Skip to main content
. 2021 May 6;9(5):e22591. doi: 10.2196/22591

Table 4.

Performance given different feature sets.

Feature Model Accuracy AUROCa Sensitivity Specificity Precision F1
All features DNNb 0.9357 0.9699 0.9452 0.9253 0.9393 0.9323
Lifestyle Random forests 0.8428 0.9195 0.9253 0.7671 0.9180 0.8358
Envc Decision trees 0.8000 0.8185 0.8805 0.7260 0.8688 0.7910
Env+Lifestyle Random forests 0.8357 0.9256 0.8805 0.7945 0.8787 0.8345
Clinical questionnaire AdaBoostd 0.6956 0.6825 0.6666 0.7142 0.7692 0.7407

aAUROC: area under the receiver operating characteristic curve.

bDNN: deep neural network.

cEnv: environmental.

dAdaBoost: adaptive boosting.