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Event generation and statistical sampling for
physics with deep generative models and a
density information buffer
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Simulating nature and in particular processes in particle physics require expensive compu-

tations and sometimes would take much longer than scientists can afford. Here, we explore

ways to a solution for this problem by investigating recent advances in generative modeling

and present a study for the generation of events from a physical process with deep generative

models. The simulation of physical processes requires not only the production of physical

events, but to also ensure that these events occur with the correct frequencies. We inves-

tigate the feasibility of learning the event generation and the frequency of occurrence with

several generative machine learning models to produce events like Monte Carlo generators.

We study three processes: a simple two-body decay, the processes e+e−→ Z→ l+l− and

pp ! t�t including the decay of the top quarks and a simulation of the detector response.

By buffering density information of encoded Monte Carlo events given the encoder of a

Variational Autoencoder we are able to construct a prior for the sampling of new events from

the decoder that yields distributions that are in very good agreement with real Monte Carlo

events and are generated several orders of magnitude faster. Applications of this work

include generic density estimation and sampling, targeted event generation via a principal

component analysis of encoded ground truth data, anomaly detection and more efficient

importance sampling, e.g., for the phase space integration of matrix elements in quantum

field theories.
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The simulation of physical and other statistical processes is
typically performed in two steps: first, one samples
(pseudo)random numbers; in the second step an algo-

rithm transforms these random numbers into simulated phy-
sical events. Here, physical events are high energy particle
collisions. This is known as the Monte Carlo (MC) method.
Currently, a fundamental problem with these numerical simu-
lations is their immense need for computational resources. As
such, the corresponding scientific progress is restricted due to
the speed of and budget for simulation. As an example, the full
pipeline of the MC event generation in particle physics
experiments including the detector response may take up to
10 min per event1–7 and largely depends on non-optimal MC
sampling algorithms such as VEGAS8. Accelerating the event
generation pipeline with the help of machine learning can
provide a significant speed up for signal studies allowing e.g.,
broader searches for signals of new physics. Another issue is the
inability to exactly specify the properties of the events the
simulation produces. Data analysis often requires the genera-
tion of events which are kinematically similar to events seen in
the data. Current event generators typically accommodate this
by generating a large number of events and then selecting the
interesting ones with a low efficiency. Events that were not
selected in that procedure are often discarded. It is of interest to
investigate ways in which the generation of such events can be
avoided.

Most of the efforts of the machine learning community
regarding generative models are typically not directly aimed at
learning the correct frequency of occurrence. So far,
applications of generative ML approaches in particle physics
focused on image generation9–12 due to the recent successes in
unsupervised machine learning with generative adversarial
networks (GANs)13–15 to generate realistic images according to
human judgment16,17. GANs were applied to the simulation of
detector responses to hadronic jets and were able to accurately
model aggregated pixel intensities as well as distributions
of high level variables that are used for quark/gluon dis-
crimination and merged jets tagging18. The authors start
from jet images and use an Image-to-Image translation
technique19 and condition the generator on the particle level
content.

Soon after the initial preprint of the present article, two rele-
vant papers appeared that model the event generation with
GANs20,21. There the authors have achieved an approximate
agreement between the true and the generated distributions. Since
those papers looked at processes involving two objects such that
the generator output was 7 or 8 dimensional, it is still an open
question which generative models are able to reliably model
processes with a larger number of objects. In addition, in both
papers the authors report difficulties with learning the azimuthal
density ϕ which we also target in our studies. In20 the authors
circumvent the trouble of learning ϕ explicitly with their GAN by
learning only Δϕ, manually sampling ϕj1 from a uniform dis-
tribution and processing the data with an additional random
rotation of the system. This further reduces the dimensionality of
the studied problems.

In this article we outline an alternative approach to the MC
simulation of physical and statistical processes with machine
learning and provide a comparison between traditional methods
and several deep generative models. All of these processes are
characterized by some outcome x. The data we use to train the
generative models is a collection of such outcomes and we con-
sider them as samples drawn from a probability density p(x). The
main challenge we tackle is to create a model that learns a
transformation from a random variable z→ x such that the

distribution of x follows p(x) and enables us to quickly generate
more samples.

We investigate several GAN architectures with default hyper-
parameters and Variational Autoencoders (VAEs)22 and provide
more insights that pave the way towards highly efficient modeling
of stochastic processes like the event generation at particle
accelerators with deep generative models. We present the B-VAE,
a setup of the variational autoencoder with a heavily weighted
reconstruction loss and a latent code density estimation based on
observations of encoded ground truth data. We also perform a
first exploration of its hyperparameter space to optimize the
generalization properties.

To test our setup, three different types of data with increasing
dimensionality and complexity are generated. In a first step we
construct generative models for a 10-dimensional two-body decay
toy-model and compare several distributions in the real MC and
the generated ML model data. We confirm the recent findings
that both GANs and VAEs are generally able to generate events
from physical processes. Subsequently, we study two more
complex processes:

● the 16-dimensional Z boson production from e+e− collisions
and its decay to two leptons, e+e− and μ+μ−, with four 4-
vectors per data point of which two are always zero.

● the 26-dimensional t�t production from proton collisions,
where at least one of the top quarks is required to decay
leptonically with a mixture of five or six final state objects.

The study on Z bosons reveals that standard variational
autoencoders can’t reliably model the process but confirms good
agreement for the B-VAE.

For t�t we find that by using the B-VAE we are able to
produce a realistic collection of events that follows the
distributions present in the MC event data. We search for the best
B-VAE architecture and explore different possibilities of
creating a practical prior by trying to learn the latent code density
of encoded ground truth data. We also present results for
several GAN architectures with the recommended
hyperparameters.

We perform a principal component analysis (PCA)23,24 of
encoded ground truth data in the latent space of the VAE for t�t
production and demonstrate an option to steer the generation of
events. Finally, we discuss several further applications of this
work including anomaly detection and the utilization for the
phase space integration of matrix elements.

In short, the structure of the paper is as follows: In “Results” we
present the results. We show

● the two-body decay toy model and the leptonic Z-decay,
● the t�t ! 4jþ 1or2l, where we optimize for several hyper-

parameters, assess different ways of utilizing latent code
densities and show how several GAN architectures with
default hyperparameters perform and

● two sanity checks on t�t: (a) Gaussian smearing, creating
Gaussian Mixture Models and Kernel Density Estimators for
events and (b) investigating whether the B-VAE learns the
identity function.

“Discussion” provides the discussion, including several applica-
tions and conclusions. In “Methods” we briefly explain how we
create the training data and we present the deep learning
methodology. We

● provide a brief overview of GANs,
● explain VAEs and our method, the B-VAE,
● present several methods to assess the density of the latent

code of a VAE and
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● define figures of merit that are used to evaluate our generative
models.

The main achievement of this investigation is the B-VAE and
its fine-tuning whose performance is shown on several datasets
and compared to other recent generative models in “Results”.
We find that the B-VAE is able to reliably learn one- and two-
dimensional observables of event data with up to 26 dimen-
sions. The best performance is achieved when true observations
are used to construct a prior for sampling the decoder of the
B-VAE. Furthermore, the latent space dimensionality should be
lower but close to the input dimension of the event. In addition,
we show that an offset for sampling the Gaussian distributions
in latent space improves the generalization capabilities of the
B-VAE.

Results
We study the behavior of generative models as defined in
“Deep Learning Methods” on the three different data sets
described in “Monte Carlo Data”. Most of the conducted stu-
dies focus on the t�t dataset beginning in
“pp ! t�t ! 4 jetsþ1 or 2 leptons” and we only present short,
preliminary studies on the two-body and the leptonic Z decay
in “Two-body decay toy model” and “e+e−→ Z→ l+l−”. We
show several one- and two-dimensional observables for all data
sets and evaluate the trained t�t generator with figures of merit
we define in “Figures of Merit”. Our study finds that by using
the B-VAE, we are able to capture the underlying distribution
such that we can generate a collection of events that is in very
good agreement with the distributions found in MC event data
with 12 times more events than in the training data. Our study
finds that many GAN architectures with default parameters
and the standard VAE do not perform well. The best GAN
results in this study are achieved by the DijetGAN20 with the
implementation as delivered by the authors and the LSGAN25

with the recommended hyperparameters. The failure of the
standard VAE is accounted to the fact that the distributions of
encoded physical events in latent space is not a standard nor-
mal distribution. We find that the density information buffer
can circumvent this issue. To this end we perform a brief
parameter scan beyond dim z and B for the smudge factors α
and offsets γ. We also present the performance of the opti-
mized B-VAE. Additionally, we investigate whether
improvements to the density information buffer can be
achieved by performing a Kernel Density Estimation, creating a
Gaussian Mixture Model or learning the latent code density
with another VAE. Finally, we perform sanity checks with the
t�t dataset in “Sanity checks”, obtain benchmark performances
from traditional methods and test whether our proposed
method is trivial, i.e., whether it is only learning the identity
function.

Two-body decay toy model. The comparison of the generative
model performances for the toy model in Fig. 1a indicates that
the B-VAE with an adjusted prior, given in Eq. (17), is the best
investigated ML technique that is able to reliably model the px,
py, and pz distributions when compared to regular GANs and
VAEs with a standard normal prior, although these models still
give good approximations. We find that all models learn the
relativistic dispersion relation which underlines the findings
in26,27. It is noteworthy that for this data set, we only try regular
GANs with small capacities and find that they can already
model the distributions reasonably well. We confirm the find-
ings in20,21 that it is problematic for GANs to learn the uniform
distribution in ϕ. While it is one of the few deviations that

occur in20,21 circumvents the issue with ϕ by only learning Δϕ
between the two jets and manually sampling ϕj1 � Uð�π; πÞ. It
is questionable whether this technique can be generalized to
higher multiplicities.

e+e−! Z! l+l−. Figures 1 b and 2 show the results for the Z
events, where the Z boson decays leptonically. Here we find that
the B-VAE is able to accurately generate events that respect the
probability distribution of the physical events. We find very good
agreement between the B-VAE and physical events for distribu-
tions of pT, θ, and ϕ and good agreement for invariant mass Minv

of the lepton pair around 91 GeV. While the standard VAE fails
for the momentum conservation beside having a peak around 0,
the B-VAE is much closer to the true distribution. When dis-
playing ϕ, θ and the transverse momentum pT of lepton 1 against
lepton 2 (Fig. 2), we find good agreement for the B-VAE, while
the standard VAE results in a smeared out distribution. In
addition, it can be seen that the events generated by the standard
VAE are not always produced back to back but are heavily
smeared. We conclude that if we do not use density information
buffering, a standard VAE is not able to accurately generate
events that follow the Monte Carlo distributions. In particular,
events with four leptons are sometimes generated if no buffering
is used.

pp ! t�t ! 4 jetsþ1 or 2 leptons. Here we present and discuss
the results for the more complicated t�t production with a sub-
sequent semi-leptonic decay. We train the generative models on
events that have four jets and up to two leptons in the final state
such that their input and output dimension is 26. For simplicity
we do not discriminate between b-jets and light-flavored jets, nor
between different kinds of leptons. A jet is defined as a clustered
object that has a minimum transverse momentum (pT) of 20 GeV
in the Monte Carlo simulation. We first explore the hyperpara-
meter space of the B-VAE in dim z, B, α, γ, and recommend a best
practice for the creation of a generative model for physical events.
Subsequently we investigate various methods to learn the latent
code density of encoded ground truth data. Finally, we try to
create a generative model for physical events with several GAN
architectures.

Tables 1 and 2 show the top-15 performances of ðdim z;B; α; γÞ
combinations evaluated on the figures of merit defined in
“Figures of Merit”. For all possible combinations of dim z and
B as defined in “Generative Models” we have separately
investigated

γ ¼ f0:01; 0:05; 0:1g;
α ¼ f1; 5; 10g:

For the γ-study we fixed α= 1 and for the α-study we fixed
γ= 0. Tables 1 and 2 show the ranking in δ1D for the studies on γ
and α respectively.

It is not surprising that the best performance in δ1D is attained
by the B-VAE with the highest latent code dimensionality, the
lowest B and α= 1, γ= 0. The downside however is a very poor
performance in δOF. Comparing to the values for the 5% Gaussian
smearing of events in Table 3.

They are very similar in δ but even worse in δOF and thus,
this model provides no advantage over simple smearing without
using machine learning techniques: it essentially learns to
reproduce the training data. We observe similar patterns for the
ranking in δ: the models that perform best only provide a small
advantage. Other models do provide a bigger advantage but
there is a trade-off between performance in δ and δOF that can
in principle be weighted arbitrarily. By introducing the factor α
we smear the B-VAE events in latent space. Models with neither
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smearing nor an offset perform poorly in δOF, whereas models
with B > 10−5 perform poorly in δ. For illustrative purposes, we
proceed to show and discuss details for the model we consider
best: dim z ¼ 20;B ¼ 10�6; α ¼ 1; γ ¼ 0:05. Figure 3 shows the
comparison between B-VAE events and ground truth data in 29
one-dimensional histograms for this model:

● E, pT, η, and ϕ for all four jets and the leading lepton,
● MET and METϕ,
● Δϕ between MET and leading lepton,
● ΔR between leading and subleading jets and

● the invariant mass Minv for 2, 3, and 4 jets and 4 jets + 1 and
2 leptons.

Note that the training data and the density information buffer
consist of the same 105 samples that were used to generate 1.2 ×
106 events which are compared to 1.2 × 106 ground truth samples.
We observe that the ground truth and generated distributions
generally are in good agreement. For the invariant masses we
again observe deviations in the tail of the distribution. For MET,
METϕ, Δϕ, and ΔR we see almost perfect agreement.

Fig. 1 Histograms of two-body and leptonic Z decay. Events that are generated by a Monte Carlo generator (gray) and several machine learning models
for a toy two-body decay in a and the leptonic Z decay in b. Shown are histograms for the VAE with a standard normal prior (blue), the B-VAE with a
density information buffer (red) and by the GAN (green, only in a)).
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Fig. 2 2D Histograms for leptonic Z decay events. Events that are generated by the Monte Carlo generator for the e+e−→ Z→ l+l− process (gray points),
by the VAE with a standard normal prior (blue points) and by the B-VAE with a buffering of density information in the latent space (red points). The top
line shows the azimuthal angle ϕ for lepton 1 and 2. The middle line shows θ for lepton 1 and 2. The bottom line shows the pT of lepton 1 and 2 (in GeV).
The variance in the distribution of ϕ is an artifact of the simulation used to generate the data, not a statistical fluctuation.

Table 1 B-VAE performance with varying γ.

ðdim z;B; α; γÞ δ δOF
(20, 10−6, 1, 0.01) 0.0076 3.69
(20, 10−7, 1, 0.01) 0.0090 3.81
(20, 10−6, 1, 0.05) 0.0090 1.01
(16, 10−7, 1, 0.01) 0.0095 4.29
(16, 10−6, 1, 0.01) 0.0101 3.30
(16, 10−6, 1, 0.05) 0.0122 0.51
(16, 10−5, 1, 0.05) 0.0137 0.46
(24, 10−5, 1, 0.05) 0.0138 0.65
(16, 10−5, 1, 0.01) 0.0148 1.23
(20, 10−5, 1, 0.01) 0.0148 1.18
(24, 10−5, 1, 0.01) 0.0149 1.06
(28, 10−7, 1, 0.01) 0.0155 4.22
(24, 10−7, 1, 0.01) 0.0156 3.63
(24, 10−6, 1, 0.01) 0.0165 3.68
(28, 10−6, 1, 0.01) 0.0176 3.71

The combinations of dim z; B; α ¼ 1 and γ giving the top-15 performance w.r.t. δ with the
corresponding δOF.

Table 2 B-VAE performance with varying α.

ðdim z;B; α; γÞ δ δOF
(28, 10−7, 1, 0) 0.0066 94.00
(24, 10−7, 1, 0) 0.0074 97.92
(20, 10−6, 1, 0) 0.0075 17.48
(20, 10−7, 1, 0) 0.0084 106.64
(20, 10−7, 5, 0) 0.0088 5.67
(16, 10−7, 5, 0) 0.0093 7.96
(16, 10−7, 1, 0) 0.0094 133.48
(16, 10−6, 1, 0) 0.0102 14.02
(16, 10−7, 10, 0) 0.0102 2.05
(20, 10−7, 10, 0) 0.0112 1.65
(24, 10−7, 5, 0) 0.0144 4.55
(24, 10−6, 1, 0) 0.0156 15.45
(28, 10−6, 1, 0) 0.0162 13.52
(28, 10−7, 5, 0) 0.0166 4.60
(28, 10−6, 5, 0) 0.0189 0.68

The combinations of dim z; B; α and γ= 0 giving the top-15 performance w.r.t. δ with the
corresponding δOF.
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Generating 107t�t events with the VAE has taken 177.5 seconds
on an Intel i7-4790K and is therefore several orders of magnitude
faster than the traditional MC methods.

Figure 4 shows eight histograms of ϕ of the leading jet vs. ϕ of
the next to leading jet (ϕ1 vs ϕ2) that were created using the B-
VAE with dim z ¼ 20;B ¼ 10�6; α ¼ 1; γ ¼ 0:05. The left col-
umn shows the histogram for the full range [−π, π] × [−π, π]
whereas the right column shows the same histogram zoomed in
on [2, 3] × [2, 3]. The first row displays the training data
consisting of 105 events. The second and third row of Fig. 4 show
1.2 × 106 ground truth and B-VAE events respectively allowing
for a comparison of how well the B-VAE generalizes considering
it was trained on only 105 events. The amount of empty bins
(holes) present for the ground truth and B-VAE events is very
similar. Also, the general features of the generated distribution are
in very good agreement with the ground truth. However, one can
spot two shortcomings:

● the presented model smears the detector granularity that is
visible in ϕ due to the γ parameter which would be learned for
α= 1 and γ= 0 and

● generator artifacts appear around (±π, 0) and (0, ±π). For E,
pT, and η we observe larger deviations in the tails of the
distributions while for ϕ we only observe slightly more events
produced around ±π.

The first effect is most likely due to the γ parameter and the
second effect was already expected from the deviations in the one-
dimensional azimuthal distributions around ±π.

Figure 5 shows how the fraction of empty bins evolves with
respect to the number of bins in 2D histograms of ηj1 vs. ηj2 and
ϕj1 vs. ϕj2 for several models including the ground truth. One can
see that our chosen model, whose performance was presented in
Figs. 3 and 4, also accurately follows the fraction of empty bins of
the Monte Carlo data.

As discussed in “Latent code density estimation” we compare
four different methods for constructing a prior for the generative
model. We compare a KDE, three GMMs, and several S-VAEs
to the explicit latent code density of encoded ground truth
data. To demonstrate this we choose the same B-VAE model as
in the preceding paragraph: (20, 10−6, 1, 0.05). Figure 6 shows
histograms of all 20 latent code dimensions coming from
the different approaches. We observe that all dimensions are
generally modeled well by all approaches, except for the S-VAEs
with extreme values of B. This is an expected result since the
encoder qϕ(z∣x) transforms the input into multivariate Gaussians
for which a density estimation is much easier than for such non-
Gaussian densities present in physical events.

Table 4 shows the performance of the different approaches. It
is remarkable that the KDE and GMM models of the prior p(z)
provide such good performance in δ, especially the GMM with
1000 components. A drawback for all of the models that try
to learn the latent code density is that the resulting performance

in δ and δOF is very poor when compared to the explicit use of the
density information buffer.

We compare several state of the art GAN architectures in
Table 5.

Table 5 shows the evaluation of the GAN models on our figures
of merit. However, we find that no GAN architecture we tried is
able to provide a satisfactory performance with respect to δ and
that all of the tried architectures perform worse than traditional
methods such as KDE and GMM except for the LSGAN. The best
GAN we find is the LSGAN that, in contrast to all GANs we try
otherwise, outperforms all traditional and several B-VAE models
with respect to δOF. Figure 7 shows the loss curves for the GAN
architectures that are also shown in Table 5 and the B-VAE.

Considering the GAN literature, the results found are not
surprising; the authors in20,21 report difficulties when trying to
learn ϕ. Several other papers report that it is very difficult or
technically unfeasible to learn densities with GANs28–31. Some of
these papers even show that the regular GAN and the WGAN can
even fail to learn a combination of 2D Gaussians and that they are
not suited to evaluate densities by design31.

Note that all the GAN models we have tried here were trained
using the hyperparameters that were recommended in the
corresponding papers. However, each of these models is
accompanied by large hyperparameter spaces that impact the
performance of the generator. The poor performance we find for
most GAN models, therefore, does not imply that GANs are ruled
out as potential generative models.

Sanity checks. We perform two sanity checks: (1) we show that two
traditional density learning algorithms, Kernel Density Estimation
and Gaussian Mixture Models, do not work well when applied
directly on the events. (2) we check whether the VAE learns the
identity function. Both checks are performed on the t�t data.

We perform a KDE with an initial grid-search as described in
“Latent Code Density Estimation” to find the optimal bandwidth
on a reduced data set with 104 samples and then perform a KDE
with hopt on 105 samples. Additionally, we create a GMM of those
105 samples with 50, 100, and 1000 components with a maximum
of 500 iterations. Subsequently, we generate 1.2 × 106 samples
from the KDE and the three GMM models and evaluate them
with our figures of merit δ and δOF as presented in Table 3. In
addition we take 105 events and smear them by sampling from a
Gaussian around these events. To this end, we pre-process them
in the same way as above and multiply every dimension of every
event with N 1; σ2 ¼ f0:05; 0:1g� �

and sample 12 times per event.
Table 3 generally shows poor performance of all models,
especially for δOF. Only the smearing shows good performance
for δ This procedure however does not respect the correlations in
the data and therefore also performs poorly for δOF.

When dim z is greater than or equal to the number of
dimensions of the training data, it becomes questionable whether
a VAE is merely learning the identity function, i.e., whether

pθð~xijzðxiÞÞ ¼ δðx � xiÞ: ð1Þ

Since qϕ(z∣xi) always had non-zero variance, no delta functions
occur practically. However, one can notice a bias in some
variables when feeding random uniform noise xtest ~U(0, 1) into
the VAE. This is no surprise since the encoder and decoder are
constructed to learn a function that can reconstruct the input. In
Fig. 8 we show the reconstructions for the 26-dimensional t�t
events of a VAE with a 20-dimensional latent space and B= 10−6

and the reconstructions of the same VAE for xtest ~U(0, 1), where
we clearly see that the VAE does not simply learn the identity
function. The parameters α, B, γ, and dim z allow one to tune how
the B-VAE generalizes.

Table 3 Performance of KDE, GMM and Smearing of events
Evaluation of event modeling on figures of merit δ and δOF.

Model δ δOF
KDE 0.6038 4.99
GMM, 50 0.1078 16.33
GMM, 100 0.0948 20.43
GMM, 1000 0.0874 12.09
5% Smearing 0.0093 3.53
10% Smearing 0.0192 3.89
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Discussion
We have found that the B-VAE as a deep generative model can be a
good generator of collision data. In this section, we discuss several
further applications of this work such as anomaly detection and

improved MC integration. We demonstrate the option of how one
can utilize the B-VAE to steer the event generation.

To steer the event generation we need to find out which regions
in latent space correspond to which events generated by the

Fig. 3 1D Histograms of the distributions. Distributions for the ground truth (gray) and samples generated by the B-VAE with dim z ¼ 20; B ¼ 10�6; α ¼ 1
and γ= 0.05 (red).
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decoder, i.e., we want to find a mapping from relevant latent
space volumes to phase space volumes. To this end, we perform a
principal component analysis of the latent space representation of
physical events. The PCA is an orthogonal transformation of the
data that defines new axes such that the first component accounts
for most of the variance in the dataset. We look at the first two
principal components, sample a grid in these components and
apply the inverse PCA transformation to get back to a latent
space representation. We choose 64 points in latent space that
were picked after finding that physical events in PCA space are
distributed on an approximately circular area. Because of that
finding we created an equidistant 8 × 8 grid in polar coordinates r
and ϕ. The grid in PCA space is then transformed back to a latent
space representation and used as input for the decoder to gen-
erate events that are being displayed in Fig. 9. The 64 chosen
points on a polar grid correspond to the events in Fig. 9. This is
effectively a two-dimensional PCA map of latent space. Observing
the event displays reveals that we are in fact able to capture where
we find events with what number of jets and leptons, what order
of MET and what kind of orientations. In case one wants to
produce events that e.g., look like event 62, one can do this by
sampling around r= 3.5 and ϕ= 225∘ in PCA space, then

transform these events back to a latent space representation and
to use that as input for the decoder. This will offer the possibility
to narrow down the characteristics of the events even further and
many iterations of this procedure will finally allow the generation
of events with arbitrarily precise characteristics. Alternatively, one
could create a classifier that defines boundaries of a latent space
volume and corresponds to the desired phase space volume.

Having found that the B-VAE can be used to sample highly
complex probability distributions, one possible application may
be to provide a very efficient method for the phase space inte-
gration of multi-leg matrix elements. Recent work has shown that
machine learning approaches to Monte Carlo integration of
multidimensional probability distributions32 and phase space
integration of matrix elements33 may be able to obtain much
better rejection efficiency than the current widely used methods8.
We point out that event weights can be obtained from the B-VAE
in similar fashion to the above papers.

The reconstruction of noise and test events in Fig. 8 clearly
shows that t�t events beyond the training data are (a) embedded
well in latent space and (b) reconstructed very well when com-
pared to the reconstruction of noise. This suggests that one can
use the (relative) reconstruction loss histograms or the (relative)

Fig. 4 2D Histograms of t
--
t events for ϕj1

vs. ϕj2
. The first row shows the training data of the B-VAEs: 105 ground truth events. The second row shows

1.2 × 106 ground truth events. The third row shows 1.2 × 106 events created by the B-VAE with dim z ¼ 20; B ¼ 10�6; α ¼ 1; γ ¼ 0:05. The fourth row
shows 107 events generated by the same B-VAE, i.e., the data it generates is 100 times larger than the data it was trained on. In a events are showed for the
full range of ðϕj1 ; ϕj2 Þ: [−π, π] × [−π, π] while in b a zoom on (ϕ1, ϕ2)∈ [2, 3] × [2, 3] is done. The full range is subdivided into 1000 × 1000 bins.
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reconstruction losses to detect anomalies, i.e., departures from the
training data in terms of single events or their frequency of
occurrence. The obvious use case of this is to train a B-VAE on a
mixture of standard model events to detect anomalies in
experimental data that correspond to new physics similarly to34.
The B-VAE makes it possible to increase the ability to reconstruct
the training and test data compared to a normal VAE, so it may
be a better anomaly detector.

We have provided more evidence for the capability of deep
generative models to learn physical processes. To compare the
performance of all of the investigated models, we have intro-
duced two figures of merit, δ and δOF. In particular, we describe
and optimize a method for this task: the B-VAE. Several GAN
architectures with recommended hyperparameters and the VAE
with a standard normal prior fail to correctly produce events
with the right frequency of occurrence. By creating a density
information buffer with encoded ground truth data we pre-
sented a way to generate events whose probabilistic character-
istics are in very good agreement with those found in the
ground truth data. We identified the relevant hyperparameters
of the B-VAE that allow for the optimization of its general-
ization properties and performed a first exploration of that
hyperparameter space. We find that the dimensionality of the
latent space should be smaller than, but close to, the input
dimension. We find that it is necessary to heavily weight the
reconstruction loss to create an accurate generative model and
to tune the underestimated variance of the latent code. We have
tested several traditional density estimation methods to learn
the latent code density of encoded ground truth data, and
concluded that the explicit use of the density information buffer
with the parameters α and γ performs better. In a final step, we
have investigated several GAN architectures with default

hyperparameters but failed to create a model that successfully
generates physical events with the right densities. Improve-
ments could be made by performing a stricter model selection
and to sweep through the full hyperparameter space beyond the
hyperparameter recommendations given in the corresponding
GAN papers. More generally, the GAN training procedure may
be improved because the simultaneous gradient ascent that is
currently used to find local Nash equilibria of the two-player
game has issues that may be overcome by other objectives like
the consensus optimization28 or by approaches such as the
generative adversarial density estimator31.

By performing a principal component analysis of the latent
space representations of MC events and a subsequent exploration
of the corresponding PCA space we introduced an option to steer
the event generation. In “Results” we demonstrate that the sta-
tistics generalize to some degree. In future work it will be
necessary to identify to which degree the implicit interpolation of
the density pθ(x) generalizes beyond the observed ground truth -
and to maximize it. Another missing piece to complete the puzzle,
is to find which generative models can describe processes that
contain both events with very high and low multiplicities with up
to twenty or more final state objects. Independent of what the
outcome will be, potential improvements to all presented tech-
niques can be made by incorporating auxiliary features as in18,21.
Furthermore, improvements can be made by adding regression
terms to the loss function that penalize deviations from the
desired distributions in the generated data as in21 and by utilizing
classification terms that force the number of objects and the
corresponding object type to be correct. Another promising class
of methods to create generative models are flow-based
models35–37 and a thorough comparison of all available meth-
ods would be useful.

Fig. 5 δOF for several models and Monte Carlo data. a and b show the fraction of empty bins fe plotted versus
ffiffiffiffiffiffiffiffiffiffi
Nbins

p
for 1.1 million events from the Monte

Carlo data and several models. c shows the reality and expectation for δ and δOF for the Monte Carlo data up until 6 × 105 events in steps of 5 × 104.
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All in all, the results of this investigation indicate usefulness of
the hereby proposed method not only for particle physics but for
all branches of science that involve computationally expensive
Monte Carlo simulations, that have the interest to create a

Fig. 6 Histograms for all latent space dimensions for several models and the ground truth. The use models are Kernel Density Estimation, Gaussian
Mixture Models and Staged Variational Autoencoders. The ground truth itself is an approximation extracted from latent codes given the encoding of 105

MC events by a VAE with dim z ¼ 20 and B= 10−6.

Table 4 Performance with Latent Space Models.

Model δ δOF
KDE 0.2631 7.30
GMM, 50 0.0297 11.54
GMM, 100 0.0266 12.70
GMM, 1000 0.0302 7.64
S-VAE, B= 1 1.4452 840.60
S-VAE, B= 0.1 1.1438 756.56
S-VAE, B= 0.01 0.0689 12.73
S-VAE, B= 10−3 0.0438 3.36
S-VAE, B= 10−4 0.0992 9.26
S-VAE, B= 10−5 0.3179 12.33
S-VAE, B= 10−6 0.8753 238.33

δ and δOF of the B-VAE with different latent space density estimation techniques.

Table 5 GAN Performance.

GAN model δ δOF
DijetGAN 0.3477 19.70
LSGAN 0.3592 3.03
MMD-GAN 0.9454 642.20
WGAN-GP 1.1605 723.79
WGAN 1.0672 840.63

δ and δOF for several GAN architectures.
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Fig. 7 Training loss as a function of training step. The WGAN + MBD, WGAN + MBD + MMD and LSGAN loss behaves chaotically (gray dots), so a
moving average as plotted as well to show the average behavior over time. The window size of the moving average is specified in the legend.

Fig. 8 Input vs. reconstruction. First four columns of uniform noise x ~ U(0, 1) and last four columns of real events for a VAE with dim z ¼ 20 and B= 10−6.
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generative model from experimental data, or that have the need
to sample from high-dimensional and complex distributions.

Methods
Monte Carlo Data. We study the generation of physical events using three
different sets of generated events: 1. a simple toy-model, 2. Z-boson production in
e+e− collisions and 3. top quark production and decay in proton collisions, i.e.,
pp ! t�t. Here, we describe the procedures for obtaining the data sets.

10-dimensional toy model. For the toy model we assume a stationary particle with
mass M decaying into two particles with masses m1 and m2 and calculate their
momentum 4-vectors by sampling m1, m2, θ, and ϕ from uniform distributions 106

times. θ and ϕ are the polar and azimuthal angle of the direction into which particle
1 travels:

θ ¼ arccos
pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y þ p2z
q ; ϕ ¼ arctan

py
px

: ð2Þ

These angles and momentum conservation fix the direction of particle 2. The
quantities of the model that are used as training data for the generative models are

the energies E1, E2 of the daughter particles, the phase space components px, py, pz
for each particle and their masses m1 and m2. This introduces a degeneracy with
the goal of checking whether the generative models learn the relativistic dispersion
relations

E2 � p2 �m2 ¼ 0: ð3Þ
16-dimensional e+e− → Z → l+l−. We generate 106 events of the e+e−→ Z→ l+l−

(l≡ e, μ) process at matrix element level with a center-of-mass energy of 91 GeV
using MG5_aMC@NLO v6.3.21. The four-momenta of the produced leptons are
extracted from the events given in LHEF format38, and are directly used as input
data for the generative models. The dimensionality of the input and output data is
therefore 16: (Ee� ; px;e� ; py;e� ; pz;e� ; Eeþ ; px;eþ ; py;eþ ; pz;eþ ;Eμ� ; px;μ� ; py;μ� ; pz;μ� ; Eμþ ;

px;μþ ; py;μþ ; pz;μþ ) and will always contain eight zeros, since the events consist of
e+e− or μ+μ−.

26-dimensional pp ! t�t. We generate 1.2 × 106 events of pp ! t�t, where at least
one of the top-quarks is required to decay leptonically. We used MG5_aMC@NLO
v6.3.21 for the matrix element generation, using the NNPDF PDF set39. Madgraph
is interfaced to Pythia 8.22, which handles showering and hadronization. The
matching with the parton shower is done using the MLM merging prescription40.

Fig. 9 Visualization of the first two components of a principal component analysis of encoded Monte Carlo events in latent space. This shows the
events created from a 8 × 8 polar grid in PCA space. These 64 points chosen in PCA space are transformed to a latent space representation and fed into
the decoder. The output of the decoder is then visualized: blue arrows indicate jets, red arrows indicate leptons and the green arrow indicates the missing
energy vector. The thickness of the arrow corresponds to the relative energy of the 4-vector to the other 4-vectors in the same event. The latent space grid
is set up in (r, ϕ) coordinates, where steps of 3.4/7 are taken in r with an initial r= 0.1, increasing from top to bottom, and steps of 45∘ are taken in ϕ,
increasing from left to right.
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Finally, a quick detector simulation is done with Delphes 33,41, using the ATLAS
detector card. For all final state objects we use (E, pT, η, ϕ) as training data and also
include MET and METϕ. We have five or six objects in the final state, four jets, and
one or two leptons, i.e., our generative models have a 26 dimensional input and
output, while those with only one lepton contain four zeros at the position of the
second lepton.

Deep learning methods. This section summarizes the methodology used to
investigate deep and traditional generative models to produce a realistic collection
of events from a physical process. We present the generative techniques we have
applied to the data sets, GANs and VAEs, with a focus on our technique: an explicit
probabilistic model, the B-VAE, which is a method combining a density infor-
mation buffer with a variant of the VAE. Subsequently, we discuss several tradi-
tional methods to learn the latent code densities and finally, we present figures of
merit to assess the performance of the generative models.

Generative models. In this section, we give a brief description of GANs and a
thorough description of our B-VAE technique. For the latter, we provide the details
of the corresponding architecture as well as hyperparameters and training proce-
dures, and also show how the density information buffer is created and how it is
utilized to generate events. The GANs and VAEs are trained on an Nvidia Geforce
GTX 970 and a Tesla K40m GPU using tensorflow-gpu 1.14.042, Keras 2.2.543, and
cuDNN 7.6.144.

Generative Adversarial Networks. GANs learn to generate samples from a data
distribution by searching for the global Nash equilibrium in a two-player game.
The two players are neural networks: one that tries to generate samples that
convince the other, a discriminator that tries to distinguish real from fake data.
There are many possibilities to realize this, accompanied by large hyperparameter
spaces. We try to create event generators with several recent GAN architectures:

● the regular Jensen-Shannon GAN13 that was only applied to the first toy
model dataset,

● several more recent GAN architectures that have been applied to the t�t dataset:
Wasserstein GAN (WGAN)45, WGAN with Gradient Penalty (WGAN-GP)46,
Least Squares GAN (LSGAN)25, Maximum Mean Discrepancy GAN
(MMDGAN)47.

We use the recommended hyperparameters from the corresponding papers.
Note here that an extensive hyperparameter scan may yield GANs that perform
better than those reported in this paper. The performance of the GAN models we
present serves as baselines.

Explicit probabilistic models. Consider that our data, N particle physics events

X ¼ fxigNi¼1, are the result of a stochastic process and that this process is not known
exactly. It depends on some hidden variables called latent code z. With this in mind
one may think of event generation as a two-step process: (1) sampling from a
parameterized prior pθ(z) (2) sampling xi from the conditional distribution pθ(xi∣z),
representing the likelihood. For deep neural networks the marginal likelihood

pθðxÞ ¼
Z

pθðzÞpθðxjzÞdz ð4Þ

is often intractable. Learning the hidden stochastic process that creates physical
events from simulated or experimental data requires us to have access to an effi-
cient approximation of the parameters θ. To solve this issue an approximation to
the intractable true posterior pθ(z∣x) is created: a probabilistic encoder qϕ(z∣x).
Given a data point xi it will produce a distribution over the latent code z from
which the data point might have been generated. Similarly, a probabilistic decoder
pθ(x∣z) is introduced that produces a distribution over possible events xi given
some latent code z. In this approach, the encoder and decoder are deep neural
networks whose parameters ϕ and θ are learned jointly.

The marginal likelihood

log pθðx1; ¼ ; xN Þ ¼ ∑
N

i¼1
log pθðxiÞ ð5Þ

can be written as a sum of the likelihood of individual data points. Using that

log pðxiÞ ¼ logEpðzjxiÞ
pðxi; zÞ
pðzjxiÞ

� �
ð6Þ

and applying Jensen’s inequality, one finds that

log pðxiÞ≥EpðzjxiÞ log
pðxi; zÞ
pðzjxiÞ

� �
: ð7Þ

For this situation, one must substitute p(z∣xi)→ qϕ(z∣xi) since we don’t know
the true posterior but have the approximating encoder qϕ(z∣xi). From here one can
derive the variational lower bound Lðθ; ϕ; xiÞ and find that

log pθðxiÞ ¼ DKLðqϕðzjxiÞ k pθðzjxiÞÞ þ Lðθ; ϕ; xiÞ: ð8Þ

DKL measures the distance between the approximate and the true posterior and
since DKL ≥ 0, Lðθ;ϕ; xiÞ is called the variational lower bound of the marginal
likelihood

Lðθ; ϕ; xÞ ¼EqϕðzjxÞ �log qϕðzjxÞ þ log pθðx; zÞ
h i

¼ � DKLðqϕðzjxÞ k pθðzÞÞ
þEqϕ ðzjxÞ log pθðxjzÞ

� ��
:

ð9Þ

We optimize Lðθ; ϕ; xiÞ with respect to its variational and generative parameters
ϕ and θ.

Variational Autoencoder. Using the Auto-Encoding Variational Bayes Algorithm22

(AEVB) a practical estimator of the lower bound is maximized: for a fixed qϕ(z∣x)
one reparametrizes ẑ � qϕðzjxÞ using a differentiable transformation gϕðϵ; xÞ; ϵ �
N ð0; 1Þ with an auxiliary noise variable ϵ. Choosing z � pðzjxÞ ¼ N ðμ; σ2Þ with a
diagonal covariance structure, such that

log qϕðzjxÞ ¼ logN ðz; μ; σ21Þ ð10Þ
where μ and σ2 are outputs of the encoding deep neural network. Reparametrizing
z= μ+ σ⊙ ϵ yields the Variational Autoencoder (VAE)22. In that case the first
term in Eq. (9) can be calculated analytically:

�DKLðqϕðzjxÞ k pθðzÞÞ ¼
1
2

∑
dim z

j¼1
1þ log ðσ2j Þ � μ2j � σ2j : ð11Þ

The second term in Eq. (9) corresponds to the negative reconstruction error
that, summed over a batch of samples, is proportional to the mean squared error
(MSE) between the input xi and its reconstruction given the probabilistic
encoder and decoder. The authors in22 state that for batch-sizes M > 100 it is
sufficient to sample ϵ once which is adopted in our implementation. By
calculating the lower bound for a batch of M samples XM ⊂ X they construct the
estimator of L:

Lðθ; ϕ;XÞ ’ LMðθ; ϕ;XM Þ ¼ N
M

∑
M

i¼1

~Lðθ;ϕ; xiÞ; ð12Þ

where

~Lðθ; ϕ; xiÞ ¼ � DKLðqϕðzjxiÞ k pθðzÞÞ
þ log ðpθðxijgϕðϵi; xiÞÞÞ:

ð13Þ

We use the gradients ∇θ;ϕLMðθ; ϕ;XM ; ϵÞ for the SWATS optimization
procedure48, beginning the training with the Adam optimizer49 and switching to
stochastic gradient descent. Practically, the maximization of the lower bound is
turned into the minimization of the positive DKL and the MSE such that the loss
function of the VAE L∝DKL+MSE. In our approach, we introduce a
multiplicative factor B for DKL to tune the relative importance of both terms. The
authors in50 introduce a similar factor β, but their goal is to disentangle the latent
code by choosing β > 1 such that each dimension is more closely related to features
of the output. In contrast, we choose B≪ 1 to emphasize a good reconstruction.
The loss function of the VAE can subsequently be written as

L ¼ 1
M

∑
M

i¼1
ð1� BÞ � MSEþ B � DKL: ð14Þ

This however also implies that DKL(qϕ(z∣x)∥pθ(z)) is less important, i.e., there is
a much smaller penalty when the latent code distribution deviates from a standard
Gaussian. This incentivizes narrower Gaussians because the mean squared error for
a single event reconstruction grows as the sampling of the Gaussians in latent space
occur further from the mean. Note that for B= 0 one obtains the same loss
function as for a standard autoencoder51: the reconstruction error between input
and output. Although the standard deviations will be small, the VAE will still
maintain its explicit probabilistic character because it contains probabilistic nodes
whose outputs are taken to be the mean and logarithmic variance, while the
standard autoencoder does not.

The encoders and the decoders of our VAEs have the same architectures
consisting of four (toy model and Z→ l+l−) or six hidden layers (pp ! t�t) with
128 neurons each and shortcut connections between every other layer52,53. We
choose B= 3 ⋅ 10−6 for the toy model and Z→ l+l−. The number of latent space
dimensions is nine for the toy model and 10 for Z→ l+l−. For the toy model we
use a simple training procedure using the Adam optimizer with default values for
100 epochs. For Z→ l+l− we employ a learning rate scheduling for 7 × 80 epochs
and SWATS48, i.e., switching from Adam to SGD during training.

For pp ! t�t we perform a scan over hyperparameters with

dim z ¼ f16; 20; 24; 28g;
B ¼ f10�7; 10�6; 10�5; 10�4g;

We perform this scan on a small training data set with 105 samples. We use a batch
size of 1024 and the exponential linear unit54 as the activation function of hidden
layers. The output layer of the decoder is a hyperbolic tangent such that we need to
pre- and postprocess the input and output of the VAE. We do this by dividing each
dimension of the input by the maximum of absolute values found in the training
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data. We apply this pre- and post-processing in all cases. We initialize the hidden
layers following a normal distribution with mean 0 and a variance of (1.55/128)0.5

such that the variance of the initial weights is approximately equal to the variance
after applying the activation function on the weights54. For pp ! t�t the setup is
identical except for the number of epochs: we train 4 × 240 epochs with Adam and
then for 4 × 120 epochs with SGD. Due to the increasing complexity of the data sets
we perform more thorough training procedures.

Latent Code Density Estimation. In the case of VAEs the prior pðzÞ ¼ N ð0; 1Þ
used to sample pθ(x∣z) is not identical to the distribution over the latent code
z resulting from the encoding of true observations qϕ(z∣X). The generated
distribution over x given pθ(x∣z) therefore doesn’t match the reference
when assuming a unit Gaussian over z. We address this issue by estimating the
prior p(z) for the probabilistic decoder from data using a strategy similar to
the Empirical Bayes method55. We collect observations Z= {z1,…, zm} by
sampling qϕ(z∣XL) where XL ⊂ X is a subset of physical events. Z is then used as
the data for another density estimation to create a generative model for p(z):
this is what we call the density information buffer. This buffer is used in
several ways to construct p(z): we apply Kernel Density Estimation56, Gaussian
Mixture Models using the expectation-maximization algorithm57, train a
staged VAE58 and directly use the density information buffer. Note that the
Kernel Density Estimation and the Gaussian Mixture Models are also used in
another context, namely in the attempt to construct such a traditional gen-
erative model that is optimized on physical events instead of the latent code as
suggested here.

Kernel Density Estimation. Given N samples from an unknown density p the kernel
density estimator (KDE) p̂ for a point y is constructed via

p̂ðyÞ ¼ ∑
N

i¼1
K

y � xi
h

	 

ð15Þ

where the bandwidth h is a smoothing parameter that controls the trade-off
between bias and variance. Our experiments make use of N= {104, 105}, a Gaussian
kernel

Kðx; hÞ / exp � x2

2h2

� �
; ð16Þ

and have optimized h. We use the KDE implementation of scikit-learn59 that offers
a simple way to use the KDE as a generative model and optimize the bandwidth h
using GridSearchCV and a fivefold cross validation for 20 samples for h distributed
uniformly on a log-scale between 0.1 and 10.

Gaussian Mixture Models. Since the VAE also minimizes DKLðqϕðzjxÞ k N ð0; 1ÞÞ
it’s incentivized that even with low values of β the latent code density qϕ(z∣XL) is
similar to a Gaussian. It therefore appears promising that a probabilistic model that
assumes a finite set of Gaussians with unknown parameters can model the latent
code density very well. We use the Gaussian Mixture Model as implemented in
scikit-learn, choosing the number of components to be {50, 100, 1000} with the full
covariance matrix and 105 encodings zi∈ Z.

Two-stage VAE. The idea of the two-stage VAE (S-VAE) is to create another
probabilistic decoder pηðzjz0Þ from latent code observations Z that is sampled using
pðz0Þ ¼ N ð0; 1Þ58. We use a lower neural capacity for this VAE with three hidden
layers with 64 neurons each without shortcut connections for each neural network,
and use B= {10−6, 10−5,…, 1}. We slightly modify the loss function from Eq. (14)
and remove the (1− B) in front of the MSE term because we want to test higher
values of B of up to B= 1 and do not want to completely neglect the MSE. Every
other hyperparameter including the training procedure is identical to those in the
VAE for pp ! t�t. It is straightforward to expand this even further and also apply
KDE, or create a density information buffer from the latent codes z0 to then sample
pηðzjz0Þ with the data-driven prior.

Density Information Buffer. Another way to take care of the mismatch between p(z)
and qϕ(z) is to explicitly construct a prior pϕ;XL

ðzÞ by aggregating (a subset of) the
encodings of the training data:

pϕ;XL
ðzÞ ¼ ∑

m

i¼1
qϕðzjxiÞpðxiÞwith pðxiÞ ¼

1
m
: ð17Þ

Practically this is done by saving all μi and σ2,i for all m events in XL to a file,
constituting the buffer. The advantage of this procedure is that the correlations
are explicitly conserved by construction for the density information buffer while
the KDE, GMM, and the staged VAE may only learn an approximation of the
correlations in z ~ qϕ(z∣XL). A disadvantage of this approach is that the resulting
density is biased towards the training data, in the sense that the aggregated prior
is conditioned on true observations of the latent code for the training data and
has a very low variance when B in Eq. (14) is small. One can interpret this as
overfitting to the data with respect to the learned density. To counter this effect,
we introduce a smudge factor α such that we sample zi � N ðμi; ασ2;iÞ 8 xi 2 XL.
In our experiments we investigate α= {1, 5, 10} and only apply α if σ < σT= 0.05,

such that

zi � N ðμi; ασ2;iÞ if σ < σT
N ðμi; σ2;iÞ else



; ð18Þ

with μi and σ2,i being the Gaussian parameters in latent space corresponding to
events i= 1,…,m in XL. It is straightforward to expand this approach to have
more freedom in α, e.g., by optimizing ðαjÞdim z

j¼1
, a smudge factor for each latent

code dimension. One can include more hyperparameters that can be optimized
with respect to figures of merit. By introducing a learnable offset γj for the
standard deviation such that

zi
� �dim z

j¼1 � N μij; αjσ
2;i
j þ γj

	 
	 
dim z

j¼1
; ð19Þ

we have 2 � dim z additional hyperparameters. More generally we can try to learn
a vector-valued function γ(ρ(z)) that determines the offset depending on the
local point density in latent space. While all of these approaches may allow a
generative model to be optimized, it introduces a trade-off by requiring an
additional optimization step that increases in complexity with increasing degrees
of freedom. In our experiments we only require γ= γj= {0.01, 0.05, 0.1} to be the
minimal standard deviation, such that

zi
� �dim z

j¼1 � N μij; σ
2;i
j þ γ

	 
	 
dim z

j¼1
: ð20Þ

Figures of merit. Having discussed a number of candidate generative models, we
now define a method of ranking these models based on their ability to reproduce
the densities encoded in the training data. While work that was done so far pre-
dominantly relies on χ2 between observable distributions and pair-wise
correlations20,21, we aim to capture the generative performance more generally.
Starting from a total of 1.2 × 106 Monte Carlo samples, 105 of those samples are
used as training data for the generative models. We then produce sets of 1.2 × 106

events with every model and compare to the Monte Carlo data.
The comparison is carried out by first defining a number of commonly used

phenomenological observables. They are the MET, METϕ, and E, pT, η, and ϕ of all
particles, the two-, three- and four jet, four jet plus one and two lepton mass, the
angular distance between the leading and subleading jet

ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕÞ2 þ ðΔηÞ2

q
ð21Þ

and the azimuthal distance between the leading lepton and the MET. An object is
considered to be leading if it has the highest energy in its object class. All possible
2D histograms of these 33 observables are then set up for all models, and are
compared with those of the Monte Carlo data. We create 2D histograms with
N2D,bins= 252. We then define

δ ¼ 1
Nhist

∑
i
∑
j<i
χ2ij ð22Þ

with i and j summing over observables and Nhist= 528 which represent averages
over all histograms of the test statistic

χ2 ¼ ∑
Nbins

u¼1

pu � pMC
u

� �2
pu þ pMC

u

ð23Þ

where pu and pMC
u are the normalized bin contents of bins u60. We have verified

that the Kullback–Leibler divergence and the Wasserstein distance lead to identical
conclusions. This figure of merit is set up to measure correlated performance in
bivariate distributions.

A second figure of merit is included with the goal of measuring the rate of
overfitting on the training data. If any amount of overfitting occurs, the
generative model is expected to not properly populate regions of phase space
that are uncovered by the training data. However, given a large enough set of
training data, these regions may be small and hard to identify. To test for such a
phenomenon, we produce 2D histograms in ηj1 vs. ηj2 , ηi ∈ [−2.5, 2.5] with a
variable number of bins Nbins and measure the fraction of empty bins
f e

ffiffiffiffiffiffiffiffiffiffi
Nbins

p� �
. As Nbins is increased, the histogram granularity probes the rate of

overfitting in increasingly smaller regions of the phase space. The function
f e

ffiffiffiffiffiffiffiffiffiffi
Nbins

p� �
also depends on the underlying probability distribution, and is thus

only meaningful in comparison to the Monte Carlo equivalent fMC
e

ffiffiffiffiffiffiffiffiffiffi
Nbins

p� �
.

We, therefore, compute the figure of merit as

δOF ¼
Z 1000

0
d

ffiffiffiffiffiffiffiffiffiffi
Nbins

p
f e

ffiffiffiffiffiffiffiffiffiffi
Nbins

p� �� fMC
e

ffiffiffiffiffiffiffiffiffiffi
Nbins

p� ��� ��: ð24Þ

After searching the best model with respect to ηj1 vs. ηj2 , we independently
check its behavior in δOFðϕj1 ; ϕj2 Þ. The performance, indicated by both figures of
merit, is better the lower the value is.

We derive our expectations for the values of δ and δOF for 1.2 × 106 events by
evaluating these figures of merit on MC vs. MC data. Since we only have 1.2 million
events in total, we can only evaluate the figures of merit for up to 6 × 105 events and
then extrapolate as shown in Fig. ??. We expect that an ideal generator has δ ≈
0.0003 and δOF ≈ 0.5 for 1.2 × 106 events. For δ, this value is obtained by fitting the
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parameters A, B, C,D to the empirically motivated function

δðN;A;B;C;DÞ ¼ A
log ðBN þ CÞ þ D ð25Þ

for values of δ obtained by evaluating the MC dataset with N= {50,000, 100,000,
…, 600,000} and extrapolating to N= 120,0000 using the curve_fit function in
scipy. The expected δOF is assumed to be roughly flat around 0.5. We select our best
model by requiring δOF≾ 1 while minimizing δ.

Data availability
The t�t dataset that was used to obtain the results in “Sanity checks” and
“pp ! t�t ! 4 jetsþ1 or 2 leptons” is available under the https://doi.org/10.5281/
zenodo.3560661, https://zenodo.org/record/3560661#.XeaiVehKiUk. All other data that
were used to train or that were generated with one of the trained generative models are
available from the corresponding author upon request.

Code availability
The custom code that was created during the work that led to the main results of this
article is published in a public GitHub repository: https://github.com/SydneyOtten/
DeepEvents.
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