Table 3.
Model | Accuracy | AUCROCa | Sensitivity | Specificity | Precision | F1 |
Random forests | 0.914 | 0.986 | 0.877 | 0.955 | 0.955 | 0.914 |
Decision trees | 0.792 | 0.796 | 0.712 | 0.881 | 0.867 | 0.782 |
kNNb | 0.743 | 0.779 | 0.712 | 0.776 | 0.776 | 0.743 |
LDAc | 0.829 | 0.882 | 0.781 | 0.881 | 0.877 | 0.826 |
AdaBoostd | 0.886 | 0.969 | 0.822 | 0.955 | 0.952 | 0.882 |
DNNe | 0.921 | 0.964 | 0.904 | 0.940 | 0.943 | 0.923 |
aAUROC: area under the receiver operating characteristic curve.
bkNN: k-nearest neighbor.
cLDA: linear discriminant analysis.
dAdaBoost: adaptive boosting.
eDNN: deep neural network.