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Distinct place cell dynamics in CA1 and CA3
encode experience in new environments
Can Dong 1, Antoine D. Madar1 & Mark E. J. Sheffield 1✉

When exploring new environments animals form spatial memories that are updated with

experience and retrieved upon re-exposure to the same environment. The hippocampus is

thought to support these memory processes, but how this is achieved by different subnet-

works such as CA1 and CA3 remains unclear. To understand how hippocampal spatial

representations emerge and evolve during familiarization, we performed 2-photon calcium

imaging in mice running in new virtual environments and compared the trial-to-trial dynamics

of place cells in CA1 and CA3 over days. We find that place fields in CA1 emerge rapidly but

tend to shift backwards from trial-to-trial and remap upon re-exposure to the environment a

day later. In contrast, place fields in CA3 emerge gradually but show more stable trial-to-trial

and day-to-day dynamics. These results reflect different roles in CA1 and CA3 in spatial

memory processing during familiarization to new environments and constrain the potential

mechanisms that support them.
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The hippocampus has a critical role in episodic memory
by rapidly forming, updating, and retrieving patterns
of activity that represent specific memories1,2. The

CA1 subnetwork is considered the main output of the hippo-
campus that transmits information to the cortex and other
regions3, but the computational role of CA1 in memory proces-
sing remains unclear. Theoretical studies generally highlight net-
works upstream of CA1, such as CA3 and the medial entorhinal
cortex as being attractor networks that encode and retrieve
representations associated with different environments3–7. These
representations could then simply be inherited by CA18–10.
However, given the many forms of synaptic plasticity at
CA1 synapses11,12, the complex dendritic computations per-
formed by CA1 neurons13–15 and the diversity of CA1
interneurons16,17, CA1 activity dynamics are unlikely to be purely
inherited from upstream regions. Establishing the difference in
activity dynamics between CA1 and its inputs will help reveal how
information is processed by CA1, which computations are specific
to CA1, and what the role of its inputs are.

Spatial memories are thought to be encoded and retrieved in
the hippocampus through the activity of place cells18–22—cells
with spatially selective firing fields called place fields (PFs). All
hippocampal subnetworks (CA1, CA2, CA3, and dentate gyrus)
express PFs during navigation10,18. Importantly, CA1 pyramidal
neurons develop PFs rapidly during the exploration of a novel
environment23. Understanding how hippocampal representations
emerge so rapidly during one-shot events is critical to refine
theories of memory. However, the specific dynamics and under-
lying mechanisms of PF emergence in CA1 have only recently
come into focus, and even less is known about PF emergence in
CA3, the main input region to CA111,14,15,24–27. An important
step forward came from analyzing PFs on a trial-to-trial basis
during the very first moments in a novel environment15. Such
trial-to-trial resolution showed that many neurons in CA1
develop a PF on the first trial and engage synaptic plasticity
mechanisms in the form of increased dendritic branch spike
prevalence14,15. Determining the dynamics of PF emergence in
CA3 under the same conditions in novel environments will
generate new insights into the mechanisms of PF emergence in
CA1 and reveal the extent to which CA1 PF emergence is
inherited from CA3 PFs.

In addition to how spatial representations emerge, under-
standing how they evolve during familiarization to a novel
environment (a form of spatial learning) is also critical to refine
theories of learning and memory. Little is known about trial-to-
trial PF dynamics in CA1 or CA3 with most studies focusing on
mean PF dynamics across conditions18,28,29. In familiar envir-
onments, it has been shown that PFs in both CA1 and CA3 tend
to shift backwards with experience and develop negatively skewed
PFs to varying degrees depending on the behavioral paradigm
used29–32. This is thought to be an experience-dependent process
that requires NMDA receptor-dependent long-term synaptic
plasticity33. How soon these phenomena appear during the
familiarization process, and whether they are inherited by CA1
from CA3, remains unclear31. Tracking large numbers of CA1
and CA3 neurons under the same conditions during familiar-
ization to novel environments will help better understand these
phenomena.

Memory retrieval is thought to be achieved by reinstating the
same neuronal activity that occurred during learning10,34,35.
However, evidence from recordings of large ensembles of place
cells have shown that many PFs in CA1 are unstable across
exposures to the same familiar environment13,18,28,36–39. Again,
as with PF emergence and trial-to-trial dynamics, a lot less is
known about the stability of CA1 and CA3 PFs during re-
exposure to a novel environment. This has left unclear how

familiarization influences PF stability. CA1 PFs might be expected
to be less stable across days than CA3 PFs as CA1 has been shown
to integrate stable spatial information from CA3 with time signals
from CA2 upon re-exposures to the same familiar environment10.
Further supporting the idea of reactivation of stable PFs in CA3
comes from its hypothesized role in pattern completion7,
although recent experimental findings tracking PFs in novel
environments across days suggest otherwise18. Lastly, trial-to-trial
retrieval dynamics of single PFs during re-exposure to a novel
environment are not known because of the technical difficulty in
tracking the same place cells across days31. Overall, how PFs
emerge, evolve, and stabilize during familiarization to a novel
environment is unclear, both in CA1 and CA3.

In this work, we use two-photon Ca2+ imaging to long-
itudinally record from large populations of CA1 and CA3 pyr-
amidal neurons in head-fixed mice running unidirectionally on a
treadmill to repeatedly traverse visually enriched virtual linear
environments with consistent behavior. We track neurons from
the very first moments in a novel environment and across days to
compare the emergence and ongoing dynamics of PFs. We find
that PFs initially emerge much faster in CA1 than CA3, but CA1
PFs on average continuously shift backwards with experience.
CA3 PFs emerge relatively slowly but are subsequently more
reliable than CA1 PFs across trials, displaying less backward
shifting. We also find that PF backward shifting decreases with
familiarization across trials and across days. Upon re-exposure to
the novel environment on the second day, stable PFs in CA3
reactivate rapidly on the first trial, whereas CA1 PFs demonstrate
a higher propensity to remap across days. Our findings demon-
strate major differences in the initial emergence, shifting, and
stability of PFs in CA1 and CA3 during familiarization to a novel
environment. The distinct features of CA1 PFs compared with
CA3 PFs suggest that the CA1 performs significant computations
on its spatial inputs from CA3 to support a distinct role in spatial
memory processing.

Results
PF emergence in a novel environment in CA1 and CA3. We
expressed GCaMP6f in either dorsal CA1 or CA3a (referred to as
CA3 from here on) of different mice (Fig. 1c, d). The Grik4-cre
line40 was used to restrict expression to CA3 pyramidal neurons
(Fig. 1c). Importantly, these mice show CRE expression in ~100%
of pyramidal cells in CA3, which means our recordings were not
biased to a sub-population of CA3 pyramidal cells40. Using two-
photon microscopy we then recorded calcium transients from
pyramidal cell populations in both regions (Supplementary
Fig. 1)13,15. On experimental day 1 mice were exposed to a
familiar (F) environment before being switched to a novel
environment (N1) (Fig. 1a)15. On experimental day 2, mice
experienced the same F-to-N switch but to a different N envir-
onment (N2; Fig. 1a). N1 and N2 were grouped together and are
referred to as N. Mice momentarily slowed down after the tran-
sition between environments (Fig. 1b), confirming their percep-
tion of the switch to N. Because mice were restricted to running
in 1 dimension on a custom-built treadmill, this paradigm led to
many repeated traversals in both environments with matched
behavior, allowing lap-by-lap PF dynamics to be measured sys-
tematically and compared across F and N environments without
confounds caused by changes in behavior.

As has previously been reported, both CA1 and CA3 place cells
globally remapped upon exposure to N (Fig. 2a, b) and displayed
altered PF properties compared with F (Supplementary
Fig. 2)4,6,15,18,41–44. For instance, PF widths were on average
larger and PF precision lower in N than F in both CA1 and CA3.
Out-of-field PF firing also increased in N versus F as did PF
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transient occupancy. Crucially, we wanted to observe the real-time
emergence dynamics of new place cells in CA1 and CA3 to
examine potential differences. Therefore, the emergence of new
PFs in N was quantified on a lap-by-lap basis (Fig. 2c–e). Some
PFs formed instantly, i.e., on the first lap (instant PFs; Fig. 2c; left),
whereas others were delayed by several laps (delayed PFs; Fig. 2c;
right). Similar to previous observations, many CA1 PFs
formed rapidly14,15,23, with a high proportion of instant PFs
(30%; Fig. 2d, e). Unexpectedly, only 9% of CA3 PFs were instant
and the distribution of PF onset lap number was more uniform,
indicating CA3 PFs form more gradually than CA1 PFs (Fig. 2d, e;
Supplementary Fig. 2c, d). Supporting this, CA1 place cell activity
decoded position on the first lap better than CA3 place cell activity
(Fig. 2f–h, Supplementary Fig. 3). These data suggest that in a
novel environment, CA1 instantly forms a well-organized map,
whereas CA3 forms a map gradually with experience.

Trial-to-trial PF dynamics in a novel environment. To examine
and compare how PFs evolve in CA1 and CA3 during spatial
learning, we tracked new PFs throughout familiarization to N.
We compared the first and second half of the session and found
CA3 PFs were more stable than CA1 PFs within a session in N
(Fig. 3a). Next, we computed each PF’s center of mass (COM) on
a lap-to-lap basis (Fig. 3b): in CA1, approximately half of the PFs
significantly shifted during the session, but only a third in CA3
(Fig. 3c). The direction of shift could be backward or forward
relative to the direction of the animal’s motion (Fig. 3b–d) but
most PFs shifted backwards, with a larger skew in CA1 than CA3
(Fig. 3c–d). As a population, CA1 PFs shifted backwards much
faster than CA3 PFs (Fig. 3e). This difference is not an artifact of
a lower sample size of CA3 PFs as shown by downsampling 1000
times the CA1 data set (Fig. 3e). Removing transients prior to the
onset of a robust PF (as we do for defining PF onset lap, see
methods) did not alter our conclusions (Supplementary
Fig. 4a–b). The shift of individual PFs calculated across all laps

within the session was not related to PF onset lap or velocity
(Supplementary Figs. 5 and 6). Backward and forward shifting
PFs occurred at all positions, with large shifts weakly biased
towards the end of the track for CA1 (Supplementary Fig. 7).

Backward shifting PFs have been previously reported and may
be accompanied by an increase in PF width and the development
of a negative skew with experience, although reports are
conflicting29–33,45. We found that, in a novel environment, PF
width tended to increase through the first 10 laps in CA1 but not
in CA3 (Supplementary Fig. 8). PFs also started with a positive
skew that decreased with experience in CA1 but not in CA3
(Supplementary Fig. 8). Note that under calcium imaging, as
compared with electrophysiology, PFs are generally positively
skewed rather than symmetric as an artifact of calcium transient
decay times46. An evolution towards less positively skewed yet
larger PFs could explain backward shifting of PF COMs (see
example in Supplementary Fig. 8a), consistent with some
electrophysiological reports32,45. However, changes in skewness
and width were not the only cause of COM backward shifting, as
the PFs end position also shifted backwards (Supplementary
Fig. 4c–d).

Interestingly, we noticed that in CA1 the population tended to
shift forward during the first laps, with the global backward shift
occurring around the fifth lap (Fig. 3e). We found that the delay
in backward shifting was driven by instant PFs that tended to
shift forward on early laps, even though their overall shift
calculated across the entire session was backward (Supplementary
Fig. 9). It is worth restating here that CA3 shows few early-onset
PFs on the initial laps which is when the forward shifting of
instant CA1 PFs occurs. This suggests backward shifting in CA1
might require the presence of established CA3 PFs, which is why
instant PFs initially shift forward.

PF stability upon re-exposure to a novel environment across
days in CA1 and CA3. Memory recall of spatial environments is
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generally thought to be supported by the reactivation of stable PFs
upon re-exposures19–21,47. We, therefore, examined the same
place cells upon re-exposure to N (specifically N2, see methods)
across days (Fig. 4a). On N day 2, increased lap velocity on the
first lap compared to the first lap on N day 1 revealed mice had
become more familiar with N (Fig. 4b). We then quantified the
spatial correlation of mean PFs identified on N day 1 with N day 2,
which was on average significantly higher in CA3 (0.70 ± 0.04)
than CA1 (0.49 ± 0.02) (Fig. 4c–f). The bimodal distribution of
CA3 PF spatial correlations (Fig. 4d; bottom) helped categorize
PFs as either stable (R > 0.5) or unstable (≤0.5). In all mice, we
found that CA3 had a higher fraction of stable PFs compared to
CA1 (Fig. 4e). Interestingly, in CA1, we found a small but sig-
nificant positive correlation between PF shifting on N day 1 and
PF spatial correlation across days, suggesting that higher day-to-
day PF stability is associated with more stable trial-to-trial PF
dynamics upon the first exposure to a novel environment
(Supplementary Fig. 10).

We then compared the PF onset laps of stable PFs on day 2 (re-
emergence, Fig. 4g, left) with PFs that newly formed on day 2,
which included both unstable PFs from day 1 (Fig. 4g, middle)

and PFs that appeared for the first time on day 2 (Fig. 4g, right).
We found that stable PFs re-emerged earlier in the session than
newly formed PFs, and this difference was much more apparent
in CA3 than CA1 (Fig. 4h, right). Further, a high proportion of
CA1 PFs is continuously forming even as the environment
becomes familiar. Lastly, similar to day 1, the vast majority of new
PFs in CA3 emerge gradually after a delay with very few instant
PFs (Fig. 4h, bottom–middle and bottom–right) whereas the CA1
again shows a much higher proportion of instant PFs on day 2
(Fig. 4h, top-middle and top-right). This reveals that stable CA3
PFs are retrieved much faster than new PFs emerge during re-
exposure on day 2, whereas stable and new PFs in CA1 show
similar emergence dynamics.

Lap-by-lap dynamics across days. We first asked if there was any
evidence of continuous PF shifting of the population occurring
offline between sessions separated by a day. We found no such
evidence as the distribution of PF shift distance between the end
of the session on day 1 and the start of the session on day 2 was
not skewed (Fig. 5a). This indicates that COM shifting reflects
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experience-dependent processes that occur during ongoing
familiarization but do not continue offline. However, when
considering only stable PFs that on day 1 showed statistically
significant backward shifting, we found they tended to reset on
day 2 toward their original position on the early laps of day 1
(Fig. 5b, Supplementary Fig. 11). Therefore, although shifting
does not continue offline, offline processes may be involved in
resetting PFs back towards their original position.

We then asked whether the PF shifting dynamics we had
observed on day 1 in N continued upon re-exposure on day 2.
The few stable PFs that exhibited significant shifting on both days
did not change much on average, but the direction and amplitude
of individual PF shifts were not correlated across days (Fig. 5c).
At the population level, which was thus mostly driven by newly
shifting PFs, we found that CA1 PFs on average shifted
backwards like on day 1, before stabilizing after lap 15 (Fig. 5d).
The CA3 map shifted less than CA1 (Fig. 5d, right). In contrast to
day 1, we observed a decrease in PF width over the first laps in
CA1, but not CA3, and little change in skewness with population
dynamics indistinguishable between CA1 and CA3 (Supplemen-
tary Fig. 8).

Formally comparing dynamics on N day 1, N day 2, and very
familiar environments (F), we found that CA1 population

backward shifting slowed down and stabilized with familiarization
across days (Fig. 6a, c). Stabilization also tended to occur earlier
with the level of familiarity: in contrast to day 1, a plateau was
reached on day 2 after 15 laps, and only after 12 laps in F. Shifting
of the CA3 map showed a similar trend than CA1 although
changes with familiarization across days were less obvious (Fig. 6b,
d), in part because shifting dynamics were already slow on day 1.
Resampling the CA3 data revealed extensive overlap in the
population shift across conditions, indicating similar dynamics,
(Fig. 6d, right). This analysis also revealed that the population
becomes more homogeneous with familiarization across days
(smaller variance in the slope distribution). Finally, in CA1, PF
skewness, and width tended to evolve and stabilize with
familiarization, whereas the CA3 population did not show clear
dynamics despite homogenizing across days (Supplementary
Fig. 8). These results suggest that lap-wise PF dynamics are
enhanced by novelty and decrease as a function of familiarity in
CA1, and these PF changes are less apparent in CA3.

Discussion
We used two-photon calcium imaging of large populations of dorsal
CA1 and CA3 pyramidal neurons to measure and compare the
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emergence, shifting dynamics, and longitudinal stability of PFs in
novel environments with trial-to-trial resolution. We found that PFs
emerge faster in CA1 but place cells are constantly renewed across
exposures, whereas they emerge later in CA3 with less turnover
across exposures. After emergence, the location of the PFs is not
always stable, sometimes showing prominent backward or forward
shifting from lap-to-lap. The average spatial representation in the
hippocampus shifts backwards, with a faster shift in CA1 than CA3.
This backward shifting slows down with familiarization across days.
These findings support the idea that CA3 and CA1 perform distinct
functions during familiarization to a novel environment, and CA1
does not simply inherit spatial information from CA3 during this
form of spatial learning. They also constrain the potential
mechanisms explaining how spatial representations emerge, evolve,
and reactivate in the hippocampus.

Consistent with previous reports, we observed hippocampal
PFs that emerged instantly in a novel environment (on the very
first trial) and others that emerged after multiple trials (delayed-
onset PFs)14,15,23. Interestingly, the proportion of instant PFs was
much lower in CA3 than CA1 (Fig. 2). Although to our knowl-
edge this is the first time the trial-to-trial emergence of CA3 PFs
has been reported in completely novel environments, a related
study did compare the emergence of PFs in CA3 and CA1 in a
familiar linear belt with novel sensory cues added29. This study
found two types of place cells: (1) landmark vector (LV) cells that
have multiple instant PFs locked to sensory cues and (2) place
cells with single PFs with a mix of instant and delayed-onset PFs
that emerge when novel sensory cues are added. Interestingly,
they found 10 times more LV cells in CA1 than CA3. Because PFs
in LV cells emerged instantly, the larger proportion of LV cells in
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CA1 is consistent with our finding that CA1 has more instant PFs
than CA3. We confirmed that CA1 has a lot more place cells with
multiple PFs than CA3 (10–15% in N and F in CA1 vs 1–2% in
CA3), but, in contrast to LV cells, only a fraction of them had
instant PFs (31% in CA1 in N, comparable to the 27% instant
PFs of single-PF place cells). There was no difference between
multi- and single-PF place cells in the distribution of onset laps
(two-sample KS-test p= 0.4 in N, CA1). This might be due to
differences in paradigms. For instance, in contrast to the global
remapping and emergence of PFs distributed across the entire
track that we see in new environments, adding a cue to a familiar
environment only induces partial remapping and PF emergence
near cues29.

Rapid PF emergence in a novel environment in CA1 is thought
to rely on a combination of strong, spatially tuned excitatory
inputs that do not need to be potentiated14 and high neuronal
excitability, either from novelty-induced disinhibition16 or from
intrinsic properties (low firing threshold, bursting propensity)26.
CA3 is the main source of excitatory inputs to CA1 and is known
to drive CA1 spatial representations in a majority of neurons, at
least in familiar environments48. It was thus surprising to find
that instant PFs were much less prevalent in CA3 than CA1
(Fig. 2). The simplest explanation is that CA1 instant PFs are not
inherited from CA3 inputs during initial exploration. Indeed, not
all CA1 place cells are necessarily driven by CA348 as CA1
receives other sources of spatially modulated inputs (entorhinal

cortex4, CA210, non-imaged subareas of CA349, nucleus
reuniens50), but the emergence dynamics of spatial representa-
tions in these areas are not currently known. Alternatively, CA1
instant PFs could be driven by the few CA3 neurons with instant
PFs if those neurons have a high degree of divergence to CA1.
Low dendritic inhibition in CA1 pyramidal cells upon initial
exposure to novel environments could serve to amplify the
influence of low numbers of CA3 inputs15,25,51. Delayed-onset
CA3 neurons as well as neurons with unstable spatial modulation
could also partially contribute to CA1 instant PFs since some of
them are active on early trials.

After PF emergence, PF properties (position, width, shape)
evolve with familiarization and their dynamics have been used as
a proxy to study the synaptic plasticity mechanisms supporting
spatial representations in the hippocampus30,32,45. Initial reports
showed that, in a familiar environment, the population of CA1
PFs shifts backwards with experience, a phenomenon consistent
with Hebbian rules32,45 and dependent on NMDA-receptors33.
Later electrophysiological studies compared lap-by-lap shifting
dynamics in CA1 versus CA3 under different familiarity
levels29–31. Despite discrepancies across studies attributable to
different ways of defining novelty, our results are generally con-
sistent with these studies, especially with Roth et al.31 who used
completely new distal and proximal cues. We observed significant
backward shifting of the population of PFs on day 1 of a new
virtual environment in CA1, and to a lesser extent CA3, with the
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shift slowing down with familiarization across days (Figs. 3–6).
Consistent with most reports31,32,45, we found that CA1 was still
backward shifting in very familiar environments, but not CA3
(Fig. 6).

Population backward shifting was initially reported to coincide
with increased negative skewness and enlargement of PFs32,45.
However, in contrast to backward shifting, skewness and width
dynamics are inconsistent across studies30,31, suggesting hetero-
geneity of mechanisms leading to backward shifting30,52. Our
data indicate that population backward shifting in CA1 in a novel
environment is due to a combination of PF expansion, skewness
changes, and pure translation of the PF (Supplementary Figs. 4,
8). These dynamics are dependent on familiarity, with changes in
skewness closely matching population backward shifting. We did
not detect clear dynamics in PF width or skewness in CA3,
revealing a dissociation in mechanisms supporting population
shifting in CA3 and CA1.

In addition to the population trend, we characterized shifting
dynamics in individual PFs, revealing that half of PFs show sig-
nificant linear shifts in CA1, mostly backward, compared to only a
third in CA3 (Fig. 3c). PFs with large shifts tended to be less stable
across days (Supplementary Fig. 10), suggesting that the same
mechanisms may underly lap-to-lap and day-to-day stability. On

the other hand, PFs that significantly shifted on N day 1 but were
stable across days tended, upon re-exposure on day 2, to reset their
location toward their original position on day 1 (Fig. 5b, Sup-
plementary Fig. 11). This reset of shifting shows that the plasticity
underlying lap-by-lap shifting does not continue offline and is
thus experience-dependent32. It also shows that lap-by-lap plas-
ticity does not necessarily cause long-term changes in PFs.
Combining these results, we hypothesize that synaptic plasticity
underlying PF shifting may decay offline if too weak, promoting
PF resetting the next day, but may have more lasting effects if
stronger, promoting some forms of remapping across days.

Interestingly, we found that PFs did not shift backward in CA1
for the first few trials in the novel environment, they actually
shifted forward on average (Supplementary Fig. 9). This fits with
the idea that synapses from CA3 place cells could be necessary to
initiate backward shifting in CA1, as only a very small number of
CA3 PFs emerge on initial laps in the novel environment. As
more CA3 PFs emerge those synapses may undergo asymmetric
plasticity, such as spike-timing-dependent plasticity (STDP)12

and behavioral time-scale plasticity (BTSP)11,24, which could
trigger backward shifting in CA111,30–33. Indeed, both STDP and
BTSP are known to occur at CA3–CA1 synapses of pyramidal
neurons11,12,24 but other synapses could also be involved.
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Fig. 6 Population backward shifting slows down with familiarization across days. a Top, histograms of COMlast_lap–COMonset_lap (session shift defined as
in Fig. 3d) in Familiar (F), N day 1 and N day 2, for CA1. Bottom, bootstrapped mean differences (Δ) between the three conditions. b Same as a for CA3.
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A classic STDP rule fits well with the extent of backward
shifting we observe across laps32,52 as it can potentiate synapses
activated up to 20 milliseconds prior to postsynaptic firing,
which, based on the average running speed we observed, would
maximally shift PFs backwards by ~0.5 cm/lap, approximately
what we see in CA1 on N day 1. However, STDP is not always
asymmetric at CA3–CA1 synapses, depending on induction
protocols12. Moreover, the relevance of this type of time-
dependent plasticity in vivo has been called into question as
synaptic changes might just be too weak to yield an effect on
single trials53,54. On the other hand, BTSP induces larger synaptic
changes24 and may thus be more likely to produce visible shifting
effects over single trials. However, BTSP requires plateau poten-
tials associated with burst firing, and those may not happen on
most laps25,55, which may be necessary to see continuous linear
shifts as we observed here. BTSP can also lead to potentiation of
synapses activated several seconds prior to burst firing, which
could induce larger PF shifting than observed here. In addition,
BTSP has only been found at CA3–CA1 synapses so far and may
not occur in CA3 pyramidal neurons even though CA3 shows
some backward shifting, albeit less than CA1. Lastly, there is
evidence that cholinergic input from the medial septum could
have a role in regulating backward shifting, at least in CA156. It is
therefore not yet clear which mechanisms are driving backward
shifting in CA1 and CA3 place cells. The mechanisms supporting
forward shifting in some neurons is also unknown. Our careful
characterization of the shifting phenomenon in both CA1
and CA3 will constrain future computational models to clarify
how hippocampal physiology supports plasticity of spatial
representations.

The reinstatement of the same place code upon re-exposure to
the same environment is generally thought to provide a neural
substrate for remembering the environment19–21,47. Single unit
recordings supported this idea by showing place cells remain
stable over long periods57. However, recent evidence from cal-
cium imaging of large ensembles of place cells has shown that
many place cells in CA1 are unstable across exposures to the same
environment10,13,18,28,36–39. Rather than a deterioration in the
memory representation of the environment, such remapping may
serve a function and has been proposed to encode distinct epi-
sodes that occur in the same environment separated by time or
small changes in environment10,37,39,41,58–62. This remapping
might therefore allow the animal to create independent repre-
sentations of different episodes associated with the same envir-
onment and favor mnemonic discrimination of those
episodes63,64. Our data support this idea as the average PF
correlation in CA1 across days in a novel environment was
0.49 ± 0.02 (see methods) revealing considerable remapping
across days (Fig. 4). This value is higher than what is reported in a
recent study using methods similar to ours (~0.2)18. This dis-
crepancy could come from differences in environment complexity
which has been shown to influence PF stability and reliability18,65,
although no differences were observed between moderate and
enriched visual environments, only impoverished environments
showed reduced stability18. Differences in the experimental
paradigm could also factor in: they switched repeatedly back and
forth between novel and familiar environments within a single
recording session, whereas our mice switched only once, defining
only two different episodes (familiar and novel). Increased
remapping due to repetitive switching, which defines several
episodes, is consistent with the hypothesis of CA1 tracking
distinct episodes.

A constantly changing place code in the hippocampus could
nevertheless be problematic as information about the familiarity
of the environment would be lost. CA3 has long been theorized to
have a stable code to support memory recall through pattern

completion via recurrent connections7. We show that CA3 place
cells are indeed more stable across exposures to a novel envir-
onment than CA1 place cells. To our knowledge, the only other
study to track CA3 place cells across days in a novel environment
did not observe higher stability in CA3 (~0.1 spatial correlation in
their study versus ~0.7 reported here in Fig. 4)18. In addition to
the differences in task design stated above, this discrepancy could
be explained by their inability to distinguish between CA3 and
CA2 cells, as CA2 cells are known to have unstable place coding
properties10. Another related study did find a similar effect as we
report herein familiar environments39 and concluded that CA3
provides a highly stable representation of space and context but
little information about time, whereas CA1 is selectively required
to integrate CA3 spatial/contextual and CA2 temporal informa-
tion over hours and days. We add to this framework by showing
that the reactivation of stable place cells in CA3 occurs rapidly
(on the first traversal) upon re-exposure to the environment. This
is consistent with the idea of CA3 recurrent connectivity sup-
porting pattern completion through discrete attractors, with CA3
activity rapidly settling into the correct attractor basin upon re-
exposure5. Transition dynamics from one attractor to the next
likely depend on specific connectivity and excitability properties:
identifying the characteristics of recurrent neural network models
that would fit the fast transition we observed will be essential to
understand the elusive mechanisms of hippocampal remapping.

Overall, the differences in emergence, shifting, and stability of
PFs in CA1 and CA3 suggest distinct roles and mechanisms at
play in these hippocampal subnetworks to support spatial
memories. Instant CA1 PFs could mediate the ability of the
hippocampus to rapidly represent episodes on a single trial, a
feature of episodic memory66. The backward shifting of the PF
population during ongoing experience could allow CA1 to gra-
dually better predict future locations within an environment
before physically arriving at those locations11,67,68. CA1, there-
fore, rapidly generates unique representations of the world that
are then continuously updated by exploratory experience to
predict the near future (where am I going?). In parallel, the CA3
gradually forms representations with stable trial-to-trial dynam-
ics, thus encoding location in the present moment (where am I
currently?). This function seemingly extends across time as
relatively stable CA3 spatial representations are rapidly reinstated
upon re-exposure to the same environment, possibly to support
memory recall through pattern completion. Remapping of
CA1 spatial representations across days may instead serve to
separate events occurring in the same environment into distinct
memory episodes69. This framework is depicted in a conceptual
model in Supplementary Fig. 12.

Methods
Subjects. All experimental and surgical procedures were in accordance with the
University of Chicago Animal Care and Use Committee guidelines. For this study,
10–12 week old C57BL/6 J wildtype (WT) male mice (23–33 g) (four WT for CA1
population imaging, Jackson Lab 000664) and C57BL/6-Tg(Grik4-cre)G32-4Stl/J
(seven for CA3 population imaging, Jackson Lab, 006474) were individually housed
in a reverse 12 h light/dark cycle with an ambient temperature of ~20 °C and ~50%
humidity. Male mice were used over female mice due to the size and weight of the
headplates (9.1 mm × 31.7 mm, ~2 g), which were difficult to firmly attach to
smaller female skulls. All training and experiments were conducted during the
animal’s dark cycle.

Mouse surgery and virus injection. Mice were anesthetized (~1–2% isoflurane)
and injected with 0.5 mL of saline (intraperitoneal injection) and ~0.45 mL of
meloxicam (1–2 mg/kg, subcutaneous injection). For CA1 population imaging, a
small (~0.5–1.0 mm) craniotomy was made over the hippocampus CA1 (1.7 mm
lateral, −2.3 mm caudal of Bregma). A genetically encoded calcium indicator,
AAV1-CamKII-GCaMP6f (Addgene, #100834) was injected into CA1 (~75 nl) at a
depth of 1.25 mm below the surface of the dura using a beveled glass micropipette.
For CA3 population imaging, the craniotomy was made over the CA3 (2.0 mm
lateral, −1.7 mm caudal of Bregma). A Custom made Cre-dependent AAV virus:
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AAV1-CamKII-flex-GCaMP6f (made by Vigene) was injected (two injection sites
at least 100 µm apart within the craniotomy, ~75 nl at each site) at a depth of 1.9
mm below the surface of the dura. After injection, the site was covered up using
dental cement (Metabond, Parkell Coropration) and a metal head plate (Atlas Tool
and Die Works). Water scheduling began the following day (0.8–1 ml per day and
continued through all training and experiments). Around 7 days later, mice
underwent another surgery to implant a hippocampal window as previously
described15. Following implantation, the head plate was reattached with the
addition of a head ring cemented on top of the head plate which was used to house
the microscope objective and block out ambient light. For CA3 mice, because the
cannula window was implanted at an angle (~15 degrees) relative to the horizontal
plane, we bent the two ends of the head plate to match this angle so that the head
plate and cannula were on the same plane. We could then change the angle of our
microscope objective to be perpendicular to this plane. Post-surgery, mice were
given 2–3 ml of water/day for 3 days to enhance recovery before returning to the
reduced water schedule (0.8–1.0 ml/day).

Behavior and virtual reality (VR) switching. To navigate in the VR environment,
animals ran on a treadmill surrounded by five LED screens15,70. VR environments
(one training environment, which served as the familiar environment, F, and two
novel environments: N1 and N2) were created using VIRMEn71. Each environment
contained a three-meter-long linear track enriched with different distal and
proximal 3D visual cues. In all, 4 µL water rewards were delivered at the end of the
track in all environments. During training, which began at least 5 days after
window implantation, mice were placed in F for 30–40 mins each day and learned
to run and lick the water reward in F. After each lap traversal, mice were teleported
back to the beginning of the track. Before teleportation, a short VR pause of 1.5 s
was implemented to allow for water consumption and to help distinguish laps from
one another rather than them being continuous. Once mice reached the criterion
more than two laps per min that remained stable for 2–3 days (usually ~10–14 days
after the start of training), imaging commenced.

Two-photon imaging. Imaging was done using a laser scanning two-photon
microscope (Neurolabware). The microscope consisted of an 8 KHz resonant
scanning module (Thorlabs), a 16×/0.8 NA/3 mm WD water immersion objective
(MRP07220, Nikon). GCaMP6f was excited at 920 nm with a femtosecond-pulsed
two-photon laser (Insight DS+Dual, Spectra-Physics) and the fluorescence was
collected using a GaAsP PMT (H11706, Hamamatsu). The microscope is custo-
mized to tilt the objective, which we tilted to be perpendicular to the CA3 head
plate angle but kept vertical for CA1 imaging. Stray light from the VR monitor was
blocked from entering the objective lens by a dark rubber tube attached to the
implanted head ring and the objective. Laser average power after the objective was
~60 mW for CA1 imaging and ~120 mW for CA3 to gain similar baseline fluor-
escence levels in the CA1 or CA3 FOV. Scanbox (Neurolabware) was used for
microscope control and data acquisition. Time-series videos were acquired at
around 11 Hz for each of the three imaging planes (using an electronic lens) to
maximize the number of neurons imaged in each mouse. The PicoScope Oscillo-
scope (PICO4824, Pico Technology) collected the signal from the microscope to
synchronize frame acquisition timing with behavior (see below).

Imaging sessions. Each mouse that reached the behavior criterion was carefully
checked for expression under the two-photon microscope. Each mouse used in this
study had healthy-looking GCaMP6f expression (resting fluorescence absent from
the nucleus; fast transient kinetics; no signs of misshaped somas). On experimental
day 1: fields of view (FOV) were chosen that maximized the number of neurons
across three planes. Imaging and behavior recordings started right before mice
entered the VR. Mice ran at least 20 laps in F, which took at least 10 min. After
which the mice were instantaneously switched to a novel environment (N1). Mice
then ran at least 35 laps in N1 and were recorded for at least 20 min and then
placed back in their home cage. Experimental day 2: a similar procedure whereby
mice were exposed to F first and then switched to a novel environment, but this
novel environment (N2) was different from the first novel environment (N1). The
FOVs were not necessarily the same as day 1. After imaging, more than one
averaged FOV was saved to be the reference for day 3 imaging in order to align the
planes and record from the same cells the following day. Experimental day 3: the
same FOVs were carefully matched to the previous day FOVs. Once imaging
started, mice were directly exposed to N2 and ran for at least 29 laps, and recorded
for 20 min. Mice behavior including treadmill running speed, position, and licking
was collected using the PicoScope Oscilloscope to synchronize with the imaging.

Image processing and ROI selection. Time-series movies for multiplane
recordings were acquired using interleaved frames (1st, 4th, 7th… frames belong to
plane 1; 2nd, 5th, 8th… frames belong to plane 2: 3rd, 6th, 9th… frames belong to
plane 3). Each multiplane time series was then split into separate time-series
movies. Same plane movies from Day 1 in F and N1 were concatenated into one
movie, as were Day 2 single plane movies in F and N2, and Day 2 N2 and Day 3
N2 single plane movies (for across days analysis of the same cells). Movement
artifacts are corrected by customized MATLAB scripts based on whole frame cross-
correlation. For multiday imaging datasets (Day 2 N2 and Day 3 N2

concatenation), motion correction was applied before concatenation and then Fiji
(ImageJ) was used to correct any rotational displacement between the two movies.
The concatenated movies were then motion corrected again to assure the best
alignment (Fig. 4).

Regions of interest (ROIs) were defined using customized MATLAB scripts
from the Dombeck lab15 (parameters: mu= 0.6, 150 principal components, 150
independent components, s.d. threshold= 2.5, s.d. smoothing width= 1, area
limits=manually chose for each FOV). For each ROI, baseline-corrected ΔF/F
traces across time, filtered for significant calcium transients were then generated as
previously described13,15,46. In brief, slow time-scale changes in the fluorescence
time series were removed by examining the distribution of fluorescence in a ±5
second interval around each sample time point and subtracting the 8% percentile
value. The baseline and σ were calculated from the fluorescence time series that did
not contain large transients. Fluorescence transients were then identified as events
that started when fluorescence deviated 2σ from the corrected baseline, and ended
when it returned to within 0.5σ of baseline. The baseline-subtracted neuron
fluorescence traces were then subjected to analysis of the ratio of positive- to
negative-going transients of various amplitudes and durations. We used this
analysis to identify significant transients with <1% false-positive error rates and
generated the significant transient-only traces that were used for all subsequent
analysis.

Calcium transient analysis. After extracting significant calcium transients, we
analyzed and compared some basic characteristics of these transients across CA1
and CA3. Transient peaks: the maximum value for each transient from each
neuron. Transient duration: the duration of each transient calculated at half peak
from each neuron. Transient frequency: the frequency of significant transients from
each neuron.

Behavior analysis. First, immobile and backward moving periods were removed
by identifying instantaneous velocity signals slower than 0.2 cm/s. Second, to cal-
culate the mean lap velocity on each lap, we divided the track length (3 m) by the
time taken to finish the lap. Third, to then calculate normalized mean lap velocity
(Figs. 1b; 4b), we took the mean lap velocity on each lap and divided it by the mean
velocity of the first three laps in F.

Defining PFs. Because mice ran continuously and consistently in all conditions, we
included all laps and transients for PF identification. The 3 m track was divided
into 50 bins (6 cm per bin). The mean ΔF/F was calculated as a function of virtual
track position for 50 position bins for each lap, which formed a 50 by N laps
matrix. Potential PFs were first identified as contiguous points of this matrix in
which all of the points were >15% of the difference between the peak ΔF/F value
(from all 50 bins) and the baseline value (mean of the lowest 12 out of 50 ΔF/F
values). The potential PF had to satisfy the following criteria to be defined as a
significant PF: 1. The field width must be >20 cm and <150 cm. 2. The field must
have at least one value bigger than 0.1 ΔF/F. 3. The mean in field ΔF/F value must
be greater than three times the mean out of field ΔF/F value. 4. Significant calcium
transients must be present on at least 15 laps out of all the laps that the mouse
traversed. Potential PF regions that met these criteria were then defined as PFs if
their P value from boot strapping was <0.05, as described previously46. PFs from
cells that have multiple PFs used the same criteria and were treated independently.
Transients that occurred outside of the defined PF region were removed for ana-
lysis of each specific field. The resultant PFs were then used in all subsequent
analyses unless specified.

Histology and brain slices imaging. We checked the CA3 expression of some of
the Grik4-cre mice to ensure the GCaMP expression was restricted to CA3. Mice
were anesthetized with isoflurane and perfused with ~10 ml phosphate-buffered
saline (PBS) followed by ~20 ml 4% paraformaldehyde in PBS. The brains were
removed and immersed in 30% sucrose solution overnight before being sectioned
at 50 µm-thickness on a cryostat. The brain slices were then collected on glass slides
and mounted with a mounting media with DAPI (SouthernBiotech DAPI-
Fluoromount-G Clear Mounting Media, 010020). The whole-brain slices were
imaged under ×10 with a Caliber I.D. RS-G4 Large Format Laser Scanning Con-
focal microscope from the Integrated Light Microscopy Core at the University of
Chicago.

Spatial correlation. To measure PF spatial correlation across environments, we
found place cells that had PFs in either environment and then calculated the
Pearson’s correlation coefficient between the mean activity along the track (in 50
bins) for all laps in two environments. To measure the PF correlation within
environment, we divided the session up into two halves based on the total number
of laps completed. We then calculated the mean activity along the track for each
half and calculated Pearson’s correlation coefficient. For cells with multiple PFs,
only the first PF on the track was included. To measure PF spatial correlation
across days, we found place cells that had PFs in both days and then calculated the
Pearson’s correlation coefficient between the mean activity along the track (in 50
bins) for the last 10 laps in N day 1 and the first 10 laps in N day 2.
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PF onset lap. To determine PF onset lap (Figs. 2c–e, 4h), starting from lap 1 we
searched lap-by-lap for a lap with a significant calcium transient present within the
boundaries of the future PF calculated from all the laps in the session. Once the lap
was found, we would then search for significant calcium transients on each of the
next five laps. If three of the six laps had significant calcium transients within
the PF boundaries, that would be considered the PF onset lap, if not, we move to
the next lap and repeated the analysis. If we changed this criterion and instead used
two out of six laps or four out of six laps to define PF onset lap, the differences in
distributions we observed between CA1 and CA3 remained. To control for the
different numbers of laps that the mouse ran in F and N, the comparison in Fig. 2d
only included the first 25 laps in F and N. If we instead included the later laps in N,
the result did not change.

PF COM and spatial precision. To calculate the spatial precision, we first calcu-
lated the somatic transient COM on each traversal along the linear track. We
measured ΔF/F in each bin. We then used the following equation to calculate the
COM for each traversal n (COMn):

COMn ¼ ∑iDFi�xi
∑iDFi

Where DFi is the somatic ΔF/F in bin i and xi is the distance of bin i from the start
of the track. We then calculated the weighted average COM (COMw) from all
traversals n (COMn from each traversal was weighted by the peak transient ΔF/F
on that traversal (An)):

COMw ¼ ∑nAn � COMn

∑nAn

Spatial precision13 (SP) was then calculated as follows (inverse of the COM
standard deviation):

SP ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑nAnðCOMn�COMwÞ2
∑nAn

q

Out/in PF firing ratio. This was computed as the ratio between the mean ΔF/F in
bins outside the PF and the mean ΔF/F in bins within the PF.

Position decoding analysis. Based on a recent study72, we chose to use the long
short-term memory (LSTM) neural network model to test whether representations
in CA1 were better at decoding position on the first lap of N than CA3
representations.

Considering the differences in the number of PFs, we measured in CA1 and
CA3 (more PFs in CA1 than CA3), as well as the amount of data required to build
a useful LSTM model, we grouped data from all CA1 and CA3 mice that ran >45
laps in N2, and matched the number of cells used from CA1 and CA3 to build the
models.

To match the data from different mice and use the decoders to decode position
on a lap-by-lap basis, we first changed the time series-based data to position-based
data: the 3 m track was divided into 100 bins (3 cm per bin). The mean ΔF/F was
calculated as a function of virtual track position for 100 position bins for each lap.
By doing this, data within and across mice became the same length by lap. CA1
data were then grouped into one data set and CA3 data grouped into another data
set. The decoding data were restricted to periods when the animals were running.

To test decoding ability on the first lap in N, we first tested different parameters
(LSTM model network structure and the number of place cells used to build the
models) to make sure that the two decoders had similar decoding ability in the later
laps (validation set) (Supplementary Fig. 3). We chose a one-layer LSTM decoder
with 1024 units to decode the animals’ position from the input of 200 place cells.
When building a model, 200 place cells were randomly chosen from the entire CA1
or CA3 place cell population, the data from the 6th to 35th laps were used to train
the decoder to decode the animals’ position on the track which had been divided to
50 bins. The 36th to 40th lap data were used as the validation set. The decoders
were then used to decode the animals’ position on the first lap based on the place
cell activity on this lap. We repeated this procedure 20 times for CA1 and CA3 and
compared the predicting error on the first lap between the regions. The predicting
error was calculated as the mean of the absolute difference between the prediction
position and the animals’ real position on the first lap.

We also built a naive Bayes decoder with the same data, though the decoding
ability is not as good as the LSTM decoder for the validation set, we got the same
result as the LSTM decoder for the first lap position decoding (that is the CA1 is
better at decoding position on the first lap compared to CA3) (Supplementary
Fig. 3).

PF shifting. To calculate population PF shifting (Figs. 3e, 5d, 6c–d), we first
calculate the COM for all PFs on each lap with a sliding window of five laps (the
COMw of the current and four next laps). The five-lap sliding average was done for
smoothing purposes but the same trends were observed without smoothing. For
each PF, lap-wise shift was computed as the difference between lap 12 and the

current lap. We could then calculate the average shifting over the population of PFs
on each lap. Only PFs with PF activity on lap 12 and a PF onset lap <20 were
included. Also, owing to the onset of PFs on different laps, the number of samples
that contribute to the mean on each lap is different.

Note that we also used the five-lap COM weighted average method in Fig. 3d.

PF skewness. PF skewness is calculated as the third statistical moment of the PF.
For lap n:

Skewnessn ¼ ∑i
DFi

∑iDFi
� ðxi � COMnÞ

σ3

3

where σ is the PF’s “standard deviation”:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i
DFi

∑iDFi
� ðxi � COMnÞ2

s

To calculate population place skewness trend, we first calculate the skewness for
all PFs on each lap. Then we took each PF and aligned them together by the
actual laps.

PF width. PF width on each lap is calculated as the difference between the first and
last bin with in-field activity. We then normalized the lap-wise width to the mean
PF width for each PF.

Notice, for COM shift and reset, PF skewness and width analyses, most PFs
near start or end of the track were excluded if they were clipped, using the
following criterion: if the distance between one track edge and PF COM was at least
one bin shorter than the other half of the PF, the PF was excluded. For cells with
multiple PFs, only the first PF on the track was included.

Statistics and reproducibility. Error in the text and figures are presented as mean
±SEM, unless stated otherwise.

We used either an estimation approach or null-hypothesis testing to compare
data (described in figure legends). To generate Gardner-Altman estimation plots,
which highlight the effect size, we used the Data Analysis with Bootstrapped-
coupled ESTimation (DABEST) package73 (available on GitHub: https://github.
com/ACCLAB/DABEST-python). To assess the uncertainty of the effect size, the
mean difference between two distributions and its 95% confidence interval were
bootstrapped. For null-hypothesis testing, Wilcoxon rank-sum test, Wilcoxon
signed-rank test or Kolmogorov–Smirnov two-sample test were applied. P < 0.05
was chosen to indicate statistical significance and P values in figures are indicated
as follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, N.S. not significant. For data tested
with the estimation approach, we also used the null-hypothesis testing to confirm
any differences.

For linear regressions of the population slopes (e.g., Figure 3e left), the p value
for the t statistics to test whether the slope was significantly positive or negative
were reported following the same approach reported above. To compare the
population dynamics of different conditions, we performed exact testing based on
Monte-Carlo resampling (1000 resamples with sample size matching the lower
sample size condition) as detailed in legends.

To assess the shifting dynamics in single PFs, we performed linear regression on
the lap-wise COMn relative to onset lap (Fig. 3c), and significance was assessed
with an F test.

Although Fig. 1c, d only shows representative images, we reproduced similar
images multiple times across n > 4 mice. Figure 4a also only shows a representative
image of a field of view (FOV) aligned across days. However, for all across days
imaging, FOVs from all mice included in the subsequent analysis were aligned
similar to Fig. 4a (n= 3 for CA1; n= 6 for CA3).

Data and software. Data processing and analysis was performed using custom
written scripts in MATLAB (2018a) or Python (3.7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw imaging data are extremely large and not feasible for upload to an online repository
but is available upon request. Processed data are available on GitHub (https://github.
com/Candong/Distinct_CA1_CA3.git)74. Source data are provided with this paper.

Code availability
Scripts used for data analysis and processed data are available on GitHub (https://github.
com/Candong/Distinct_CA1_CA3.git)74.
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