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Abstract

Resting state brain activity consumes most of brain energy, likely creating and maintaining a 

reserve of general brain functionality. The latent reserve if it exists may be reflected by the 

profound long-range fluctuations of resting brain activity. The long-range temporal coherence 

(LRTC) can be characterized by resting state fMRI (rsfMRI)-based brain entropy (BEN) mapping. 

While BEN mapping results have shown sensitivity to neuromodulations or disease conditions, the 

underlying neuromechanisms especially the associations of BEN or LRTC to neurocognition still 

remain unclear. To address this standing question and to test a novel hypothesis that resting BEN 

reflects a latent functional reserve through the link to general functionality, we mapped resting 

BEN of 862 young adults and comprehensively examined its associations to neurocognitions using 

data from the Human Connectome Project (HCP). Our results unanimously highlighted two brain 

circuits: the default mode network (DMN) and executive control network (ECN) through their 

negative associations of BEN to general functionality, which is independent of age and sex. While 

BEN in DMN/ECN increases with age, it decreases with education years. These results 

demonstrated the neurocognitive correlates of resting BEN in DMN/ECN and suggest resting BEN 

in DMN/ECN as a potential proxy of the latent functional reserve that facilitates general brain 

functionality and may be enhanced by education.
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Introduction

The human brain is a dynamic system with large-scale ongoing fluctuations. Understanding 

these fluctuations is essential to understanding the individual differences of brain function, 

functional anatomy, and the pathologies associated with neuropsychiatric conditions. Both 

theoretical models and neuroscience experiments have demonstrated a characteristic self-
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organized criticality of normal brain activity (Deco and Jirsa, 2012; Rubinov et al., 2011). A 

crucial aspect of this criticality is the emergence of long range temporal correlations (LRTC)

—correlations across a large time scale, meaning that signal fluctuations at one moment can 

influence signal up to several minutes in a future moment(He, 2011). LRTC has been 

postulated to relate to consciousness (Tagliazucchi et al., 2016) and high-order brain 

functions such as memory, attention, perception, coordination, etc (Buzsáki and Draguhn, 

2004; Dean et al., 2012; Pesaran et al., 2002; Saleh et al., 2010; Thut et al., 2012; 

Womelsdorf et al., 2006). According to the “Communication Through Coherence” model 

(Fries, 2005, 2015), temporal neuronal coherence is fundamental to effective connectivity or 

neuronal communications. This model has been well supported by experimental 

results(Fries, 2015). For example, Teki et al. (Teki et al., 2013) showed that human listeners 

are remarkably sensitive to temporally coherent audio signals despite of the background 

noise and Lu et al. (Lu et al., 2017) reported that temporal coherence can rapidly reshape 

inter-neuron connections. The same model also predicts that the absence of temporal 

coherence will induce random phase of the excitability cycle of the neuron and will result in 

lower effective connectivity. Accordingly, improve the temporal coherence may improve 

connectivity and brain function as recently evidenced in (Reinhart and Nguyen, 2019). 

However, there still lacks a clear view of how the temporal coherence especially the LRTC is 

related to neurocognition across the entire brain cortex.

Using resting state fMRI (rsfMRI), we have recently proposed a method (Wang et al., 2014) 

to map brain entropy (BEN). While the nonparametric entropy metric, the Sample Entropy 

(Richman and Moorman, 2000) was used in the original paper and the accompanying 

software package, entropy of brain activity, the so-called BEN can be calculated using other 

entropy measures as we piloted in(Wang, 2012a, b). Entropy provides an approximate way 

to quantify LRTC through the statistical dependencies or order implicit in itinerant 

dynamics, expressed over extended periods of time. BEN has been shown to be independent 

of regional perfusion and the amplitude of low frequency fluctuations (ALFF) of rsfMRI 

(Zang et al., 2007) in most parts of the brain cortex (Donghui Song, 2019), suggesting that 

BEN may be a special property of brain activity that can not be fully characterized by 

regional perfusion and other resting brain activity indices such as ALFF. BEN has been 

shown to be reproducible across two different acquisition times and sensitive to various 

brain diseases and to focal neuromodulations (Song et al., 2018; Wang et al., 2014; Xue et 

al., 2019; Zhou et al., 2016). While these data clearly showed the potential of BEN and 

subsequently LRTC as a unique brain signature for studying brain diseases or normal brain 

conditions, its relationship or associations with neuro-cognition remain unclear.

The purpose of this study was to address the above question by leveraging the large rsfMRI 

and behavioral data from the human connectome project (HCP) (Van Essen et al., 2013). 

Based on the following literature review and abstraction, we postulated that LRTC of resting 

brain activity is related to a latent brain functionality reserve or alternatively speaking the 

general cognitive capability. Brain reserve is a well-studied model for describing the general 

cognitive sustainability or resilience to structural brain damages or degenerations(Stern et 

al., 2018). It is non-specific to any overt brain function and should be an ongoing process 

that would need lot of energy to maintain. The task-independent self-organized resting brain 

activity may actually represent the activity for generating or maintaining the latent brain 
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function reserve because it consumes most of brain energy and has been postulated to have a 

role in facilitating overt brain functions (Raichle, 2015; Raichle and Gusnard, 2005; Raichle 

et al., 2001; Raichle and Snyder, 2007). Accordingly, characterizing the self-organization or 

LRTC, a prominent property of the resting state brain activity, may provide a way to assess 

the latent brain reserve with higher LRTC (lower BEN) indicating a bigger or stronger 

reserve. The capacity of brain reserve was measured by education years and general 

cognitive capability. Education years is a widely used proxy for brain reserve (Stern et al., 

2018) and has been validated in many studies (Albert et al., 1995; Ganguli et al., 1991; Stern 

et al., 1994; Valenzuela and Sachdev, 2006). Education has been shown to be moderately 

correlated with general intelligence (Ritchie and Tucker-Drob, 2018). In a recent study based 

on data from normal healthy elderly people, we have found a negative correlation between 

BEN in DMN and educations years(Wang, 2020). The BEN vs education association study 

in this paper can be considered an extension study in young health controls. The other index 

of brain reserve, the general cognitive capability was measured by fluid intelligence and 

performance of various functional tasks. Fluid intelligence is the capability for solving 

newly encountered problems for which learned and specialized skills provide little benefit 

(Horn and Cattell, 1967). In other words, fluid intelligence reflects the general functional 

capability of each individual, which is independent of skills and knowledge learned through 

education or experiences. We included several functional task performance measures in 

order to show the non-specificity of BEN to overt brain functions.

Based on the non-specificity and generalizability of resting state brain activity and the 

corresponding LRTC/BEN, we expected to see the potential LRTC vs brain reserve 

correlation in two “default” regions: the fronto-parietal the default mode network (DMN) 

(Raichle et al., 2001) and the executive control network (ECN) (also called task positive 

network in (Shulman et al., 1997)). Associations of the fronto-parietal networks with fluid 

intelligence has been described by the Parieto-Frontal Integration Theory (P-FIT) (Jung and 

Haier, 2007). P-FIT was abstracted from a large number of neuroimaging studies and has 

been supported by brain lesion studies (Woolgar et al., 2010) and proposed the prefrontal 

and parietal cortex as an integrated neural circuit for general intelligence and broad cognitive 

capabilities. Our study differed from the previous P-FIT studies by using rsfMRI and a large 

cohort. DMN and ECN have been more widely studied in rsfMRI literature and have been 

repeatedly demonstrated to be active either during task performance (G. L. Shulman, 1997; 

Shulman et al., 1997) or at rest (Beckmann et al., 2005; Greicius et al., 2003). This ongoing 

nature suggests an intensive involvement of the two regions in general functionality and 

subsequently the latent brain reserve. Given the above rationales and literature overview, our 

hypotheses were: resting LRTC in DMN/ECN is positively correlated with education years 

and general cognitive capacity as reflected by fluid intelligence and functional task 

performance.

Each rsfMRI scan from HCP contains 1200 timepoints, which is much longer than a typical 

rsfMRI time series acquired with the traditional single-slice excitation based echo-planar 

imaging sequence and provides an unprecedent an opportunity to assess the temporal 

behavior of BEN. Accordingly, the second aim of this study was to investigate how stable is 

resting BEN across different times and how the temporal dynamics of BEN relate to 

neurocognition.
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Materials and Methods

Ethics statement

Data acquisition and sharing have been approved by the HCP parent IRB. Written informed 

consent forms have been obtained from all subjects before any experiments. This study re-

analyzed the HCP data and data Use Terms have been signed and approved by the WU-Minn 

HCP Consortium.

Data and BEN mapping.

rsfMRI data, demographic data, and behavior data from 862 healthy young subjects (age 22–

37 yrs, male/female=398/464) were downloaded from HCP. The mean and the standard 

deviation of education years were 14.86±1.82 yrs. The range of education years was 11–17 

yrs. These data were released on July 21 2017. The rsfMRI data were the extended 

processed version. Each subject had four resting scans acquired with the same multi-band 

sequence(Moeller et al., 2010) but the readout directions differed: readout was from left to 

right (LR) for the 1st and 3rd scans and right to left (RL) for the other two scans. The 

alteration of phase encoding scan direction was used in order to compensate the long scan 

time induced image distortion. MR scanners all present field strength (B0) inhomogeneity, 

which causes signal distortion because of the imperfect excitation using the radiofrequency 

pulses that are tuned to the frequency determined by the ideal B0. While the B0 

inhomogeneity caused distortions can be well corrected using two additionally acquired 

calibration scans using the opposite phase encoding directions: one is with LR and the other 

is with RL, HCP acquired two LR and two RL rsfMRI scans for the purpose of assessing the 

potential residual effects after the distortion correction and to assess the test-retest stability 

of rsfMRI measure. Each scan had 1200 timepoints. Other acquisition parameters for 

rsfMRI were: repetition time (TR)=720 ms, echo time (TE)=33.1ms, resolution 2×2×2 mm3. 

The pre-processed rsfMRI data in the Montreal Neurological Institute (MNI) brain atlas 

space were downloaded from HCP and were smoothed with a Gaussian filter with full-

width-at-half-maximum = 6mm to suppress the residual inter-subject brain structural 

difference after brain normalization and artifacts in rsfMRI data introduced by brain 

normalization. BEN mapping was performed with BEN mapping toolbox (BENtbx) using 

the default settings (Wang et al., 2014). To cope with the huge computation required to 

calculate BEN for the 4×860 long rsfMRI scans, we implemented the BEN mapping 

algorithm in C++ using CUDA (the parallel computing programming platform created by 

Nvidia Inc). Four graphic processing unit (GPU) video cards were used to further accelerate 

the process. Entropy value was calculated using the approximate entropy formula, the 

Sample Entropy, which is the “logarithmic likelihood” that a small section (within a window 

of a length ‘m’) of the data “matches” with other sections will still “match” the others if the 

section window length increases by 1 (see Fig. 1B). “Match” is defined by a threshold of r 

times standard deviation of the entire time series. Window length m is widely set to be from 

2 to 3. The embedding vector matching cut-off should be selected to avoid “no matching” 

(when it is too small) and “all matching” (when it is too big) (Richman and Moorman, 

2000). Both parameters have been assessed in previous publications (Chen et al., 2005)

(Wang et al., 2014). In this study, the window length was set to be three and the cut-off 

threshold was set to 0.6 based on the original BEN mapping paper (Wang et al., 2014). The 
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entire process is illustrated in Fig. 1B. To calculate SampEn for a time series of length L, all 

possible data segments, each with a length of m are extracted as illustrated by the colored 

rectangles overlaid on the time series and the associated arrows in Fig. 1B. For the i-th data 

segment, its Chebyshev distance to another segment is calculated. If the distance is smaller 

than the cutoff threshold r, it is considered as a “match”. For the segment match window 

length of m, the total number of matches among all possible embedding vectors is recorded 

(Fig. 1B.1), which is then repeated after increasing m by 1 so the segment matching window 

becomes m+1 (see Fig. 1B.2). SampEn is then calculated as the natural logarithm of the 

ratio between the total number of matches of the window length m and that of the window 

length of m+1 (Fig. 1C).

Fluid intelligence and functional task performance

Fluid intelligence is a measure for higher-order relational functionality for solving problems 

in novel situations independent of acquired knowledge(Cattell, 1963). Fluid intelligence is 

commonly measured using the non-verbal Raven’s Progressive Matrices (Raven, 2000). In 

HCP, a shortened Raven’s test included in the Penn Matrix Test (Bilker et al., 2012) was 

used. This shortened version contains 24 items. In each test item, the participant must select 

with the mouse on the square out of the five choices which he/she thinks best completes the 

missing part of a pattern. This task is independent of language, reading, and writing skills. 

Finding the right missing part purely depends on abstract reasoning and logic thinking rather 

than any learned skills or knowledge.

Task performance was measured by the accuracy of button selection during the on-magnet 

fMRI-based working memory, language, and relational tasks(Barch et al., 2013). The 

working memory task(Drobyshevsky et al., 2006) contained blocks of trails each consisting 

of pictures of tools, places, faces, and body parts. Within each run, the four categories of 

images were presented in separate blocks. Half of the blocks use a 2-back working memory 

task (subjects were instructed to respond ‘target’ whenever the current picture is the same as 

the one two back) and half use a 0-back working memory task. The total number of correct 

button press was used as the working memory task performance. The language task (Binder 

et al., 2011) contained two runs that each interleave four blocks of story task and four blocks 

of a math task. At the end of each block, subjects were instructed to finish forced-choice 

questions. The total number of correctly answered questions was used as the task 

performance. The relational task was to show a pair of objects on the top and another pair on 

the bottom of the screen and ask the participants to check whether the shape or texture 

differed across the top pair and then decide whether the bottom pair differed along the same 

dimension (shape or texture). The total number of correct answers was used as the task 

performance in this study.

A sliding window based dynamic BEN mapping.

In static BEN mapping, SampEn at each voxel is calculated from the entire rsfMRI time 

series. In dynamic BEN mapping, entropy is calculated at each timepoint within the sliding 

window with a length of L. This process can be split into two steps. As illustrated in Fig. 1, 

the first step is to locate the continuous neighborhood with a length of L points for each time 

point of the entire time series (Fig. 1A); the second step is the same as what we described 
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above for the static BEN mapping (or SampEn) calculation (Fig. 1B and 1C). SampEn 

calculated from the current L time points will be treated as the SampEn of the current time 

point. This process is repeated until all time points of the entire rsfMRI time series is 

sequentially assessed or the sliding window reaches the end of the entire time series. After 

all repetitions, a time series of SampEn will be produced. Note that if the sliding window 

length L is set to be the same as the data length of the entire time series, the above dynamic 

SampEn calculation will be same as the traditional static SampEn calculation.

The length of each rsfMRI scan was 1200. Because BEN mapping using rsfMRI data with a 

length from 120 to 200 has been shown to provide reliable results, we chose the sliding 

window length L to be 300 to get reliable transit BEN from each 300 timepoints rsfMRI sub-

series. Successive sub-series were gapped by 9 timepoints to reduce the total number of sub-

series to reduce the total computation burden. This gap was empirically set to be 9 

timepoints so the interval was 9TRs=6.48 sec, which was roughly the same as one 

hemodynamic response function cycle. Bigger gap than 9 produced similar mean BEN maps 

though the variation was slightly different. Similar to the static BEN mapping mentioned 

above, we implemented the dynamic BEN mapping algorithm in C++ and the CUDA 

programming environment. GPU computing was used for finding the number of matched 

vectors for many voxels simultaneously. The number of voxels to be processed 

simultaneously was determined based on the available computation resource in the GPU 

card. Four Nvidia 1080Ti GPU cards were used. For each subject, four dynamic BEN time 

series were calculated (one for each rsfMRI scan). For each dynamic BEN time series, the 

mean and standard deviation (STD) as well as the coefficient of variance (CV) were 

calculated at each voxel. The corresponding mean, STD, and the CV maps were averaged 

across the first LR and the first RL rsfMRI scans to minimize the potential effects of the 

phase encoding polarities. The same averaging process was performed for these parametric 

maps calculated from the second LR and the second RL rsfMRI scans. In the end, each 

subject had two mean BEN maps (mdBEN1 and mdBEN2), two STD maps (STD_BEN1 

and STD_BEN2), and two CV maps (CV_BEN1 and CV_BEN2). In addition, each subject 

had two static BEN maps: one was the average of the static maps calculated from the first 

LR and RL rsfMRI scans (msBEN1); the other was the average from the second LR and RL 

rsfMRI scans (msBEN2).

Statistical analysis.

Temporal fluctuations of BEN were first examined through the STD_BEN1, STD_BEN2, 

CV_BEN1, and CV_BEN2 maps. Their associations with biological measures (age and sex) 

and neurobehavioral measures (fluid intelligence and functional task performance) and 

education years were examined with multiple regression analysis. Specifically, a multiple 

regression model was built for each type of maps at each voxel using the map intensity at 

that voxel from all subjects as the dependent variable. Independent variables included age, 

sex, education years for the age/sex/education association analyses. A separate regression 

model including age, sex, and the PMT score as the independent variables was built for the 

BEN fluctuations vs fluid intelligence correlation analysis. For each functional task 

performance, an independent regression model including age, sex, and the task performance 

measure was used to assess the corresponding BEN fluctuations vs functional task 
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performance correlation. The model was built and estimated using SPM (https://

www.fil.ion.ucl.ac.uk/spm/). The corresponding age/sex/education/fluid intelligence/task 

performance associations were statistically assessed through a contrast analysis with 1 for 

the interested variable and 0 for the other independent variables. The above analyses were 

repeated for mdBEN1, mdBEN2, msBEN1, and msBEN2.

The voxelwise significance threshold for assessing each of the association analysis results 

was defined by p<0.05. Multiple comparison (across voxels) correction was performed with 

the family wise error theory (Nichols and Hayasaka, 2003).

Results

The GPU-based implementation of BENtbx was 10-fold faster than the original version. But 

it still took roughly 10 days to calculate the static BEN maps for all 1023 subjects. The 

dynamic BEN mapping took about 40 days. Only 862 had all 4 rsfMRI scans, and the 

following analyses were based on the BEN maps of the 862 subjects. Fig. 2 shows the across 

subject average mdBEN maps (2A-2D), average STD_BEN (2E, 2F), average CV_BEN 

maps (2G, 2H) of the two sessions (each session containing a LR and a RL scan) of all 862 

subjects. The across subject average BEN maps from the static BEN mapping (msBEN1 and 

msBEN2 as shown in Fig. 2A and 2B) were very similar to the average mdBEN maps (Fig. 

2C and 2D), although the intensity differed due to the significant difference of the time 

series length (1200 for the static BEN mapping vs 300 for the dynamic BEN mapping). Gray 

matter (GM) showed lower BEN than white matter (WM) (p<1e-15, two tailed two sample t-

test on the GM and WM BEN values), and regions in the default mode networks (DMN) had 

lower BEN than the rest of the brain (p<1e-10, two tail two sample t-test for all subjects); 

both findings are consistent with our previous study. Dynamic BEN showed inhomogeneous 

fluctuations across the brain with higher fluctuations in WM, visual cortex, and motor cortex 

(p<1e-10, one-way ANOVA) (Fig. 2E, 2F). In relative to the mean BEN, dynamic BEN 

showed very high temporal stability as measured by the CV (<0.032 in the whole brain, Fig. 

2G, 2H. Data with CV <1 is often considered low variation).

We then assessed the effects of age and sex on BEN and its variations. We also examined the 

associations between cognition and BEN as well as its variations. The results from the BEN 

maps calculated from the entire 1200 time points and then averaged across the LR and RL 

scans were highly similar to those from the mean BEN maps of the dynamic BEN image 

series. Therefore, the results shown below were based on the static BEN mapping results 

(msBEN1 and msBEN2) only. Fig. 3 shows the test-retest stability of BEN as calculated by 

the intra-class correlation (ICC) (Shrout and Fleiss, 1979) between msBEN1 and msBEN2 at 

each voxel across all subjects. ICC is between −1 and 1 with 1 means fully repeatable. 

Usually ICC>0.3 can be treated as reliable. Using ICC>0.3, we can see from Fig. 3 that 

BEN is reliable across the entire brain cortex. Based on this reliability analysis result and the 

fact of that the association analysis results based on the mean of the first LR and the first RL 

rsfMRI scans (msBEN1) or the mean of the second LR and the second RL scans (msBEN2) 

were very similar, we chose to show the results based on the mean BEN of the first LR and 

RL scans (msBEN1) only.
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Fig. 4 shows the association maps of BEN to age, sex, education years, and fluid 

intelligence. Resting BEN was significantly correlated with age (Fig. 4A) in the prefrontal 

executive control network (ECN, consisting of the lateral prefrontal cortex, the posterior 

parietal cortex, the frontal eye fields, and part of the dorso-medial prefrontal cortex) and the 

frontal-temporal-parietal DMN. Determinations of ECN and DMN were based on previous 

publication about the two highly repeatable resting state networks(Beckmann et al., 2005; 

Biswal, 2012; Damoiseaux et al., 2006; Meindl et al., 2010; Shehzad et al., 2009; Smith et 

al., 2013). Women showed higher BEN in visual cortex, motor area, and some part of 

precuneus (Fig. 4B) than men. Longer education years were associated with decreased BEN 

in ECN and DMN (Fig. 4C). In Fig 4D, higher fluid intelligence was associated with lower 

BEN in part of ECN and DMN. Educations years were significantly correlated with fluid 

intelligence (r=.35, p=4.4e-28).

Fig 5 shows the associations of resting BEN to functional task performance. BEN in DMN 

and part of ECN was negatively correlated with better performance during performing 

working memory (Fig. 5A), language (Fig. 5B), and relational tasks (Fig. 5C). Temporal 

STD of BEN showed no significant age and sex effects and no significant correlations to 

education years, fluid intelligence, and task performance. Task performance indices were 

significantly (p<6e-40) correlated (r=0.39, 0.40, 0.81 for the working memory vs language, 

working memory vs relational, language vs relational task performance correlation, 

respectively).

Discussion

The major focus of this study was to examine the potential neurocognitive correlates of 

LRTC measured by rsfMRI entropy. Based on the observations of that resting state brain 

activity is non-specific to any cognitive function, we hypothesized that resting BEN may be 

linked to general cognitive capability as reflected by fluid intelligence and performance of 

functional tasks. We further postulated the potential link of BEN to these general capabilities 

to be observed in DMN/ECN because the two networks have been consistently shown to be 

active during task performing or at rest. To ensure the study rigor and reliability, we chose 

the HCP data set, which is thus far the largest one acquired at the single site using the same 

MR scanner with four repeated rsfMRI scans, each with 1200 timepoints. We first examined 

the potential transit fluctuations of BEN using a sliding window-based dynamic BEN 

mapping method. Our results showed that BEN was stable across the entire acquisition time 

with minor temporal variations, which did not show any significant correlation to age, sex, 

education, and neurocognitive measures after multiple comparison corrections. We then 

assessed the neurocognitive associations of resting BEN. Our results showed that BEN in 

DMN and ECN increases with age but decreases with years of education; women had higher 

BEN than men in the cortical area; BEN in DMN and ECN was negatively correlated with 

fluid intelligence and task performance for all of the three assessed cognitive tasks.

The high temporal stability of resting BEN across many different timepoints is consistent 

with the high test-retest reproducibility of BEN shown in our previous study (Wang et al., 

2014), suggesting BEN as a reliable brain activity metric. The finding of no significant 

correlation (after multiple comparison corrections) between the variability of transit BEN to 
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age and cognitive functions further suggest that the apparent BEN derived from rsfMRI is 

stable across age and that the small variations have no significant neurocognitive meanings 

at least for the healthy young adults.

Our major findings were the negative correlations between BEN in DMN/ECN and general 

functionality (reflected by fluid intelligence and task performance) and education. The 

negative education years vs DMN/ECN BEN correlation was consistent with our most 

recent study of BEN in normal aging and Alzheimer’s Disease (Wang, 2020). These 

associations support our hypothesis about the potential role of resting state brain activity and 

its LRTC/BEN in general cognitive capability: resting state brain activity in DMN/ECN may 

create or maintain a reserve of brain functionality and lower BEN (higher LRTC) indicates a 

larger capacity of the potential reserve. The reason for postulating this potential link is that 

education is a widely used proxy of brain reserve and brain reserve is a well-studied model 

of general cognitive capability for compensating cognitive impairment caused by 

neuropathological brain damages (Stern, 2006). In young healthy subjects, there is no 

pathological brain damage related brain dysfunction to compensate. Likely the major role of 

the latent brain reserve is to facilitate general intelligence and general functionality. Our 

BEN vs fluid intelligence and functional task performance association analyses served to 

test this postulation. Fluid intelligence is a surrogate measure of general intelligence as it 

needs more than the sum of the learned and specialized skills for solving newly encountered 

problems (Horn and Cattell, 1967). The negative correlations between BEN and three 

different task performance suggest that resting BEN is non-specific to a particular domain 

function, proving its hypothetical role in general functionality. Education has been shown to 

be moderately correlated with general intelligence in young healthy individuals (Ritchie and 

Tucker-Drob, 2018) as we also observed in this study. However, in additional analysis (data 

not shown), we included education years and PMAT scores in the same model. By covarying 

out the education effects, we still observed similar BEN vs fluid intelligence association 

patterns though the suprathreshold clusters became slightly smaller. In other words, BEN is 

negatively correlated to fluid intelligence independent of education.

Our hypothesis about the latent functionality reserve and resting state activity was extended 

from the existing speculations that resting state brain activity plays a role in maintaining and 

facilitating brain functions such as language, social interaction, and memory (Raichle, 2006; 

Raichle and Gusnard, 2002; Raichle et al., 2001). The major difference between our 

hypothesis and the existing literature is the generality of the facilitation function of the 

resting state activity. We would argue that resting state brain activity backbones the general 

intelligence which is more than a summation of specific brain functions. This hypothesis 

was evidenced by the associations of resting BEN to general intelligence measured by fluid 

intelligence and education years.

Our association analysis results unanimously highlighted DMN and ECN, which is 

consistent with the well-known phenomenon that DMN and ECN (also called task positive 

network in (Shulman et al., 1997)) are two major brain circuits that are both active either 

during task performance (G. L. Shulman, 1997; Shulman et al., 1997) or at rest (Beckmann 

et al., 2005; Greicius et al., 2003). In previous studies, DMN and ECN were revealed as two 

separate but negatively correlated brain networks through the inter-regional signal 
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coherence. By contrast, DMN and ECN were identified as a single circuit based on LRTC of 

each voxel’s time series. In other words, our results may suggest that DMN and ECN may 

represent one unified brain circuit underlying the general intelligence and general 

functionality of the brain. This postulation does not exclude the value of separating them 

into two networks based on inter-regional correlations but rather highlights the potential 

unification of them in terms of the non-directional temporal coherence. Since entropy is also 

a measure of information, an alternative view to understand this possible unification can be 

that resting state activity in these two networks presents equal information for assessing the 

latent brain function reserve, and it is that information/entropy capacity that differentiate 

them from other parts of the brain.

Resting brain activity has been shown to be predictive of human behavior (Chén et al., 2019; 

Li et al., 2013) or brain activation during functional task performance regional inter-voxel 

correlations(Cohen et al., 2020; Hampson et al., 2006; Liu et al., 2011; Tavor et al., 2016; 

Tian et al., 2012; Zou et al., 2013). These studies are mostly derived from inter-regional 

functional connectivity and often found different brain regions showing rest vs task or rest vs 

behavior associations. By contrast, our results consistently revealed the unified DMN/ECN 

area, which should be considered complementary to the existing rest vs task or rest vs 

cognition association literature.

Age effects identified in this study was consistent with the aging effects and the positive 

correlations between BEN and AD pathological deposition in healthy elderly people in our 

recently published paper(Wang, 2020). Guided by the second thermodynamic law, entropy 

of the brain tends to increase with age as tissues face more structural and functional 

deteriorations when they become older (Drachman, 2006; Hayflick, 2004). Entropy of 

resting brain activity has been shown to increase with age (Yao et al., 2013). Our study 

differed from theirs by using a different entropy calculation algorithm and by highlighting 

BEN in DMN and ECN. While the unfortunate aging-related entropy increase seems 

unavoidable, results of this paper and our recent publication(Wang, 2020) showed a negative 

correlation between education years and DMN BEN, suggesting a plausible way of reducing 

resting BEN through extended education and learning. In a recent study, our group showed 

that beneficial focal stimulations via transcranial magnetic stimulations can reduce local 

BEN(Donghui Song, 2017). In line with that neuromodulational effects, the education 

effects on resting BEN revealed in this paper and our recent publication (Wang, 2020) 

suggests that resting BEN may be modifiable, which is of particular interest for future brain 

disease studies.

Higher BEN in women was found in most of the brain cortices. Some of the sex effects were 

reported before (Li et al., 2016) but the spatial distribution is substantially bigger in this 

study. Since our BEN mapping results showed that lower BEN in frontal and parietal regions 

are associated with better fluid intelligence and functional task performance, higher cortical 

BEN in women suggests that women had worse performance of fluid intelligence test and 

functional task. To test this postulation, we assessed sex difference of the various 

neurobehavior scores available from the HCP database. We found that men had higher fluid 

capability than women as measured by the PMAT24 (p=2e-6), card sorting (p=0.0017), 

flanker test (also an measure of conflict solving, p=0); men had higher total cognitive score 
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(p=0.0001), picture vocabulary test (for crystal capability, p=0.0001) and total crystal 

capability score (p=5e-6); men performed better than women in language task (p=0), 

working memory task (p=0). These cognitive sex differences support the postulation given 

above and are consistent with the general literature (Đapo and Kolenović-Đapo, 2012; 

Halpern, 2013; Steinmayr et al., 2010). While we do not know the exact reason for the 

consistent sex differences, they might be contributed by genetic, hormonal, and 

environmental effects(Cosgrove et al., 2007), or even sleep (our additional analysis found 

that women had worse sleep quality (measured by Pittsburg Sleep Quality index, p=0.04). 

Future work is necessary to further delineate the reasons for the profound sex difference in 

BEN.

It is worth to note that resting-state fMRI is often contaminated by physiological noise such 

as respiration and heart rate variations (Birn et al., 2006; Birn et al., 2008; Chang et al., 

2009; Chen et al., 2020; Kassinopoulos and Mitsis, 2019). Because the low frequency nature 

of these confounds, the high sampling rate of the multi-band sequence used in HCP allowed 

filtering out part of them. The data used in this study was processed by HCP using low-pass 

filtering and physiology noise removing steps including white matter and CSF signal 

regression (Behzadi et al., 2007) and independent component analysis-based 

denoising(Salimi-Khorshidi et al., 2014), which have been demonstrated to be able to 

substantially remove the physiological noise. Nevertheless, the residuals of those noise could 

still affect entropy mapping based rsfMRI, meaning that the apparent BEN might be still 

contaminated by physiological noise. Given the fact of that the DMN/ECN BEN patterns 

were unanimously identified in nearly all association analyses and physiological noise 

contamination is unlikely correlated to those biological and cognitive measures uniformly, it 

is reasonable to argue that the potential physiological contaminations to the main findings if 

there exist should be minimal. In a recent publication (Wang, 2020) we calculated BEN 

using the multi-site rsfMRI data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). Since the ADNI rsfMRI data were acquired with the traditional gradient echo 

weighted echo planar imaging sequence that has much lower signal-to-noise-ratio and lower 

temporal resolution than the multi-band sequence used in the HCP, the level of physiological 

contaminations to the acquired rsfMRI should be very different from those in the HCP data. 

The residual contaminations if exist after processing should also be much different. But we 

still observed similar DMN BEN vs age and education correlations to those identified in this 

paper, which further release the concern of the physiological contaminations to BEN and the 

corresponding neurocognitive correlates. Another concern is the outliers, which can induce 

artificial large correlation coefficients using the moment-based Pearson Correlation 

Analysis. This concern was partially alleviated by the use of large samples. By examining 

the scatter plots between regional BEN and the biological/behavioral scores (see 

Supplementary Materials), we did not find obvious outliers in neither BEN nor the scores.

Regarding dynamic BEN mapping, parameters include the length of the dynamic BEN 

assessment window and the gap between adjacent assessment window may yield different 

results. It would be interesting to evaluate the variations due to the choice of these 

parameters. However, the computation time would be too excessive to take. As the variations 

are systematic to all subjects, we do not expect to see much difference regarding the image 
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pattern of the mean and std of the dynamic BEN images and their associations with age, sex, 

education, and neurocognitive measures.

Conclusion

In conclusion, the long rsfMRI time series from a large cohort of healthy subjects in the 

HCP proved BEN is a temporally stable brain activity measure. Resting BEN is associated 

with fluid intelligence and broad functionality. BEN in DMN/ECN may be assessed as a 

proxy for characterizing the potential functional reserve which may be improved by 

education and may result in better brain function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A scheme of the sliding window-based dynamic entropy calculation. A) A large time 

window is used to extract a sub-time series at N successive timepoints (N=8 here) from the 

original time series. The green box indicates the window slid to the n-th timepoint. B) The 

standard sample entropy formula is used to calculate entropy for the sub-time series 

extracted from A. B.1 and B.2 illustrate the embedding vector matching process for the 

embedding window length of m and m+1, respectively. The boxes in different color indicate 

the locations of the embedding vectors in the input time series—the sub-series from A).
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Fig. 2. 
Across-subject (n=862) mean maps. A) and B) are the mean of individual subject’s static 

BEN maps of the first LR and RL scans, and the second LR and RL scans, respectively. C) 

and D) are the mean of all subjects’ average dynamic BEN maps of the first LR and RL 

scans, and the second LR and RL scans, respectively. E) and F) are the across-subject mean 

of the dynamic BEN STD. G) and H) are the mean CV map of the dynamic BEN.
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Fig. 3. 
ICC of the static BEN maps (msBEN1 and msBEN2). Threshold was ICC>0.3.
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Fig. 4. 
The age, sex, and education effects on resting BEN as well as the associations of resting 

BEN with fluid intelligence. n = 862. Statistical significance level was p<0.05 (FWE 

corrected). Red/blue colors indicate positive/negative correlations, respectively. Color bars 

indicate the t-values of the regression analyses (A, C, and D) and the two-sample t-test (B).
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Fig. 5. 
Resting BEN was negatively associated with task performance in A) working memory task, 

B) language task, C) relational task. Blue color indicates negative correlation. Statistical 

significance level was defined by p<0.05 (FWE corrected). Task performance was measured 

by the accuracy of item selection during the on-the-magnet fMRI tasks.

Wang Page 21

Neuroimage. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Ethics statement
	Data and BEN mapping.
	Fluid intelligence and functional task performance
	A sliding window based dynamic BEN mapping.
	Statistical analysis.

	Results
	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.

