have phosphorylated tyrosine residues, underscoring the importance 

of profiling the tyrosine phosphoproteome for deeper signaling network coverage. To better 

understand each tumor’s unique pTyr signature and identify therapeutically targetable nodes, 

we next examined the sites driving pathway enrichment, focusing first on ErbB signaling 

and EGFR phosphorylation status.

ErbB phosphorylation levels identify candidates for anti-EGFR therapy

EGFR is expressed in a majority of CRC, and its overexpression in many cancer types has 

been tied to more aggressive phenotypes and poor clinical prognosis, highlighting EGFR 

inhibitors as a promising therapeutic target (38). Indeed, several anti-EGFR agents have 

been approved for CRC clinical use, though treatment is currently only recommended for 

patients with wild type KRAS/NRAS/BRAF, as mutations in these genes have been shown 

to confer EGFR inhibitor resistance (39–41). Disappointingly, anti-EGFR agents are only 

effective in a fraction of qualifying patients, and those that do respond often still develop 

therapeutic resistance (42). As EGFR expression levels have not been shown to correlate 

with clinical response to EGFR inhibitors (43) and RAS mutational status remains the 

principal biomarker for EGFR inhibitor efficacy, we hypothesized that measuring pTyr levels 

on EGFR and other ErbB family signaling pathways could provide a more direct readout of 

EGFR activation status, thereby improving identification of those who may benefit from 

EGFR inhibition.

We identified three tumors with significant positive enrichment of the ErbB signaling 

pathway (T19, T25, and T9), and two with significant negative enrichment (T16 and T22). 

T19 had low pTyr levels of the ErbB family receptors, with pathway enrichment instead 

driven by common downstream signaling nodes including ERK1/2 phosphorylation 

(Supplementary Fig. S7A). As a result, T19 was excluded from subsequent analyses. Neither 

T25 nor T9 contained a RAS/RAF mutation, making both potentially eligible for anti-EGFR 
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therapy under existing biomarker criteria. T25 displayed high levels of EGFR 

phosphorylation relative to the other tumors, suggesting T25 may be a good candidate for an 

EGFR-inhibiting antibody like cetuximab (Fig. 5A). Alternatively, T9 had high levels of 

three ErbB RTKs: EGFR, ErbB2, and ErbB3, indicating EGFR inhibition alone may not be 

sufficient for T9, as ErbB2 amplification is predictive of anti-EGFR therapy resistance 

(33,43). Instead, T9 may benefit from treatment with a pan-ErbB inhibitor like lapatinib, or 

combination therapy with cetuximab and the ErbB2 inhibitor, pertuzumab.

We next sought to determine whether these findings were predictable based on available 

transcriptomics and proteomics data for these same tumors (15). Looking specifically at the 

sites driving ErbB enrichment, we observed a weak positive correlation between pTyr levels 

and corresponding gene expression levels in T9 but found no correlation with protein 

expression (Fig. 5B and C). T16 had no correlation between pTyr levels and gene/protein 

expression, whereas T25 and T22 surprisingly showed a weak negative correlation. In line 

with these findings, gene set enrichment analysis (GSEA) of RNA-seq data from T9 

identified significant enrichment in EGFR signaling genes, along with downstream pathways 

of EGFR activation including SHC1 and GAB1 signaling (Fig. 5D, Supplementary Fig. 

S7B). However, GSEA from T25, T16, and T22 showed no significant enrichment ErbB 

related signaling pathways using protein or gene expression data. In fact, an analysis of all 

pTyr sites and their corresponding protein and gene expression levels yielded no correlation 

(Fig. 5E), which taken together demonstrates the difficulty of using transcript expression or 

protein expression data to infer pTyr signaling dynamics and pathway activation.

Identifying anti-EGFR therapy candidates using TPEA requires enrichment among multiple 

nodes within the ErbB signaling pathway to achieve significance. To identify anti-EGFR 

therapy candidates that may have been missed using TPEA, we focused on two EGFR 

peptides containing autophosphorylation sites, pY1172 and pY1197 (pY1148 and pY1173, 

mature human isoform), which were most commonly quantified across tumors as an 

analogous approach. We identified twelve tumors with EGFR phosphorylation levels at least 

1.5-fold higher than the mean in either or both pTyr sites, termed “EGFR-high” (Fig. 5F). 

Half of EGFR-high tumors have a RAS mutation rendering them ineligible for anti-EGFR 

therapy, but the remaining six wild-type EGFR-high tumors (T3, T4, T21, T24, and 

previously identified T9 and T25) may be appropriate candidates. Similar to earlier findings, 

GSEA of transcriptomic and proteomic datasets for T3, T4, T21, and T24 did not identify 

enrichment in EGFR signaling pathways, highlighting the novel insight provided by pTyr 

profiling.

Beyond RAS mutational status, several other genomic and phenotypic classifications have 

been correlated with response to EGFR inhibitors, including tumors with a mutation in both 

TP53 and APC, microsatellite stable (MSS) status, distally located CRC tumors, and those 

classified as consensus molecular subtype 2 (CMS2), an additional CRC molecular 

classification system (33,36,44). Of the six wild-type EGFR-high tumors, only T21 matches 

these additional genomic criteria. In contrast, T18 and T16 possess all of the described 

biomarkers, but also have lower levels of EGFR phosphorylation, indicating an alternative 

therapy has the potential to be more efficacious. These results suggest that pTyr analysis can 

provide critical information regarding target activation. When combined with genomic 
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characterization, this information provides the potential to improve patient stratification for 

targeted therapeutics.

T cell phosphorylation levels suggest tumor immune cell activation and infiltration status

Following the demonstrated success of ICB in other solid tumors, immunotherapy has 

emerged as another therapeutic avenue in CRC with several ICB therapies approved for 

clinical use (45–47). However, efficacy of ICB in CRC has been limited to mismatch-repair 

deficiency and microsatellite instability classified tumors (dMMR-MSI), which typically 

have higher immune cell infiltration and mutational burden than MMR proficient, 

microsatellite stable (pMMR-MSS) tumors, increasing their susceptibility to ICB therapy 

(48,49). Nevertheless, dMMR-MSI tumors represent a minority (~15%) of CRCs (50) and 

overall response rates in recent clinical trials ranged from 30–55%, emphasizing the need for 

additional biomarkers of ICB efficacy (45–47). Unlike other cancers, PD-L1 expression is 

not predictive of ICB response in CRC (45). Still, better response rates have been observed 

in tumors with higher levels of CD8+ tumor-infiltrating lymphocytes, regardless of 

microsatellite status (51). With this in mind, we investigated whether we could identify 

patients with high CD8+ T cell infiltration using the pTyr levels of immune cell-specific 

peptides to estimate ICB responsiveness.

The SureQuant pTyr IS panel contained T cell signaling-specific peptides derived from the T 

cell receptor CD3δ/γ, along with the T cell co-receptor CD3ζ (CD247) and zeta-chain 

associated protein kinase (ZAP70). These sites and other downstream signaling nodes 

comprised the T cell signaling pathway gene set used for TPEA; using this gene set we 

identified six tumors with significant enrichment: four positive (T8, T19, T23, and T29) and 

two negative (T30 and T17) (Fig. 4F, Supplementary Fig. S8). Examining the phosphosites 

driving enrichment, we observed high levels of CD3ζ phosphorylation across multiple pTyr 

sites and increased ZAP70 phosphorylation in T8 and T29, relative to the other tumors (Fig. 

6A). Both tumors also show elevated LCK phosphorylation, a SRC kinase which 

phosphorylates immunoreceptor tyrosine-based activation motifs (ITAMS) on TCR/CD3 

substrates including CD3ζ and ZAP70. Similarly, KSEA identified significant positive 

enrichment of LCK substrate phosphorylation in T8 and T29 (Fig. 4G). In contrast, T cell 

signaling enrichment in T19 and T23 was primarily driven by downstream signaling nodes 

non-specific to T cells (p38 and ERK), which highlights the importance of evaluating 

pathway enrichment on a site-specific level.

Consequently, we applied a parallel, site-specific framework as used in the phospho-EGFR 

analysis to evaluate three CD3ζ phosphosites as a marker for T cell infiltration. We 

identified ten tumors with at least a 1.5-fold increase in CD3ζ phosphorylation relative to 

the mean, similarly termed “CD3ζ-high,” and twelve tumors with at least 1.5-fold lower 

phosphorylation, “CD3ζ-low” (Fig. 6B). Only two CD3ζ-high tumors (T29 and T5) were 

classified as dMMR-MSI, while the others were pMMR-MSS. Mutations in DNA 

polymerase epsilon (POLE) have also been correlated with increase CD8+ T cell infiltration 

(52), but assessing POLE mutational status only identifies one additional tumor (T20) 

classified as CD3ζ-high. Other tumors including negatively enriched T cell signaling T17 

and CD3ζ-low T4 may have been considered for ICB based on dMMR-MSI status, but low 
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pTyr levels of CD3ζ suggest that they may not be strong candidates for ICB based on lack of 

activated T cell signaling within the tumor.

We examined whether transcript expression or protein expression datasets would similarly 

identify T cell signaling pathway enrichment among positively enriched T8/T29 and 

negatively enriched T30/T17, but this analysis yielded no significant findings. However, 

GSEA against the cancer hallmarks database using RNA-seq data identified interferon-γ 
(IFN-γ), IFN-α, and immune response pathways as significantly positively enriched in T8 

and T29, and significantly negatively enriched in T30 (Fig. 6C and D). Tumor-infiltrating 

lymphocytes are the primary source of IFN-γ production in tumors and stimulates IFN 

response genes and immune activation, in agreement with our T cell signaling TPEA results 

(53). We next looked at expression levels of antigen presentation machinery, hypothesizing 

that expression levels would mirror the directionality of T cell signaling and IFN-γ 
enrichment. Supporting this notion, we see corresponding increased (T8, T29) or decreased 

(T30) gene and protein expression levels of class I major histocompatibility complex (MHC-

I) genes (HLA-A/B/C, β2M) and both transporters associated with antigen processing 

(TAP1/2) subunits (Fig. 6E and F).

Intriguingly, negative T cell signaling enriched T17 has positive enrichment of IFN-γ/α, 

inflammatory response, and antigen processing and presentation genes, in contrast to the 

trend observed in the other tumors (Fig. 6C–F). Analysis of antigen presentation protein 

expression levels shows increased β2M and TAP1/2, but lower levels of classical HLA-

A/B/C alleles with high expression of the non-classical allele, HLA-E. Similar to classical 

HLAs, HLA-E can be modulated by IFN-γ (54), but high expression of HLA-E can function 

as an inhibitory signal towards other immune cell types, attenuating tumor cell susceptibility 

to T cell mediated killing as a mechanism of immune escape (55,56). Therefore, despite 

T17’s enrichment for IFN-γ/antigen presentation and biomarker status, a deeper analysis of 

the genomic and proteomic data aligns with our pTyr-based assessment of T17 being a poor 

candidate for ICB therapy.

Previous analyses by Vasaikar et al. provided their own estimate of immune infiltration by 

using a gene expression signature to assign each tumor an “immune score,” (Fig. 6G) 

representative of the fraction of immune cells within a tumor sample (15,57). Tumors with 

the highest immune scores were largely dMMR-MSI and/or hypermutated, including 

negative T cell signaling enriched T17, while positively enriched T8 had an average score. 

Still, other tumors were similarly categorized. Both analyses predicted T29 to have the 

highest level of immune infiltration, whereas T2, T26, and T30 all have low predicted 

immune infiltration. To determine whether specific pTyr sites in our data were associated 

with tumor immune score, we assessed the correlation between these data. Although two 

CD3ζ pTyr sites were significantly correlated with the immune score, the correlations were 

weak, and other significantly correlated sites were not directly associated with T cell or 

immune function (Fig. 6H and I). Collectively, these data further highlight the additional 

information provided by directly measuring activation status with SureQuant pTyr and 

suggest pTyr measurements applied in conjunction with genomic and/or proteomic data may 

improve identification of potential ICB or other immunotherapy responders, beyond 

classical MMR/MSI biomarkers.
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DISCUSSION

pTyr measurements are well suited to directly read out signaling network activation status 

and have the potential to identify therapeutically targetable protein kinases or signaling 

pathways in disease. To address the limitations of traditional shotgun and targeted MS-based 

pTyr approaches which require compromise between reproducibility, broad coverage, and 

quantitative accuracy, we developed SureQuant pTyr. This approach leverages isotopically 

labeled IS trigger peptides, similar to previously described methods, but here adapted to 

guide the acquisition of low-abundance pTyr peptides in real-time for enhanced sensitivity 

and selectivity. In addition, SureQuant pTyr addresses significant analytical challenges 

compared to other MS-based approaches, as it does not rely on retention time scheduling, 

thus maximizing the number of targetable peptides and reducing the complexity of assay 

development. Here, we utilized a panel of 340 tyrosine phosphorylated IS peptides to obtain 

highly reproducible, high-density coverage of pTyr signaling pathways implicated in cancer, 

while achieving accurate quantitation.

We established the quantitative reproducibility of SureQuant pTyr, by performing targeted 

pTyr profiling on three replicate in vitro samples. While peptide intensity responses varied 

across analyses and thus may have confounded label-free analysis, L:H ratios were 

consistent. The high quantitative reproducibility achieved with the SureQuant IS-triggered 

targeted workflow has many benefits, including the ability to readily analyze signaling 

network dynamics under various conditions (26), or to compare the signaling state of a 

patient derived tissue over time as therapeutic resistance or metastases develop (58). 

Furthermore, using a set of reference standards for quantitation enables comparisons across 

research projects and data collection sites, paving the way for large scale, multi-site studies 

using pTyr levels for disease characterization.

To highlight the potential clinical utility of this platform, we applied SureQuant pTyr to 

measure pTyr signaling levels in CRC patient tumor tissues. Our analyses identified tumors 

with elevated ErbB signaling levels, as well as tumors with high levels of innate and 

adaptive immune cell infiltration. While some of our results reinforced complementary 

genomics-based classifiers used for treatment selection, in other cases our pTyr signaling 

data revealed therapeutic opportunities in tumors that would have been missed by traditional 

biomarkers. These results demonstrate the power of pTyr characterization as a 

complementary approach for selecting treatment strategies. Furthermore, this platform only 

requires 800 μg of total protein as sample input material, less than a standard 14G needle 

biopsy, making it highly amenable to clinical sample profiling (20).

While our initial study utilized just 340 pTyr targets selected with CRC application in mind, 

the current method framework could be applied to an alternate or expanded panel of peptides 

for deeper profiling of the tyrosine phosphoproteome. This may include additional targets 

for applications in cancer research, such as broader coverage of receptor tyrosine kinases, or 

could incorporate other targets associated with non-oncological settings where dysregulated 

kinase signaling also plays a role. Implementing additions to the panel is easily 

accommodated by performing a new survey run analysis and importing the new acquisition 

parameters to the existing method structure. Furthermore, the same general framework could 
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be applied to other non-tyrosine phosphosite panels to provide additional information 

regarding a sample’s signaling status. Examples include peptides with pSQ/pTQ motifs for 

DNA damage response analysis, or other low-abundance PTMs such as lysine acetylation. 

Future studies may evaluate whether antibody enrichment is required for SureQuant-based 

analyses of these low abundance targets, or whether IMAC-only (in the case of pTyr) or 

possibly no enrichment is sufficient given the high specificity triggering of the SureQuant 

method. Finally, coupling SureQuant acquisition with isobaric labeling would greatly 

increase assay throughput, allowing for up to 16 samples analyzed simultaneously (59) 

while further decreasing sample input material required (58).

Though this assay is not approved by the Clinical Laboratory Improvement Amendments 

(CLIA) for clinical use at this time, implementation of targeted MS in clinical settings is 

beginning to emerge (60). Importantly, while many targeted workflows require complex 

method structures and customized MS platforms, all aspects of pTyr SureQuant were 

performed with commercially available nano-HPLC columns, enrichment reagents, method 

templates, and instrumentation, thereby allowing for simplified implementation in other 

research or clinical settings. Executing this workflow simply requires the IS peptide mixture 

and a single survey analysis to determine intensity thresholds for IS peptide triggering, 

offering a turn-key solution for targeted pTyr profiling.

Improvements to assay accuracy, reproducibility, and ease of use may open new doors in the 

clinical setting to use utilize pTyr signatures in conjunction with existing technologies to 

obtain novel insights. Overall, we propose the broad application of targeted pTyr profiling 

with SureQuant pTyr in research and clinical settings, either as a standalone strategy or in 

combination with proteogenomic data, can aid in improving patient stratification and 

biomarker characterization, identification of drug targets, and designing personalized 

therapies in the context of oncology and beyond.
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Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

SureQuant pTyr is a mass spectrometry-based targeted method that enables sensitive and 

selective targeted quantitation of several hundred low-abundance tyrosine phosphorylated 

peptides commonly dysregulated in cancer, including oncogenic signaling networks.
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Figure 1. 
Platform for targeted pTyr analysis with IS-guided acquisition. A, Human kinome tree with 

peptides selected for SureQuant pTyr analysis colored according to kinase group. B, Sample 

processing workflow for pTyr enrichment and analysis. C, Mass spectrometry acquisition 

method and analysis workflow for SureQuant pTyr IS-triggered quantitation.
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Figure 2. 
High quantitative reproducibility is achieved with SureQuant pTyr. A, Experimental setup. 

IS-trigger peptides were added to three biological replicates of A549 cell lysate stimulated 

with epidermal growth factor (EGF). Enriched light (L) and heavy (H) pTyr peptides were 

analyzing using SureQuant pTyr acquisition. B, MS/MS spectra from analysis #3 of the 

heavy (left) and light (right) CTTND1 peptide, SLDNN[pY]STPNER-pY904, at peak 

intensity, where [pY] denotes the residue position with pTyr modification. Monitored 

product ions are uniquely colored and labeled with b/y ion. C, Ion intensity over time for the 

6 heavy (upper) and light (lower) product ions from CTTND1 pY904 in analysis #3. Each 

MS/MS event is represented by a point. D, Integrated peak area intensities for each product 

ion in C. Bar color corresponds to analysis #. E, Ratios of light to heavy signal intensity 

(L/H) of CTTND1 pY904 for each analysis, where each point represents the L/H value of a 

single product ion. Solid line and error bars represent the mean and standard deviation, 

respectively. F, Correlation of (L/H) signals across 127 peptides between analysis #1 and #2 
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(r2=0.96, black) and analysis #1 and #3 (r2=0.97, grey). G, Log2 fold change values, relative 

to the mean peptide abundance at the 0-minute timepoint, of pTyr peptides for three data 

acquisition methods: PRM (black), TMT-labeled DDA (grey) and SureQuant pTyr (blue). 

Significant differences in quantitation between PRM and TMT-DDA vs. SQ pTyr are 

represented as *p<0.05 (Dunnett’s multiple comparisons test). Each sample includes n=3 

biological replicates, error bars represent the standard deviation.
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Figure 3. 
Targeted pTyr analysis highlights CRC tumor heterogeneity. A, Peptides identified and 

quantified across 31 tumors. B, Distribution of tumor L:H ratios with peptides rank ordered 

from highest to lowest maximum abundance. Annotated peptides labeled by source protein 

and residue position with pTyr modification have the maximum and minimum abundances. 

C, Light to heavy signal intensity ratios (L/H) for ErbB3 peptide (black), 

SLEATDSAFDNPD[pY]WHSR, and EGFR peptide (red), GSTAENAE[pY]LR, where [pY] 

denotes the residue position with pTyr modification. D, Peptide and tumor hierarchical 

clustering (distance metric = correlation), where pTyr abundance values are z-score 

normalized light to heavy signal ratios. E, Tumors plotted by principal component 1 (PC1) 

and PC2 score, colored according to unified multi-omics subtype. F, Significantly enriched 

reactome pathways from the top 20 peptides derived from unique proteins on PC1 (top, 

black) and PC2 (bottom, grey). Significance values are FDR adjusted.
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Figure 4. 
Differential pTyr levels identify tumors with significant pathway enrichment. A, 
Hierarchical clustering based on the correlation coefficients between phosphosites across all 

tumors (distance metric = correlation). B-E, Protein-protein interaction network of peptides 

within cluster 1 (B), cluster 2 (C) and cluster 3 (D-E). Node color(s) maps peptides to 

enriched pathway(s). F Significantly enriched pathways among tumors using tumor-specific 

pathway enrichment analysis. G Significantly enriched kinase-substrate interactions within 

tumors. Significance (p-value) and directionality indicated by color, FDR q-value < 0.25 for 

all enrichment analyses. Tumors without any significant enrichment are not shown.
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Figure 5. 
EGFR phosphorylation levels identify candidates for anti-EGFR therapy. A, Enrichment 

plots (left) of ErbB signaling pathway in T25 (purple) and T9 (teal). Peptide rank (x-axis) 

versus pTyr abundance is plotted on the left y-axis, and the running enrichment score is 

plotted on the right y-axis. Each hit signifies a pTyr source protein present in the ErbB 

signaling pathway library. All pTyr peptides identified in the ErbB signaling pathway and 

their corresponding pTyr abundance (right), with ErbB family receptors annotated in bold. 

pTyr abundance values are z-score normalized light to heavy signal ratios. B, Z-score 
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normalized pTyr abundance (pTyr), protein expression (protein) and transcript expression 

(RNA-seq) levels of ErbB signaling pathway members. C, Correlation between pTyr 

abundance and protein (red) or transcript (blue) expression of ErbB signaling pathway 

members. Protein and transcript abundance values are z-score normalized. Correlation 

coefficients for pTyr vs. protein for T9, T16, and T22 are r2= 0.06, 0.05, 0.29, respectively. 

Correlation coefficients for pTyr vs. gene expression for T9, T16, T22, and T25 are r2= 0.35, 

0.01, 0.38, and 0.43, respectively. Protein expression data for T25 was unavailable. D, 
Normalized enrichment score (NES) for positively enriched reactome pathways in T9 using 

RNA-seq data. *= p<0.05, **= p<0.01, FDR q-value < 0.05 for all. E, Correlation between 

all pTyr sites in the full matrix and corresponding protein expression (top, r2=0.025) and 

gene expression (bottom, r2=0.026) levels. All values are z-score normalized. F, Cumulative 

pTyr signal, calculated as the ratio of tumor light to heavy pTyr signal (x) to the mean light 

to heavy signal (μ) across tumors, log2 transformed for two EGFR phosphopeptides rank 

ordered from highest to lowest signal. Tumor specific annotations are indicated by color, and 

pY1148 and pY1173 denote the EGFR residue position with pTyr modification.
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Figure 6. 
pTyr signatures of T cell signaling pathway peptides. A, pTyr signal of T-cell signaling 

peptides, calculated as the ratio of tumor light to heavy pTyr signal (x) to the mean light to 

heavy signal (μ), for T8 and T9. Phosphorylation levels on the signaling diagram (colored 

circles) correspond to T8, and pY denotes the residue position with pTyr modification. B, 
Cumulative CD3ζ pTyr levels (light to heavy signal) from three CD3ζ pTyr peptides. 

Tumor-specific biomarker statuses are indicated by color. C, Gene set enrichment analysis 

(GSEA) plots for IFN-γ response, with gene rank (x-axis) versus running enrichment score 
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(y-axis). Each hit signifies a gene present in the gene set. D, Normalized enrichment scores 

(NES) from GSEA for selected significantly enriched pathways *p<0.05, **p<0.01, q<0.25 

for all. E, Z-scored normalized protein and transcript expression levels of antigen 

presentation genes. F, GSEA NES for antigen processing and presentation gene ontology 

gene set (GO:0019882), *p<0.05, **p<0.01, q<0.25 for all. G, Immune score of tumors 

from Vasaikar et al., * = positively enriched # = negatively enriched in pTyr T cell signaling 

peptides. H, Unique pTyr peptides with significant positive correlation to immune score (p < 

0.05). I, Correlation between immune score and the L/H signal of CD3ζ-pY111, r2 = 0.19.
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