Table 4.
Feature | Model | Accuracy | AUROCa | Sensitivity | Specificity | Precision | F1 |
All features | DNNb | 0.9357 | 0.9699 | 0.9452 | 0.9253 | 0.9393 | 0.9323 |
Lifestyle | Random forests | 0.8428 | 0.9195 | 0.9253 | 0.7671 | 0.9180 | 0.8358 |
Envc | Decision trees | 0.8000 | 0.8185 | 0.8805 | 0.7260 | 0.8688 | 0.7910 |
Env+Lifestyle | Random forests | 0.8357 | 0.9256 | 0.8805 | 0.7945 | 0.8787 | 0.8345 |
Clinical questionnaire | AdaBoostd | 0.6956 | 0.6825 | 0.6666 | 0.7142 | 0.7692 | 0.7407 |
aAUROC: area under the receiver operating characteristic curve.
bDNN: deep neural network.
cEnv: environmental.
dAdaBoost: adaptive boosting.