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Abstract

Circadian rhythms are oscillations of behavior, physiology and metabolism in many organisms. Recent advancements in
omics technology make it possible for genome-wide profiling of circadian rhythms. Here, we conducted a comprehensive
analysis of seven existing algorithms commonly used for circadian rhythm detection. Using gold-standard circadian and
non-circadian genes, we systematically evaluated the accuracy and reproducibility of the algorithms on empirical datasets
generated from various omics platforms under different experimental designs. We also carried out extensive simulation
studies to test each algorithm’s robustness to key variables, including sampling patterns, replicates, waveforms,
signal-to-noise ratios, uneven samplings and missing values. Furthermore, we examined the distributions of the nominal
P-values under the null and raised issues with multiple testing corrections using traditional approaches. With our
assessment, we provide method selection guidelines for circadian rhythm detection, which are applicable to different types
of high-throughput omics data.
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Background

Circadian rhythms are approximately 24-h oscillations of behav-
ior, physiology and metabolism that exist in almost all liv-
ing organisms ranging from prokaryotes to mammals [1, 2].
Circadian rhythm is regulated by the circadian system, which
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consists of many ‘clock-controlled genes’ that exhibit oscilla-
tory patterns [1]. These oscillations provide organisms with an
adaptive advantage by enabling them to predict and adjust to the
variations within their environments [3]. Additionally, and per-
haps more importantly, disruptions of circadian rhythms have
shown to contribute to numerous diseases, including metabolic
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disorders, heart disease and aging [4–7]. It is, therefore, of great
importance and interest to perform genome-scale analysis of
biological rhythms.

Recent advances in omics technologies, including both
microarrays and next-generation sequencing, offer appealing
platforms to identify circadian genes on a genome-wide scale.
These have, indeed, led to the proposal of multifarious method-
ologies adopted from various fields including mathematics,
statistics, astrophysics, etc. The earliest of the selected methods
is Lomb-Scargle (LS) periodogram [8], an algorithm adapted from
astrophysics that detects oscillations by comparing the data
to sinusoidal reference curves of varying periods and phases
[9, 10]. ARSER is an algorithm that employs autoregressive
spectral estimation to predict periodicity and applies a harmonic
regression model to fit the time series [11]. Unlike the model-
based LS and ARSER, JTK_CYCLE is a non-parametric method
that detects oscillations by comparing the ranks of the measured
values to a set of prespecified symmetric reference curves [3].
Both RAIN and eJTK_CYCLE build on the strengths of JTK_CYCLE:
RAIN includes an additional set of asymmetric waveforms and
examines the increasing and decreasing portions of the curve
separately [12]; eJTK_CYCLE improves JTK_CYCLE by explicitly
calculating the null distribution such that it accounts for multi-
ple hypothesis testing and by including non-sinusoidal reference
waveforms [13]. Based on the successes of the aforementioned
methods, MetaCycle proposes an ensemble framework that
integrates results from three different algorithms: LS, ARSER
and JTK_CYCLE [14]. Specifically, MetaCycle detects periodicity
using the best of breed methods: its P-values are generated
using Fisher’s method, its periods and phase estimations are
integrated using arithmetic and circular means and a new
periodic model, formulated from ordinary least squares method,
is applied to recalculate the amplitude. The most recent method,
BIO_CYCLE, is a deep neural network trained on both simulated
and empirical circadian and non-circadian time series [15]. More
general information and characteristics of each method are
summarized in Table 1.

Multiple studies [10, 16, 17] have evaluated the performance
of different methods for circadian rhythm detection, showing
discrepancies among the methods, whose performances depend
on multiple factors including experimental designs, waveforms
of interest, etc. However, there has not been, to our best knowl-
edge, a comprehensive summary and evaluation of all existing
methods to date. Here, we systematically assess the perfor-
mance of the seven aforementioned algorithms for circadian
rhythm detection: LS, ARSER, JTK_CYCLE, RAIN, eJTK_CYCLE,
MetaCycle and BIO_CYCLE.

Specifically, we demonstrated and benchmarked the algo-
rithms using real datasets with gold-standard circadian and
non-circadian genes. All empirical data were generated using the
liver tissue from Mus musculus that had undergone two different
experimental designs. Under the dark–dark experimental design
(24-h darkness), we focused on using data from gene expression
microarrays to assess the accuracy and reproducibility of each
algorithm; under the light–dark experimental design (12-h light
followed by 12-h darkness), we adopted four different next-
generation sequencing platforms and explored the robustness
of each method in identifying circadian genes. Furthermore,
to extend our assessment to non-transcriptomic datasets, we
included a proteomic dataset in our evaluation. In addition,
we carried out extensive simulation studies to study how key
variables, including sampling patterns, replicates, waveforms,
signal-to-noise ratios (SNRs), uneven samplings, missing values,
affect the performance of each method. Lastly, we point out the

flaw with using the Benjamini–Hochberg procedure to control
for false discovery rate (FDR). Through these, we offer guidelines
on experimental designs as well as best practices and methods
of choice to increase the rigor and reproducibility in the analysis
of large-scale circadian rhythms. To assist with the comparison
of future methods and datasets using our framework, we provide
detailed vignettes on applications of existing methods and per-
formance evaluations with source code available at https://githu
b.com/wenwenm183/Circadian_Genes_Benchmark.

Results
Performance assessment using empirical datasets with
dark–dark design

We first adopted three gene expression microarray datasets from
Hughes et al. [18], Hughes et al. [19] and Zhang et al. [20]. For
all three studies, mouse liver samples were collected in every
hour or every 2 h under the dark–dark experimental design for
48 h. We named these three datasets after the first author’s last
name and the year of publication as Hughes 2009, Hughes 2012
and Zhang 2014. In addition, we generated a new downsampled
dataset from the Hughes 2009 dataset by keeping the even time
points only, and named it ‘Downsampled Hughes 2009.’ Refer
to Table 2A for details of the data. Figure 1 shows the scaled
gene expression levels of four known circadian and four non-
circadian genes. The circadian genes, including the well-studied
Clock, Cry1, Npas2 and Per1 [10], show oscillatory patterns that
can be well reproduced across studies, while the non-circadian
genes exhibit only noisy signals.

We set out to apply the seven algorithms to these four
datasets to detect significantly cyclic genes and evaluate their
performances using 104 circadian [10] and 113 non-circadian
genes [21] from previous studies (Supplementary Table 1). The
accuracy of each method in Hughes 2009, Downsampled Hughes
2009, Hughes 2012 and Zhang 2014 was the first assayed with
the precision and recall rates for each algorithm given three
P-value thresholds, 0.000005 (Bonferroni), 0.00005, 0.0005 and
one q-value threshold 0.05 (Benjamini–Hochberg). Due to the
trade-off between sensitivity and specificity, with more relaxed
thresholds of significance, the precision rates of all methods
decrease while the recall rates increase—the 0.05 q-value
threshold achieves the lowest precision rate yet the highest
recall rate for any given method (Figure 2A). While there does
not exist a single method that consistently achieves the highest
precision or recall rate, JTK_CYCLE and BIO_CYCLE are more
effective in controlling for false positives while still detecting
true circadian genes. For the other methods, however, there is
a much higher variability in precision, especially in the Zhang
2014 dataset (Figure 2A). RAIN and MetaCycle tend to have the
highest sensitivity/recall, but this can come with significant
sacrifice on precision (Figure 2A).

In addition, we find that higher sampling frequency can
significantly improve the recall rates of all methods. While Meta-
Cycle and RAIN achieve the apparently higher recall rate under
different thresholds in dataset sampled at a lower frequency
(2 h/2 days), all methods, except for LS, produce comparable
recall rates when applied to the Hughes 2009 dataset, which is
sampled at 1 h/2 days (Figure 2A). Notably, when analyzing the
three datasets with lower sampling frequencies, LS failed under
all circumstances with recall rates less than 0.1 (Figure 2A). This
is due to the extreme P-value distribution of the method with
a spike at one, which we will discuss in more detail under
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Table 1. Summary of seven existing methods for circadian rhythm detection

Package Method
key words

Method
Type

Reference Availability Language Replicates Missing
Values

Uneven
Sampling

LS Periodogram Parametric Bioinformatics
(2006)

https://www.iiap.re
s.in/astrostat/tuts/
Lomb-Scargle.html

R � � �

ARSER
(ARS)

Harmonic
Regression

Parametric Bioinformatics
(2010)

http://bioinformati
cs.cau.edu.cn/ARSE
R

Python & R × × ×

JTK_CYCLE
(JTK)

Kendall’s
Tau

Non-
parametric

J Biol
Rhythms
(2010)

https://openwetwa
re.org/wiki/Hughe
sLab:JTK_Cycle

R � � ×

RAIN Asymmetric
waveforms

Non-
parametric

J Biol
Rhythms
(2014)

http://bioconducto
r.org/packages/rain

R � � �

eJTK_CYCLE
(eJTK)

Empirical
p-values

Non-
parametric

PLOS Comp.
Bio. (2015)

https://github.com/a
lanlhutchison/empi
rical-JTK_CYCLE-wi
th-asymmetry

Python � � �

MetaCycle
(MC)

Integration Parametric Bioinformatics
(2016)

https://cran.r-proje
ct.org/package=Me
taCycle

R � � �

BIO_CYCLE
(BC)

Deep
Neural
Network

Parametric Bioinformatics
(2016)

http://circadiomics.i
gb.uci.edu

R � �/×a �

aBIO_CYCLE can be applied to datasets with missing values only if there are replicates and the missingness only pertains to part of the replicates.

Figure 1. Examples of circadian and non-circadian benchmark gene expressions among three datasets with dark–dark experimental design. Scaled gene expressions

from selected (A) circadian genes including Clock, Cry1, Npas2 and Per1 and (B) non-circadian genes including Utp6, Mtf1, Cln3, Abcd4.

‘Correlated multiple testing and non-uniform distribution of
P-values under the null’.

We further computed with the receiver operating character-
istic (ROC) curves with a varying threshold on the nominal P-
values returned by each method (Figure 2B). The areas under
the curve (AUC) values serve as a joint measure of sensitivity
and specificity and are above 0.80 across all benchmark results,
suggesting that all methods achieve good sensitivities while con-
trolling for false positive rates. BIO_CYCLE, the deep-learning-
based method, achieves the best performance with the highest
AUC across all datasets (Figure 2B).

Reproducibility assessment using empirical datasets
with dark–dark design
Reproducibility is one of the core principles for any bioinformatic
tools and yet it remains a challenge in the field of circadian
rhythm detection, which has not been fully explored. To evaluate
the reproducibility of the methods, we first compared and con-
trasted the significantly cyclic genes returned by each method
across the four datasets. To make the input dimensions compat-
ible, we selected a total of 7570 common genes that are shared
across datasets and adopted a q-value threshold of 0.05 for sig-
nificance. The Venn diagrams in Figure 3A show the overlapping

https://www.iiap.res.in/astrostat/tuts/Lomb-Scargle.html
https://www.iiap.res.in/astrostat/tuts/Lomb-Scargle.html
https://www.iiap.res.in/astrostat/tuts/Lomb-Scargle.html
http://bioinformatics.cau.edu.cn/ARSER
http://bioinformatics.cau.edu.cn/ARSER
http://bioinformatics.cau.edu.cn/ARSER
https://openwetware.org/wiki/HughesLab:JTK_Cycle
https://openwetware.org/wiki/HughesLab:JTK_Cycle
https://openwetware.org/wiki/HughesLab:JTK_Cycle
http://bioconductor.org/packages/rain
http://bioconductor.org/packages/rain
https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry
https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry
https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry
https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry
https://cran.r-project.org/package=MetaCycle
https://cran.r-project.org/package=MetaCycle
https://cran.r-project.org/package=MetaCycle
http://circadiomics.igb.uci.edu
http://circadiomics.igb.uci.edu
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Figure 2. Evaluation of seven methods by precision, recall rates and ROC curves. (A) A P-value threshold of 0.000005 (Bonferroni threshold), 0.00005, 0.0005 and a q-value

threshold of 0.05 (FDR threshold) are adopted for each of the seven methods applied to the four dark–dark empirical datasets. A more relaxed threshold results in a

higher recall rate, with FDR being the most sensitive, yet this also leads to a higher number of false positives with a lower precision rate. (B) ROC curves and AUC values

using gold-standard circadian and non-circadian genes. Each method is evaluated across four dark–dark empirical datasets. Sensitivity and specificity are calculated

using the nominal P-values by each method with varying threshold. BIO_CYCLE returns the highest AUC.

relationships of the significant genes returned by each method.
While the experimental designs are the same and the observed
gene expression measurements are highly concordant (Figure 1),
significant discrepancies of the calling results are observed. Of
the seven benchmarked methods, ARSER resulted in 721 over-
lapping significant genes, which is the highest. This is followed
by RAIN, eJTK_CYCLE, MetaCycle, BIO_CYCLE, JTK_CYCLE and LS
with 613, 528, 485, 296, 204 and 0 mutually identified positives,
respectively. As mentioned previously, LS failed in detecting any
significant oscillations for three out of the four datasets.

To further assess the reproducibility of the methods, we
computed the Jaccard index and the Sorensen index to measure
the similarities among the results from each method. Details of
these metrics are included in the Materials and Methods section.
As a result, RAIN achieves one of the highest Jaccard indices
for any pair of comparisons and ARSER achieves the highest
overall Sorensen index across all datasets (Figure 3B). On the
other hand, our results indicate that JTK_CYCLE, and BIO_CYCLE
produce the lowest similarity metrics across all comparisons
(Figure 3B).

Performance assessment using empirical datasets with
light–dark design

Next, we adopted four datasets that underwent light–dark exper-
imental design using different next-generation sequencing plat-
forms (i.e. RNA-seq [22], Nascent-seq [22], GRO-seq [23] and
XR-seq [24]) and named each one after its sequencing protocol
(Table 2B). The four datasets have much fewer numbers of time
points compared to the datasets from the dark–dark design, yet

three of the four datasets have technical replicates (Table 2B).
More details of the data can be found in the Materials and
Methods section. The oscillatory patterns of known circadian
genes are apparent and similar among the various sequencing
technologies (Figure 4A), indicating good data quality.

ARSER, despite its high reproducibility, cannot handle repli-
cates, and previous studies have shown that data should never
be concatenated [17]. Therefore, we focused on assessing the
performance of the other six methods. We first examined the
distribution of the nominal P-values of the 104 gold-standard
circadian genes returned by each method, visualized as bee-
hive plots in Figure 4B, where LS is significantly underpow-
ered in the detection of circadian genes compared to the other
methods, given any of the sequencing platforms. This result
can be attributed to LS’s inability to effectively detect circadian
rhythms in datasets with low sampling resolution, which is con-
cordant with our previous results. We observe that JTK_CYCLE,
RAIN, eJTK_CYCLE, MetaCycle and BIO_CYCLE can withstand the
sparse sampling and result in overall good performance.

To further assess the performance of the methods, we
examined the number of significant genes identified by each
method with a FDR of 0.05. Of the 9481 mutual genes in the
four datasets, LS did not identify any significant genes in any
of the datasets. This result aligns with the results from the
previous analysis, where we observed LS as being underpowered.
JTK_CYCLE and MetaCycle detected a relatively small number
of significant genes by RNA-seq and XR-seq. eJTK_CYCLE
identified 2623 significant genes by RNA-seq, and RAIN and
BIO_CYCLE identified 2262 and 1970 significant genes by XR-
seq, respectively. When comparing across different sequencing
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Figure 3. Evaluation of method reproducibility. (A) Venn diagrams display the number of cyclic genes that are significant by each method among the four dark–dark

datasets. (B) Jaccard index and the Sorensen index are used as metrics for reproducibility for each method across the four datasets with the same experimental design.

platforms, we observe that the number of detected significant
genes from RNA-seq and XR-seq data is much higher than
that of the GRO-seq and Nascent-seq data. This implicates a
potential deficiency in detecting gene expression rhythmicity
by measuring nascent transcripts.

With the identified significant genes, we further carried out
a gene set enrichment analysis using the DAVID web server [25,
26] with the default options. Results from the KEGG pathway
enrichment analysis are shown in Supplementary Table 2. We
find that circadian rhythm is significantly enriched by vari-
ous algorithms, which are marked with asterisks in Figure 4B.
Specifically, we find that of the five methods that were able
to identify statistically significant genes from RNA-seq data, all
have enriched circadian rhythm pathway. Circadian rhythm is
also enriched in the three lists of genes that were identified by
eJTK_CYCLE and RAIN as well as two of the three lists of genes
identified by BIO_CYCLE.

Performance assessment using empirical proteomic
dataset of dark–dark design
To assess performance of the various methods on non-
transcriptomic data, we adopted a proteomic dataset of mouse
livers under dark–dark experimental design from Robles et al.
[27]. Refer to the Materials and Methods section for details.
Since this dataset consists of replicates and missing values, only
LS, JTK_CYCLE, RAIN and MetaCycle were directly applicable.
eJTK_CYCLE was not included due to its inefficiency in handling
random missing values across different genes/proteins. We
calculated the number of significant proteins identified by
each method using an FDR threshold of 0.05 (Supplementary
Figure 1A). LS identified the least number of oscillatory proteins.
JTK_CYCLE and MetaCycle returned a moderate number of
significant proteins. RAIN identified the largest number of
oscillatory proteins, 582, exceeding that of other methods by
more than 300. Heatmaps of scaled measurements of oscillatory

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
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Figure 4. Circadian rhythm detection under light–dark experimental design by GRO-seq, Nascent-seq, RNA-seq and XR-seq. (A) Gene-specific measurements of nascent

RNA, RNA and transcription-coupled repair of four circadian benchmark genes, Clock, Npas2, Cry1 and Per1 by four different sequencing platforms. The solid and dotted

lines are used for the first and second replicates, respectively. (B) Beehive plots of negative log P-values of base 10 of circadian genes as positive controls. The number

of significant genes detected by each method with an FDR threshold of 0.05 are shown in parenthesis. The asterisks denote significant GO enrichments of circadian

rhythm pathway. The nominal P-values by JTK_CYCLE, MetaCycle and BIO_CYCLE are the most significant, while LS and RAIN tend to be underpowered. ARS is not

included in the analysis because it cannot be applied to datasets with replicates.

proteins identified by at least two methods are shown in
Supplementary Figure 1B, where the proteins are ordered based
on their inferred phases. With the identified oscillatory proteins,
we conducted a gene set enrichment analysis using the DAVID
web server. While the results did not indicate that circadian
rhythm was significantly enriched by any of the algorithms,
KEGG metabolic pathways were significantly enriched by all
algorithms but LS (Supplementary Table 3).

Performance assessment using synthetic datasets

To provide guidelines for method selection, we evaluated the per-
formance of the seven methods in detecting circadian rhythm by
simulations with known ground truths. Examples of waveforms
generated for the simulated datasets are shown in Supplemen-
tary Table 4. We generated six groups of simulated datasets to
investigate how key factors affect the performance, including
sampling patterns, replicates, waveforms, SNRs, uneven sam-
plings and missing values. Supplementary Table 5 outlines the
six groups of simulations and we leave the detailed setup in the
Materials and Methods section. Within each simulation group,
we repeated each assessment with three different sampling fre-
quencies to determine whether increasing sampling frequency
may have an effect on the aforementioned factors. The three
sampling frequencies include 4 h/1 (six time points), 3 h/1 (eight
time points) and 2 h/1 day (12 time points) and the results are
shown in Figure 5A–C, respectively.

Sampling patterns

To determine whether increasing the sampling frequency or
lengthening the time-window is more important for each
method, we first evaluated the results under the sampling
pattern of 4 h/1 day versus 8 h/2 days, 3 h/1 day versus 6 h/2 days
and 2 h/1 day versus 4 h/2 days. We did not find strikingly
different results within each pair of comparison, indicating
that when the total number of data points are fixed, having
a denser sampling density and enlarging the sampling time-
window tend to have similar impact on performance. However,

when we increase the number of data points, the performances
of all methods are improved, which is concordant with existing
studies [16, 17]. BIO_CYCLE generally outperforms the other
methods, especially in datasets with lower sampling frequency
and shorter time-window, while JTK_CYCLE is the most sensitive
to fewer observations.

Replicates

To investigate the trade-off between replicates and sampling fre-
quency, we compared the results of higher sampling frequency
without replicates to those of lower sampling frequency with
replicates. We first compared the dataset sampled at 4 h/1 day
X1 to the dataset sampled at 8 h/1 day X2. LS, JTK_CYCLE,
RAIN, eJTK_CYCLE and MetaCycle show better performance with
replicates, while BIO_CYCLE performs significantly better on
densely sampled datasets without replicates. Similar results are
seen when we applied the methods to the dataset at 3 h/1 day
without replicates and the dataset at 6 h/1 day with replicates.
As expected, further increasing the sampling resolution offsets
the existing preferences that the methods have for inclusion of
replicates or higher sampling density.

Waveforms

Supplementary Table 4 outlines the different types of periodic
waveforms that we generated in silico in three broad categories:
stationary, non-stationary and asymmetric ones. Through our
simulations, we find that all of the algorithms perform the
best in detecting non-stationary waveforms. Additionally, all
methods, with the exception of eJTK_CYCLE, perform better
on stationary waveforms, compared to asymmetric waveforms.
eJTK_CYCLE and RAIN are the top two methods for identify-
ing asymmetric waveforms, which are expected due to their
design. This is followed by LS, BIO_CYCLE, MetaCycle and ARSER.
JTK_CYCLE is the least effective in identifying asymmetric wave-
forms regardless of sampling frequency.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
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Figure 5. Performance assessment via simulation studies. Seven circadian rhythm detection methods are evaluated under different experimental designs to explore

how sampling patterns, replicates, waveforms, SNRs, uneven samplings and missing values affect performance. Simulations under each design are carried out with

different sampling frequencies: (A) 4 h/1 day, (B) 3 h/1 day and (C) 2 h/1 day. AUC values calculated from ground truths are used as metrics.

Signal-to-noise ratios (SNRs)

To test the effects of different noise levels on method perfor-
mance, we generated various datasets with SNRs of 3, 2, 1 and 0.5.
For all methods, our results suggest that the larger the SNRs, the
higher the accuracy, as expected. LS, MetaCycle and BIO_CYCLE
are overall the most robust to noises regardless of sampling
frequency, while JTK_CYCLE has the poorest performance given
high noise levels.

Uneven samplings

To understand how well the methods deal with uneven sam-
plings, we focus on the results of datasets with one or more
uneven time points. Our results suggest that BIO_CYCLE and
LS/MetaCycle outperform the other two compatible methods.
Under a sparse sampling design, RAIN and eJTK_CYCLE suffer
significantly from an increasing number of uneven samplings;
a dense sampling design, on the other hand, rescues the afore-
mentioned methods.

Missing values

We generated datasets that contain 1, 5 and 10% missing data,
and benchmarked the four methods that allow missing values.
The performances of eJTK_CYCLE and RAIN degrade with an
increasing proportion of missing values, while the performances
of LS, JTK_CYCLE and MetaCycle are comparably invariant, espe-
cially under dense sampling design. We note that eJTK_CYCLE
does not handle missing values efficiently, unless the same sam-
pling time points are missing across all genes, which reduces to
uneven sampling. When there is not a shared missing pattern
across different genes, the dataset needs to be split into multiple
uneven sampling cases, and eJTK_CYCLE needs to be applied

separately, followed by results integration. Note that BIO_CYCLE
can be applied to datasets with missing values only if there
are replicates and the missingness only pertains to part of the
replicates. We therefore did not include it in the benchmark.

Computational efficiency

Last but not least, we evaluated the computational efficiency
across all benchmarked methods. For dataset with low sampling
resolution, the execution times among the methods are approx-
imately the same (Supplementary Table 6). However, when ana-
lyzing data of larger sizes, RAIN requires significantly more time
compared to the other methods. The running time for LS, ARSER
and BIO_CYCLE does not change much with varying sampling
frequency. The running time for MetaCycle, which integrates
results from LS, JTK_CYCLE and ARSER, is calculated as the total
running time of the three methods.

Correlated multiple testing and non-uniform
distribution of P-values under the null

To detect circadian rhythm across thousands of genes, multi-
ple hypothesis testing corrections are needed [28]. A common
FDR threshold of 0.05 is recommended by most methods and
adjusted P-values (q-values) are returned by all methods except
for RAIN. In the previous sections, we adopted both Bonferroni
and Benjamini–Hochberg procedures for corrections. Here, we
more carefully examine such procedures and point out a poten-
tial drawback resulted from both correlated multiple testing and
non-uniform distributions of the nominal P-values under the
null. We started with the observed expression measurements
from the Hughes 2009 dataset and generated a ‘null’ dataset by
randomly permuting the time labels for each gene (Figure 6A).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
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Such permutations not only deplete each gene’s rhythmic sig-
nals but also disrupts any gene-gene correlations as observed
in the raw data, which are high between genes in the same
pathways (Figure 6B). As such, all genes upon permutations are
under the true null and additionally all gene-level testing is
independent.

Figure 6C shows the distributions of nominal P-values for
each method when applied to the dataset before and after
permutation. The ‘U-shaped’ histograms of the P-values for LS,
JTK_CYCLE, MetaCycle and RAIN using the original data indicate
that there is dependence among the variables in the data. This
violates the underlying assumption of uniformity and raises a
red flag for using Bonferroni or FDR for error control [28]. A few
methods have been developed for P-value adjustment when the
tests are correlated [29–31] and such issue has been specifically
pointed out by Hutchison and Dinner [32] for circadian rhythm
detection.

We further applied the methods to the permuted data
without gene-gene correlations. The hypothesis testing by LS,
JTK_CYCLE, RAIN and MetaCycle are still overly conservative,
while the testing procedures for ARSER and BIO_CYCLE are
biased with an overabundance of P-values around 0.3 and
0.1, respectively. eJTK_CYCLE empirically calculates the null
distribution of the P-values via permutations and its enhanced
version, booteJTK, speeds up this calculation by approximating
the null distribution of the Kendall’s tau using a Gamma
distribution [33]. This indeed leads to a P-value distribution
closest to the null. However, neither eJTK_CYCLE nor booteJTK
handles missing values efficiently, as explained previously. As
a summary, there is still room for method development to yield
P-values that better match the underlying assumption of a
uniformly distributed P-values under the null.

Discussion
Here, we propose a benchmark framework to systematically
evaluate the performance of seven circadian rhythm detection
methods, using high-throughput omics data. The empirical
datasets that we adopted in this paper were from microarray
[18–20] and RNA-seq [22] to measure gene expression, Nascent-
seq [22] and GRO-seq [23] to measure nascent RNA and XR-seq
[24] to measure transcription-coupled repair. While these omics
data were generated from different platforms, they focus on
directly or indirectly profiling transcription. It has been well
studied that biological rhythm goes beyond the transcriptomic
transcript-level oscillations [34]. For example, posttranslational
protein acetylation has been linked to circadian rhythm via
mass spectrometry [35, 36]. Moreover, it has been shown that
a large number of metabolites and proteins exhibit circadian
oscillations [27, 37, 38]. The methods and the evaluation
procedures are not limited to transcriptomic studies, but can
also be applied to acetylomic, metabolomic and proteomic
experiments.

Given the assessment results from both simulations and
empirical dataset analysis, as well as literature review of
the seven methods, we have summarized the strengths and
weaknesses of each method in Table 3. In general, LS, RAIN,
eJTK_CYCLE and MetaCycle are more versatile in that they can be
applied to datasets with replicates, uneven samplings or missing
values. eJTK_CYCLE and BIO_CYCLE generally outperform the
other methods under most situations except for handling
missing values. On the other hand, JTK is sensitive to high
noise levels and low sampling resolutions, and LS cannot detect
any significant genes when sampling resolution is lower than
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Figure 6. Existing methods return non-uniformly distributed P-values under the null, partially due to non-independent testing due to gene-gene correlations. (A) Gene

expression values for the benchmark circadian gene Cry1 before and after random permutations of the time labels. (B) Heatmaps of pairwise correlation coefficients

among the top 200 highly variable genes from the Hughes 2009 dataset. The top illustrates the gene-gene correlation coefficients calculated from raw data input, and

the bottom shows the gene-gene correlations after permutation. (C) The distributions of nominal P-values for each method when applied to the dataset before and after

permutation. Gene-gene correlations, which are accounted for by eJTK_CYCLE, partially lead to the systematic deviations from the null distributions. The hypothesis

testing by LS, JTK_CYCLE, RAIN and MetaCycle are overly conservative, while ARSER’s and BIO_CYCLE’s testing procedures are biased with an overabundance of P-values

around 0.3 and 0.1, respectively, under the null.

2 h/2 days with an FDR threshold of 0.05. The best detection
algorithm depends on experimental designs and characteristics
of the input data. Therefore, we have created two decision
trees, one for low sampling resolution and the other for high
sampling resolution, that outline the recommended method(s)
under different scenarios (Supplementary Figure 2).

Recent advances of high-throughput technologies enable cir-
cadian rhythm detection on the genome-wide scale. As with
all genomic data, the multi-time-point omics data for circa-
dian rhythm detection bear both technical and biological vari-
ability, which can bias the analysis if not properly accounted.
Data normalization and batch effect correction are crucial to
remove technical biases and artifacts [39]. Cross-subject vari-
ability in rhythmic profiles, especially for human subjects, is
a non-negligible source of genetic variation that needs to be
adjusted [14]. This is especially important in the case-control
setting where multiple subjects are involved. While we did not
particularly focus on differential analysis since it is outside the
scope of this paper, a few methods, including LimoRhyde [40] and
DODR [12] have been made available for differential rhythmicity
analysis under different conditions.

Increasingly more circadian omics data are being made avail-
able through existing studies and databases [34, 41]. We showed,
from our empirical studies, that the rhythmic signals can be
well recapitulated across different studies and/or different plat-
forms (Figures 1 and 4A). Meta-analysis and multi-omics data
integration remain an open-ended question in circadian rhythm
detection [42]. In addition, transfer learning has been applied
to multiple genomic research domains in genomics [43]—to
borrow information and to transfer knowledge from existing

data deposited in public repositories remain one of the future
directions. Similarly, across different methods, an ensemble
framework, as implemented by MetaCycle, can potentially boost
performance. However, as we have pointed out earlier, the
instability issue needs to be addressed, especially when multiple
drastically distinct results are to be integrated.

To our best knowledge, all existing studies for circadian
rhythm detection resort to bulk-tissue omics data, which
characterize an averaged profile across different cell types
in a tissue. The inherent heterogeneity can bias the analysis
with reduced power and/or inflated FDR. Single-cell sequencing
circumvents the averaging artifacts associated with traditional
bulk population data and has seen rapid technological develop-
ments over the past few years. To assess the feasibility of single-
cell circadian rhythm detection, we in silico generated single-cell
RNA sequencing profiles by downsampling bulk RNA-seq read
counts. Gold-standard circadian and non-circadian genes were
used to calculate the associated AUC values (Supplementary
Table 7). All methods suffer from low sequencing depth—a
characteristic of the single-cell data. With the decreasing cost
and the increasing popularity of single-cell omics techniques,
to profile circadian rhythmicity at the cellular level and to
disentangle within tissue heterogeneity with regard to biological
rhythm can be of great impact.

Materials and Methods
Empirical transcriptomic datasets

Three datasets under the dark–dark experimental design
including Hughes [18], Hughes [19] and Zhang [20] were

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
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Table 3. Pros and cons of circadian rhythm detection methods

Methods Pros Cons

LS • Effective in handling missing data • Highly sensitive to low sampling resolution
• Can be applied to datasets with replicates, uneven

samplings, and missing data
• U-shaped P-values distribution

• Sensitive to outliers

ARSER • High reproducibility • Cannot handle replicates, uneven samplings, or missing
data

JTK_CYCLE • High precision • Incapable of detecting asymmetric waveforms
• Robust to outliers • U-shaped P-values distribution

• Low reproducibility

RAIN • High recall • High false positive rates
• Effective in detecting asymmetric waveforms • U-shaped P-values distribution
• High reproducibility • Computationally intensive with increasing sampling

resolution• Can be applied to datasets with replicates, uneven
samplings, and missing data

eJTK_CYCLE • Uniform distribution of nominal P-values • Unable to test different periods simultaneously
• Most effective in detecting asymmetric waveforms • Inefficient in handling missing data

• Sensitive to high level of uneven samplings

MetaCycle • High recall • P-values generated with Fisher’s integration require
independence assumption• Offset the disadvantages of one method with the other two

among LS, ARSER and JTK_CYCLE via emsemble
• Directly return calling results from three perspective

methods
• U-shaped P-values distribution

BIO_CYCLE • Most effective in controlling for false positive
rates

• Require extensive time and in silico generated data to train
the DNN model

• Most robust to data with uneven samplings, and low
sampling resolutions.

• Handle missing values only if data have replicates and the
missingness only pertains to part of the replicates

• High precision

downloaded from GEO, and all used microarrays to profile
gene expressions (Table 2A). Additionally, we obtained four
datasets under the light–dark experimental design from the
different sequencing platforms, including Nascent-sequencing
(Nascent-seq) [22], RNA-sequencing (RNA-seq) [22], Global Run-
On sequencing (GRO-seq) [23] and eXcision Repair-sequencing
(XR-seq) [24] (Table 2B). Nascent-seq sequence transcribed RNAs,
obtained from the nuclei without formation of the 3′ end [44].
GRO-seq measures nascent RNAs by mapping, characterizing,
and evaluating transcriptionally engaged polymerase [45]. GRO-
seq and Nascent-seq differ from traditional RNA-seq, in which
the reads map to predominantly introns, while RNA-seq mainly
assays exons [44]. XR-seq profiles DNA excision repair on the
genome-wide scale with single-nucleotide resolution [46]. Here,
we focus on XR-seq data from the transcribed strand only—it
has been shown that the transcription-coupled repair from the
transcribed strand is positively correlated with expression [47].

For quality control, we removed genes that had constant gene
expression measurements in all datasets and further removed
genes with more than half zero gene expression values in the
light–dark datasets. In cases where multiple probes got mapped
to the same RefSeq loci, we averaged the gene expression of the
probes using the limma package [48], available in Bioconductor.
For data normalization, robust multi-array average (RMA) [49]
and genechip RMA (GC-RMA) [50] were used to normalize the
array data; transcript per million and reads per kilobase per mil-
lion reads (RPKM) [51] were used to normalize the transcriptomic
sequencing data. We scaled the normalized data within each
gene to make them compatible for visualization only, as shown
in Figures 1 and 4A.

Empirical proteomic dataset

A proteomic dataset of Mus musculus liver tissues from Robles
et al. [27] was adopted to detect oscillatory proteins. Mouse liver
samples were collected from a total of 64 mice that were released
into constant darkness for 1 day after being entrained to a 12–
12 h light–dark schedule for 10 days. Four mice were sacrificed
every 3 h for 2 days. Then, in vivo stable isotope labeling by amino
acids in cell culture (SILAC) [52, 53] in combination with mass
spectrometry was performed to profile the proteome. For each
time point, equal amount of protein liver extracts from the four
mice were mixed together with equal amount of protein lysates,
collected in antiphase, from the liver samples of two SILAC mice.
The pooled protein extracts were measured with Orbitrap mass
spectrometer. The protein abundance was calculated by taking
the ratio of the signal for the mice and the signal for the heavy
SILAC mix. After assessing quantification values, a total of 3132
proteins remained for downstream circadian rhythm analysis.

Downsampled RNA-seq dataset

We generated several downsampled RNA-seq datasets from the
original RNA-seq dataset under the light–dark design to assess
the robustness of the various methods to low sequencing depths.
We obtained the raw sequencing data from GEO, performed read
alignment to the mouse reference genome (mm10) using STAR
[54], carried out quality control procedures on the aligned reads,
and obtained integer-valued read counts using featureCounts
[55]. We then generated downsampled RNA-seq data by multi-
nomial sampling with index 5 K, 10 K, 50 K, 100 K and 500 K, and
gene-specific probability parameters calculated from the raw
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data. RPKM was used to normalize the downsampled RNA-seq
read counts, followed by circadian rhythm detection.

Evaluation metrics

To evaluate the performance of the benchmarked methods, we
adopted a list of 104 circadian [10] and 113 non-circadian genes
[21] in mouse liver as positive and negative controls, respectively.
See Supplementary Table 1 for a full list of these gold-standard
genes. With these gold-standard genes, we calculated metrics
including the precision and recall rates given a P-value or q-value
significance threshold (Figure 2A). We further calculated the
AUC values of the ROC curves, as joint measures of sensitivity
and specificity (Figure 2B).

To assess the reproducibility of each method, we compared
the results from the four dark–dark datasets by calculating
the number of overlapping genes, as well as the Jaccard
and Sorensen index as metrics for similarity (Figure 3). Venn
diagrams are used to display the number of overlapping cycling
genes identified across different datasets by each method.
The Jaccard index measures the pairwise similarities of the
significant genes detected between each pair of datasets. Let
Ai and Aj be the set of significant genes from dataset i and j. The
Jaccard similarity index is defined as follows:

J
(
Ai, Aj

) = | Ai ∩ Aj |
| Ai ∪ Aj | .

The Sorensen index is used to characterize similarity across
all datasets [56]:

S
(
Ai, Aj, Ak, . . .

) = T
T − 1

(∑
i<j | Ai ∩ Aj | − ∑

i<j<k | Ai ∩ Aj ∩ Ak | + ∑
i<j<k<l | Ai ∩ Aj ∩ Ak ∩ Al | − . . .∑

i | Ai |

)

where T is the number of sets compared. Larger number of over-
lapping genes and larger Jaccard/Sorensen index values indicate
higher reproducibility of the methods.

Simulation setup

Each simulated dataset consists of 6000 circadian and 6000
non-circadian gene profiles. Stationary circadian profiles with
a period of 24 h are used in each simulation group, as outlined
below. Note that when running the methods, we set the period
range from 20 to 28 h for all methods except for eJTK_CYCLE and
JTK_CYCLE, which either has a fixed period of 24 h or adjusts the
period on the fly. The amplitude of the waveforms is sampled
from a uniform distribution between 1 and 6; the phase shift is
sampled from a uniform distribution between 0 and 24 h; and
the noise term is sampled from a standard normal distribution.
Flat waveforms are used to generate non-circadian profiles in
all simulation groups except for testing against non-stationary
waveforms where linear lines are used.

We first aimed to investigate whether higher sampling
frequency or longer sampling time-window is more beneficial
for each method. In this simulation group, we generated two
datasets with different sampling frequencies and sampling
time-windows. With six time points, we generated one dataset
at 4 h/1 day and another at 8 h/2 days; with eight time points,
we generated one dataset at 3 h/1 day and another at 6 h/2 days;
with 12 time points, we generated one dataset at 2 h/1 day and
another at 4 h/2 days.

Next, we assessed whether the inclusion of replicates can
offset the effect of low sampling frequency in methods’ abil-
ity of detecting oscillations. Replicates are defined as multiple
measurements taken at the same time point. Specifically, we
generated two datasets consisting of the same number of obser-
vations, with or without replicates: one at 4 h/1 day X1 and the
other at 8 h/1 day X2. The sampling designs of the other two pairs
of datasets are 3 h/1 day X1 versus 6 h/1 day X2 and 2 h/1 day X1
versus 4 h/1 day X2.

Since biological rhythms can take on various waveforms,
we generated three types of waveforms via simulation: sta-
tionary, non-stationary and asymmetric curves. Supplementary
Table 4 includes models that we adopted in silico to generate
the corresponding waveforms. Specifically, the stationary wave-
forms include cosine, cosine 2 and cosine peak curves; the non-
stationary waveforms include cosine damp, trend exponential
and trend linear curves; the asymmetric subgroup consists of
only the saw-tooth waveform. We assessed the performance
of the methods in identifying each category of the circadian
waveforms.

The next three groups of simulations aimed to determine
which methods are more robust to different levels of SNRs,
uneven samplings and missing values. Specifically, we generated
four datasets with SNRs of 0.5, 1, 2 and 3. SNR is defined by
taking the ratio of the empirical variance of cosine function and
the variance of the noise, the latter of which is fixed at one.
Uneven samplings are defined as designs whose time points are
not equally spaced. To investigate the effect of uneven samplings
on performance, we generated datasets with one, two or four
uneven samplings. With six time points, datasets with four
uneven samplings cannot be generated as it would only have
two time points. For missing data, we generated three levels of

missing data (1, 5 and 10%) at three fixed, randomly selected
time points.

Lastly, we generated three datasets with sampling patterns
of 1 h/2, 2 h/2 and 4 h/2 days to compute the execution times
for each method. We seek to identify the differences in compu-
tational efficiency among the methods and to explore the effect
of increasing sampling resolution on the execution time. Each
dataset consists of a total of 6000 genes. All execution times
are reported by running on a Macbook Pro (15-inch, 2019) with
2.3 GHz 8-Core Intel Core i9 and 16 GB memory.

Data and software availability
MetaCycle is an open-source R package available at https://gi
thub.com/gangwug/MetaCycle and is also used for individual
analysis for LS, JTK_CYCLE and ARSER. RAIN is a Bioconductor
R package available at https://bioconductor.org/packages/rain/.
eJTK_CYCLE was downloaded from https://github.com/alanlhu
tchison/empirical-JTK_CYCLE-with-asymmetry. BIO_CYCLE
was downloaded from http://circadiomics.igb.uci.edu/BIO_
CYCLE. All empirical datasets were downloaded from the
NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/). The accession numbers for dark–dark datasets are
GSE11923, GSE30411 and GSE54652, respectively. The accession
numbers for light–dark datasets are GSE59486, GSE36872,
GSE36871 and GSE109938, respectively. The proteomic dataset

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa135#supplementary-data
https://github.com/gangwug/MetaCycle
https://github.com/gangwug/MetaCycle
https://bioconductor.org/packages/rain/
https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry
https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry
http://circadiomics.igb.uci.edu/BIO_CYCLE
http://circadiomics.igb.uci.edu/BIO_CYCLE
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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was downloaded from the BioStudies database with accession
number S-EPMC3879213.

Key Points
• Various methods have been developed for circadian

rhythm detection on a genome-wide scale using omics
technologies, yet there has not been a comprehensive
summary and evaluation of all existing methods to
date.

• Using gold-standard circadian and non-circadian
genes, we systematically evaluated the accuracy and
reproducibility of seven existing algorithms for circa-
dian rhythm detection on empirical datasets gener-
ated from various omics platforms.

• We carried out extensive simulation studies to test
each algorithm’s robustness to key variables, including
sampling patterns, replicates, waveforms, signal-to-
noise ratios, uneven samplings and missing values.

• We examined the distributions of the nominal P-
values under the null and raised issues with multi-
ple testing corrections using the Benjamini–Hochberg
procedure due to gene-gene correlation and testing
being overly conservative.

• We provide method selection guidelines for circadian
rhythm detection, which are applicable to different
types of high-throughput omics data.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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