Skip to main content
. 2021 May 6;9(5):e22591. doi: 10.2196/22591

Table 3.

Performance of each model with all features input.

Model Accuracy AUCROCa Sensitivity Specificity Precision F1
Random forests 0.914 0.986 0.877 0.955 0.955 0.914
Decision trees 0.792 0.796 0.712 0.881 0.867 0.782
kNNb 0.743 0.779 0.712 0.776 0.776 0.743
LDAc 0.829 0.882 0.781 0.881 0.877 0.826
AdaBoostd 0.886 0.969 0.822 0.955 0.952 0.882
DNNe 0.921 0.964 0.904 0.940 0.943 0.923

aAUROC: area under the receiver operating characteristic curve.

bkNN: k-nearest neighbor.

cLDA: linear discriminant analysis.

dAdaBoost: adaptive boosting.

eDNN: deep neural network.