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Abstract

T cells shape immune responses in cancer, autoimmunity and infection, in which CD4+ T helper 

(Th) and CD8+ T cells mediate effector responses that are suppressed by regulatory T (Treg) cells. 

The balance between effector T cell and Treg cell function orchestrates immune homeostasis and 

functional programming, with important contributions to the onset and progression of cancer. 

Cellular metabolism is dynamically rewired in T cells in response to environmental cues and 

dictates various aspects of T cell function. In this review, we summarize recent findings on how 

cellular metabolism modulates effector T cell and Treg cell functional fitness in homeostasis and 

cancer immunity, and highlight the therapeutic implications of targeting immunometabolic 

pathways for cancer and other diseases.
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Introduction

Conventional CD4+ or CD8+ αβ T cells that express T cell receptors (TCRs) recognizing 

tumor- and self-antigens play pivotal roles in shaping immune responses in cancer and 

autoimmune diseases. Upon cognate antigen stimulation, T cells are activated, proliferate, 

and undergo functional specialization in response to environmental cues. Antigen-

inexperienced naïve CD8+ T cells differentiate into cytotoxic effector cells and long-lived 

memory cells. Naïve CD4+ T cells differentiate into Th1, Th2, Th17, and Tfh effector cells, 

which can also form long-term memory cells, as well as Foxp3-expressing immune-

suppressive Treg cells [1].
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One long standing goal of cancer immunotherapy is to identify factors that stimulate T cell 

responses to tumor antigens. Tumor antigens may be unique to tumors (tumor-specific 

antigens) or self-antigens expressed with temporally and spatially distinct patterns (tumor-

associated antigens). Cancer development is frequently associated with an 

immunosuppressive tumor microenvironment (TME) wherein tumor-specific cytolytic CD8+ 

T cells are often underrepresented among T cells and T cells are frequently dysfunctional 

and unable to eradicate malignant cells. In addition, Treg cells accumulate and undergo 

functional maturation in tumors, supporting an immunosuppressive TME [2]. As a 

consequence, tumor antigens are often unable to elicit an effective antitumor response. 

While targeting immune checkpoint pathways has shown remarkable clinical success by 

reinvigorating tumor-specific T cell responses, one of the major challenges is the 

development of autoimmune-like immune-related adverse events (irAEs). Moreover, 

although Treg cell ablation can rapidly eradicate tumors, loss of Treg cell function promotes 

development of severe autoimmune and inflammatory complications [3,4]. Therefore, 

successful immunotherapies require an in-depth understanding of the mechanisms 

underlying immune homeostasis under steady state and antitumor immunity.

Although immune receptors, signaling proteins, and transcription factors dictate T cell 

responses, emerging data has identified cellular metabolism as a central regulator of T cell 

survival, proliferation, and function [5]. How metabolic rewiring impacts T cell functional 

adaptation in situ remains underexplored. Recently, extensive efforts have been made to fill 

this gap, by exploring immunometabolic changes underlying effector T cell and Treg cell 

functional fitness in the TME and other disorders, with important therapeutic implications. 

Given the availability of excellent reviews [6–9], we mainly discuss the recent progress, with 

a particular focus on immunometabolism in effector T cells and Treg cells in the TME.

T cell metabolism in immunity and homeostasis

Cell-intrinsic metabolic pathways direct the activation state of T cells (Figure 1a). In 

particular, aerobic glycolysis, glutaminolysis and mitochondria-associated functions, such as 

oxidative phosphorylation (OXPHOS) and one-carbon metabolism, support effector T cell 

responses by regulating their activation and differentiation. Overall, these pathways serve as 

bioenergenetic, biosynthetic, and signaling hubs to allow for the proliferative expansion and 

effector differentiation of T cells [10]. Aside from cell-intrinsic metabolic factors, metabolic 

rewiring in response to extracellular nutrients, metabolites, and growth factors also 

modulates effector T cell functional fitness. Indeed, glucose transport into cells is important 

for supporting aerobic glycolysis, while glucose, glutamine or fatty acid catabolism can 

drive flux via the tricarboxylic acid (TCA) cycle to support biosynthetic reactions and 

mitochondrial OXPHOS, both of which are essential for regulating T cell functionality 

[10,11]. Aside from glutamine, other amino acids have also been implicated in supporting T 

cell activation and immune responses [12]. For instance, extracellular methionine regulates 

epigenetic programming to tune CD8+ T cell fate decisions and cooperates with serine 

(which can be synthesized de novo from glucose or derived from extracellular sources) to 

promote one-carbon metabolism [13–15]. Further, serine metabolism is also essential for 

regulating cellular redox state through synthesis of glutathione (GSH), an important 

regulator of CD4+ and CD8+ T cell responses [16,17]. By integrating cell-intrinsic and 
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extrinsic metabolic programs, T cells play a critical role for antitumor immunity and 

represent the cornerstone for successful immunotherapies.

Treg cells exert potent immunosuppressive function and thereby maintain self-tolerance and 

control autoimmunity and tissue inflammation [3]. Recent results reveal novel roles for 

cellular metabolic processes in regulating Treg cell functional integrity (Figure 1b). Treg cells 

have distinct glycolytic and mitochondrial metabolism from effector CD4+ T cells [18,19]. 

Moreover, mitochondrial metabolism is crucial for supporting Treg cell function, self-

tolerance, and immune homeostasis, as evidenced by the development of autoimmune 

diseases in Treg-specific deletion of mitochondrial respiratory chain components or 

mitochondrial transcription factor A (Tfam), which is important for mitochondrial 

respiratory chain activity [20–23]. Treg cells also require anabolic processes, such as lipid 

synthesis, for their activation and function [10]; however, excessive aerobic glycolysis or 

mitochondrial respiration that produces ROS is detrimental to Treg cell lineage stability [24–

27]. Recent studies have uncovered important roles of nutrient availability in modulating 

Treg cell functional fitness. Specifically, amino acids, especially arginine and leucine, signal 

through RagA/B and Rheb1/2 to license TCR-induced mTORC1 activation and subsequent 

mitochondrial metabolic changes in Treg cells [28,29]. Additionally, aberrant serine uptake 

and metabolism caused by GSH loss in Treg cells leads to increased mTORC1 activation, 

proliferation, impaired Foxp3 expression, and suppressive function, resulting in the 

development of lethal autoimmune inflammation that can be rescued by a serine/glycine-

deficient diet [30]. Lastly, intestinal immune homeostasis is maintained by Treg cells, and 

microbial bile acid metabolites are essential for colonic Treg cell generation and suppression 

of intestinal inflammation [31–33]. These studies collectively indicate that Treg cell 

functional integrity and suppression of autoimmune responses requires proper cellular 

metabolic programming.

Metabolic activation of tumor-specific T cells

The immunosuppressive TME is one of the hallmarks of cancer and underlies the basis for 

tumor immune evasion [4]. Effector T cells play a pivotal role in controlling cancer; 

conversely, Treg cells promote immunosuppression in the TME that is often associated with 

tumor progression. Therefore, the functional balance between effector T cells and Treg cells 

is a key determinant of the effectiveness of immune control of tumor progression. Recent 

studies have made significant progress in elucidating the roles of immunometabolism in 

dictating the functional fitness of effector T cells (Figure 2) and Treg cells (Figure 3) in the 

TME, and hence this effector-regulatory balance.

Glucose metabolism is an essential regulator of T cell function in tumors, a site where 

competition for nutrients, including glucose, often occurs [5]. Accordingly, restriction of 

glucose or the glycolytic metabolite phosphoenolpyruvate (PEP) in effector CD8+ T cells 

dampens antitumor responses [34–36]. However, it was recently reported that the antitumor 

activity of adoptively transferred CD8+ T cells can be improved by acute glucose restriction, 

which enables them to more efficiently shuttle glucose-derived carbons into anabolic 

programs upon glucose refeeding [37]. CD8+ T cells can also utilize inosine as a carbon 

source to support cell proliferation and effector function under glucose restriction conditions 
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in vitro [38], and inosine can promote effector T cell expansion and function in the TME 

[38,39]. How T cell adaptations to alternative nutrient sources impact effector function in the 

TME remains to be fully explored. PI3K-mTOR signaling has a well-established role in 

glucose metabolism [40], but its upstream regulators in primary T cells are less well 

understood. Recently, acylglycerol kinase (AGK), an enzyme involved in lipid and 

glycolipid metabolism, was identified as an upstream activator for mTORC1 and subsequent 

metabolic reprogramming by interacting with and inhibiting PTEN (the lipid phosphatase 

that antagonizes PI3K signaling) upon following antigen recognition, thereby promoting 

CD8+ T cell proliferation and antitumor functions [41]. Thus, glucose metabolism regulates 

cellular signaling and anabolic programs to support tumor-specific T cell function.

T cells also require mitochondria to fulfill the metabolic requirements for rapid proliferation, 

activation, and function [5]. Accordingly, impaired mitochondrial fitness underlies effector 

CD8+ T cell dysfunction in tumors [42–44], while restoring mitochondrial metabolism 

rescues tumor-infiltrating effector CD8+ T cell function [45]. Recent studies have uncovered 

important factors supporting mitochondrial metabolism, thereby fueling effector T cell 

expansion and function in the TME. Transcription factors have well-established roles in 

shaping effector T cell responses [46], and transcription factor–mediated metabolic 

programming and its contribution to antitumor T cell responses is just beginning to be 

explored. The transcription factor BATF has been identified to be a limiting factor for tumor-

specific CD8+ T cell expansion and effector function in tumors, in part by supporting 

mitochondrial fitness [47]. Interestingly, unlike in tumors, BATF overexpression does not 

boost effector CD8+ T cell expansion in a viral infection model [48], suggesting unexpected 

context specificity. Additionally, the transcription factor Bhlhe40 helps sustain 

mitochondrial metabolism that drives acetyl-coenzyme A (CoA) synthesis and acetyl-CoA-

associated functional epigenetic programing in tumor-infiltrating CD8+ T cells that promotes 

their accumulation and effector function [49]. CD8+ T cell dysfunction in tumors is, in part, 

driven by downregulation of Bhlhe40 downstream of PD-1 signaling. Indeed, anti-PD-L1 

blockade-dependent reinvigoration of tumor-infiltrating CD8+ T cell requires Bhlhe40 re-

expression [49]. Therefore, transcription factor control can act by modulating metabolic 

functions during antitumor immunity, and transcription factor activity intersects with key 

checkpoint blockade pathways, including PD-1–PD-L1.

Recent studies have uncovered additional metabolites that modulate effector T cell function 

in the TME. Specifically, mitochondrial respiration is supported by the intracellular 

metabolite BH4, which is generated by the rate-limiting enzyme GTP cyclohydrolase 1 

(GCH1). Deleting GCH1 in T cells leads to defective proliferation and mitochondrial 

respiration; in contrast, enhancing production of BH4 by overexpressing GCH1 enhances the 

proliferation of both tumor-infiltrating CD4+ and CD8+ T cells, thereby inhibiting tumor 

growth [50]. Furthermore, in the TME, methylglyoxal from myeloid-derived suppressor 

cells (MDSCs) dampens CD8+ T cell mitochondrial respiration, activation, and proliferation, 

partially by depleting L-arginine [51]. This observation is in line with the crucial role of L-

arginine in supporting antitumor effector CD8+ T cell function [52]. These results highlight 

the indispensable roles of cellular metabolites in programming effector T cell mitochondrial 

metabolism and effector function in the TME.
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Metabolic control of T cell differentiation state in the TME

The antitumor activity of tumor-specific CD8+ T cells critically depends upon their 

differentiation state and longevity [53]. Recent findings have established the role of 

immunometabolism in controlling tumor-infiltrating effector T cell fate decisions. In the 

TME, most tumor-specific CD8+ T cells express high levels of inhibitory receptors, possess 

limited effector function, and often acquire a dysfunctional differentiation state termed 

exhaustion [53]. Recent work has begun to illuminate the metabolic drivers of tumor-

infiltrating CD8+ T cell dysfunction. Although increased cholesterol level in the plasma 

membrane potentiates antitumor CD8+ T cell responses [54], cholesterol uptake by tumor-

infiltrating CD8+ T cells in the TME activates ER stress response and inositol-requiring 

enzyme 1 alpha (IRE1α)–X-box binding protein-1 (XBP1) signaling to induce inhibitory 

receptor expression and CD8+ T cell exhaustion [55], indicating divergent roles of 

cholesterol metabolism in modulating T cell function. Additionally, methionine metabolism-

dependent epigenetic programming is essential to establish CD8+ T cell effector function, 

but tumor cells often express high levels of the methionine transporter Slc43a2, leading to 

CD8+ T cell dysfunction by outcompeting CD8+ T cells for methionine in the TME [13]. 

High expression of Slc43a2 on tumor cells correlates with CD8+ T cell dysfunction in 

patients, and supplementation of methionine reverses CD8+ T cell dysfunction and restores 

antitumor responses [13]. It will therefore be important to explore how nutrient fluctuations 

in the TME drive CD8+ T cell dysfunction.

Although exhausted CD8+ T cells have limited effector function, a subset of tumor-

infiltrating exhausted CD8+ T cells preserve a stem cell-like state, with preserved self-

renewal capacity and reconstitution of effector subsets. The adoption of a stem-like state is 

essential for tumor-specific CD8+ T cell persistence and antitumor efficacy [56], and hence 

there has been great interest in understanding the metabolic programs that promote 

“stemness” of CD8+ T cells to improve tumor immunotherapy. In particular, pathways that 

improve mitochondrial fitness have emerged as crucial regulators of stem-like versus 

dysfunctional T cells in the TME. Indeed, in response to chronic antigen stimulation in the 

TME, mitochondrial oxidative stress increases in CD8+ T cells, resulting in reduced 

stemness and antitumor efficacy associated with increased T cell dysfunction [57]. These 

effects can, in part, be attributed to an accumulation of depolarized mitochondria in tumor-

infiltrating CD8+ T cells, owing to reduced mitophagy in these cells [27]. It has recently 

been shown that altering redox metabolism in favor of a reduced state, either via acute 

glucose restriction or antioxidant treatment, can improve the antitumor activity of CD8+ T 

cells; this effect is associated with improved self-renewal capacity of the T cells [37,57,58]. 

Although high levels of potassium in tumor tissues activate starvation response-associated 

mitochondrial metabolism that inhibits effector differentiation-associated epigenetic 

remodeling, potassium-stimulated tumor-infiltrating CD8+ T cells also acquire stemness-

associated programs that equip them with potent antitumor activity [59]. Mitochondrial 

respiratory capacity is also linked to the CD8+ T cell stem-cell-like state, with memory 

CD8+ T cells displaying high mitochondrial SRC [60–62]. Accordingly, blocking glutamine 

metabolism in the TME enhances oxidative metabolism and SRC, driving CD8+ T cells to 

adopt a long-lasting stem cell-like state that is associated with superior antitumor responses 

[63,64]. Additionally, the adipokine leptin induces metabolic reprogramming in tumor-
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infiltrating CD8+ T cells, resulting in increased SRC, stem-cell-like phenotypes, and 

antitumor function [65]. Finally, it was recently shown that inhibition of MEK signaling 

could improve mitochondrial OXPHOS driven by fatty acid oxidation and enhance the 

stemness of CD8+ T cells for antitumor immunity [66]. Thus, pathways that improve 

mitochondrial function, including SRC and fatty acid oxidation, and reduce oxidative stress 

represent promising targets to improve T cell longevity, thereby promoting better antitumor 

responses by T cells.

Negative control of T cell metabolic activity in antitumor immunity

In addition to these positive regulators of mitochondrial fitness, factors suppressing 

metabolism and effector T cell expansion and function during antitumor immunity have been 

revealed. As a result of their high rate of aerobic glycolysis, tumor cells often produce and 

secrete lactate, which has been shown to diminish T cell responses by limiting the activation 

of CD8+ T cells and aerobic glycolysis in CD4+ T cells [67,68]. Ovarian tumors have been 

found to suppress mitochondrial metabolism in CD4+ and CD8+ T cells by inducing ER 

stress and downstream XBP1 signaling in T cells; notably, targeting XBP1 restores tumor-

infiltrating effector T cell mitochondrial respiration, function, and antitumor effects against 

ovarian tumors [69]. Additionally, although S-2-hydroxyglutarate produced by activated 

CD8+ T cells promotes the proliferation and antitumor activity of CD8+ T cells [70], its 

enantiomer R-2-hydroxyglutarate is produced by isocitrate dehydrogenase (IDH)-mutated 

tumors and accumulates in tumor tissues to dampen mitochondrial respiration and paralyze 

both CD4+ and CD8+ effector T cells in the TME [71]. Inhibiting R-2-hydroxyglutarate 

production in the TME restores antitumor effector CD8+ T cell response and impairs tumor 

growth [71]. Thus, external factors present in the TME can suppress the antitumor activity of 

T cells.

Cell-intrinsic negative regulators of metabolic reprogramming of T cells have also been 

reported. For example, signaling via the checkpoint blockade molecules PD-1 and CTLA4 

can alter the metabolic status, including reducing glycolysis, of activated CD4+ and CD8+ T 

cells [72,73], suggesting that immunotherapies targeting these molecules may act, in part, by 

rewiring metabolic programs of tumor-infiltrating T cells. Moreover, the endoribonuclease 

Regnase-1 is a major negative regulator of effective antitumor CD8+ T cell responses via its 

suppression of BATF-dependent mitochondrial fitness, and Regnase-1 inhibition unleashes 

robust tumor-specific CD8+ T cell expansion in tumor sites [47]. Sirtuin-2 (Sirt2), a NAD+-

dependent deacetylase, inhibits glucose, lipogenic, and mitochondrial metabolism by 

repressing expression of key metabolic enzymes, and inhibition of Sirt2 potentiates both 

CD4+ and CD8+ T cell proliferation and antitumor function. The repression of T cell 

metabolism and antitumor responses by SIRT2 is also observed in patients with cancer [74]. 

Collectively, these findings demonstrate that metabolism is an essential determinant of 

antitumor T cell expansion and effector function. Further studies are required to reveal how 

the various positive and negative regulatory factors of metabolic fitness are coordinated in 

the TME.
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Treg cell metabolism and tumor immunosuppression

Treg cells often accumulate in tumors, where they establish an immunosuppressive TME and 

inhibit antitumor effector responses, making them both a major hurdle and a promising 

target for cancer immunotherapy [4]. Given the indispensable role of Treg cells in 

maintaining self-tolerance and immune homeostasis [3], the selective disruption of Treg cell 

function in tumors is a considerable challenge. As an example, Treg cell-specific deletion of 

RagA, a guanine nucleotide-binding protein that mediates amino acid-induced mTORC1 

activation, reinvigorates antitumor T cell responses and inhibits tumor growth; however, loss 

of RagA also promotes development of delayed onset autoimmunity, and combined 

deficiency of RagA and RagB leads to Scurfy-like autoimmunity in mice, as is seen in mice 

lacking Treg cells [28,29]. Similarly, deletion of the mitochondrial transcription factor A 

(Tfam), which is important for mitochondrial respiratory chain activity, in Treg cells impairs 

tumor-infiltrating Treg cell accumulation and lineage stability and dampens tumor growth. 

However, Treg cells with mitochondrial respiratory chain deficiency also cannot maintain 

self-tolerance [20–23]. Therefore, the consequences of the rewiring of Treg cells metabolic 

programs are complex, and how to enforce functional adaptation selectively in tumors 

remains to be explored.

Treg cells exhibit a metabolic profile distinct from that of effector T cells [18,19,75], 

suggesting that the identification of pathways associated with their unique metabolic state, 

especially in the TME, could provide powerful insights for cancer immunotherapy. A recent 

study has made progress in this regard, demonstrating that glucose metabolism is important 

for supporting the suppressive function of human peripheral blood Treg cells, and inhibition 

of glucose metabolism through TLR8 activation dampens Treg cell activity in both lymphoid 

tissue and tumors [75]. The scavenger receptor CD36, which mediates the uptake of long-

chain fatty acids, is upregulated on tumor-infiltrating Treg cells [76]. CD36 is specifically 

required for Treg cell accumulation in tumors by maintaining peroxisome proliferator-

activated receptor-β (PPAR-β) signaling-dependent mitochondrial fitness [76]. In contrast, 

inhibition of fatty acid binding protein 5 (FABP5), a lipid chaperone that is required for lipid 

uptake, enhances the suppressive function of Treg cells, which is associated with altered 

mitochondrial fitness [77], suggesting that fatty acid uptake through FABP5 represses Treg 

cell suppressive activity. Accordingly, tumor-infiltrating Treg cells are found to take up fewer 

fatty acids than peripheral Treg cells, and display both the mitochondrial alterations observed 

in FABP5-deficient Treg cells and enhanced suppressive activity [77]. Further studies are 

required to uncover the requirements and underlying mechanisms by which lipid metabolism 

dictates Treg cell fitness in tumors, which may help reconcile these seemingly disparate 

findings. It is also urgent to investigate whether and how Treg cell functional fitness can be 

selectively shaped in the TME by modulating intracellular metabolic networks.

Conclusions and prospects

Although multiple cellular metabolic pathways control effector T cell and Treg cell 

functional fitness in the TME and inflamed tissues, it is unclear how inputs from various 

metabolic factors are coordinated in complex disease contexts. Several important questions 

remain to be addressed. First, context-specific functions of cellular metabolism in 
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modulating T cell functional states need to be clarified. For example, Gpi1-dependent 

metabolism is indispensable for CD4+ Th17 cells in hypoxic inflammatory but not 

homeostatic conditions [78], illustrating the need to further explore immunometabolism in 

specific diseases. Identifying functionally relevant regulators and pathways in each 

physiological context will be necessary to define how immunometabolic pathways can be 

therapeutically modified in the TME, especially to avoid the development of autoimmunity 

or irAEs. The successful application of pooled CRISPR-Cas9 mutagenesis screening of 

metabolism-related factors, such as that employed in the antitumor CD8+ T cell response 

[47], will enable the systematic and unbiased discovery of key metabolism-related molecules 

and pathways controlling a given T cell function in defined conditions. In addition, the 

metabolic states of T cells need to be profiled in disease contexts, such as by using robust 

metabolic tracing methods in CD8+ T cells that can uncover fundamental differences 

between T cell metabolic phenotypes profiled in vivo and in vitro [15].

Second, given the heterogeneity of T cell functional populations in the TME and organs 

under steady state, the roles of metabolic factors in modulating T cell functions and fate 

decisions in these diseases should be investigated at the single-cell resolution. For example, 

recent single-cell RNA-sequencing results revealed the respective roles of Regnase-1 and 

mTORC1 in defining a memory cell-like subset among bulk tumor-specific CD8+ T cells 

and CD4+ Th17 cells [47,79]. The development of cutting-edge technologies, such as 

combining pooled CRISPR screening and single-cell transcriptome profiling [80–82], 

further enables the systematic identification of functionally-relevant factors in T cell 

functions and fate decisions at the single-cell resolution. Emerging single-cell metabolic 

profiling techniques that can reveal metabolic heterogeneity among T cell subsets or those in 

diverse tissue environments may also be useful in characterizing the cell populations with 

the highest antitumor efficacies, including certain stem-like populations [83–85].

Third, recent studies highlight that tumor cells can functionally paralyze T cells by 

modulating the availability of metabolites in the TME [13,71]. More studies are needed to 

further identify how nutrient-sensing processes influence T cell function in tumors. Indeed, 

there is emerging evidence that systemic nutritional status can impact antitumor immunity or 

cancer therapy [86,87]. Moreover, evidence from clinical trials support the notion that 

dietary alterations may improve clinical prognosis to cancer therapies [87], although the 

impacts on the immune system require additional investigation. Thus, understanding the 

mechanisms underlying how cell- or microenvironment-specific nutrient transport, sensing, 

and signaling occurs in conventional T cells or Treg cells may lead to novel therapies for 

targeting of immunometabolism in cancers without leading to adverse events, including 

autoimmunity or irAEs. Collectively, a detailed profile and comprehensive understanding of 

T cell metabolism in disease contexts will translate into innovative therapies for cancer and 

autoimmune diseases.
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Highlights

1. Cell-intrinsic and -extrinsic factors influence the metabolic state of T cells

2. Glucose and mitochondrial metabolism regulate antitumor activity of T cells

3. Targeting Treg cell metabolism has therapeutic potential for tumor immunity

4. Future perspectives in immunometabolism and antitumor immunity are 

discussed
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Figure 1: Cellular metabolism of activated conventional T cells and homeostatic Treg cells.
a. Upon their activation, conventional T cells upregulate the metabolic pathways of aerobic 

glycolysis, glutaminolysis, and lipid synthesis. They also increase mitochondria biogenesis 

to upregulate mitochondria-associated metabolic processes, including oxidative 

phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and the methionine- and 

serine-dependent one-carbon metabolism pathway that is necessary for epigenetic 

programming and redox balance. Extracellular nutrients, including glucose, glutamine, 

methionine, and serine, are crucial for the induction of these different metabolic programs. 

Glucose metabolism can also support serine synthesis via its metabolic 3-phosphoglycerate 

(3PG). Fatty acids can also be used as a fuel source for OXPHOS in subsets of activated T 

cells. b. Mitochondrial biogenesis and OXPHOS, as well as lipid synthesis, are crucial for 

maintaining Treg cell functional activation and proliferation. These metabolic processes are 

activated downstream of mechanistic target of rapamycin complex 1 (mTORC1) signaling, 

which is induced by TCR engagement in the presence of the amino acids, leucine and 

arginine. Notably, excessive mitochondrial ROS (mtROS) production reduces Treg cell 

survival. Furthermore, excessive levels of anabolic metabolism (e.g. mitochondrial oxidative 

respiration or aerobic glycolysis), as a consequence of increased mTOR signaling, dampens 

Treg cell lineage stability. Treg cell stability can be counteracted by certain metabolites, 
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including glutathione (GSH) that limits serine uptake and serine-induced mTORC1 

activation in Treg cells.
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Figure 2: Cellular metabolism shapes tumor-infiltrating effector T cell responses and 
differentiation.
a. Effector T cell expansion and function are controlled by glucose metabolism downstream 

of the AGK–PTEN–PI3K-mTOR signaling axis, which can be antagonized by PD-1 

signaling. Further, mitochondrial respiration and metabolism support the function of tumor-

infiltrating effector T cells, with metabolites BH4 (synthesized via the enzyme GCH1) and 

extracellular L-arginine (whose levels are antagonized by methylglyoxal produced by tumor 

cells) acting as important metabolite regulators of mitochondrial function. Bhlhe40 and 

BATF are crucial transcriptional regulators of mitochondrial function in tumor-infiltrating T 

cells, which are inhibited by PD-1 and Regnase-1 signaling, respectively. Cholesterol can 

also induce the ER stress response–XPB1 signaling axis that suppresses mitochondrial 

function. Methionine metabolism induced by methionine uptake is crucial to support the 

effector programming of tumor-infiltrating T cells. b. Stem-like programs that promote T 
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cell longevity and persistence in the TME are programmed downstream of selective 

metabolic programs. Specifically, the acquisition of stem-like programs is associated with an 

increase of mitochondrial respiration and spare respiratory capacity (SRC), which can be 

mediated by glutamine-dependent glutamine metabolism, potassium-induced autophagy, 

leptin signaling, or fatty acid oxidation (FAO) that is antagonized by MEK signaling. In 

addition, a stem-like state is adopted upon mitigation of oxidative stress, such as via 

engaging mitophagy to clear damaged mitochondria or transient glucose restriction.
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Figure 3: Cellular metabolism modulates Treg cell functional fitness in tumors.
Treg cells accumulate in tumors and inhibit antitumor effector T cell responses to establish 

an immune suppressive TME. The functional integrity (cellularity, lineage stability, and 

suppressive function) of Treg cells is mediated by metabolic adaptations. Tfam-dependent 

mitochondrial respiration supports tumor-infiltrating Treg cell accumulation and lineage 

stability. Treg cells also upregulate CD36 expression and uptake long-chain fatty acids to 

activate PPAR-β signaling and support mitochondrial fitness, supporting Treg cell survival 

and suppressive function. Amino acids, by signaling through RagA–mTORC1 that induces 

anabolic programming, are also required for tumor-infiltrating Treg cell suppressive function. 

In contrast, TLR8 activation dampens Treg cell functionality in tumors by inhibiting glucose 

metabolism.
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