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Abstract

More than 48 kinase inhibitors (KIs) have been approved by Food and Drug Administration. However, drug-resistance (DR)
eventually occurs, and secondary mutations have been found in the previously targeted primary-mutated cancer cells.
Cancer and drug research communities recognize the importance of the kinase domain (KD) mutations for kinasopathies.
So far, a systematic investigation of kinase mutations on DR hotspots has not been done yet. In this study, we systematically
investigated four types of representative mutation hotspots (gatekeeper, G-loop, αC-helix and A-loop) associated with DR in
538 human protein kinases using large-scale cancer data sets (TCGA, ICGC, COSMIC and GDSC). Our results revealed 358
kinases harboring 3318 mutations that covered 702 drug resistance hotspot residues. Among them, 197 kinases had multiple
genetic variants on each residue. We further computationally assessed and validated the epidermal growth factor receptor
mutations on protein structure and drug-binding efficacy. This is the first study to provide a landscape view of
DR-associated mutation hotspots in kinase’s secondary structures, and its knowledge will help the development of effective
next-generation KIs for better precision medicine.
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Introduction
Kinase activation is a commonly identified phenomenon
in tumor cells through multiple mechanisms such as point
mutation, amplification, gene fusion and amplification or
fusion of kinase ligands [1]. To molecularly target the activated
kinase in cancer patients, more than 250 kinase inhibitors
(KIs) are currently undergoing clinical trials, and 48 have been
approved for patient treatment by Food and Drug Administration
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(FDA), such as imatinib, gefitinib, sorafinib, erlotinib, dasatinib
and crizotinib [2–5]. Even though these targeted therapies
have greatly improved patient survival in several cancer
types, resistance to these agents always occur due to diverse
critical mutations [6]. With the development of next-generation
sequencing technology, several somatic point mutations that
induce drug-resistance (DR) to commonly used KIs have been
reported, and genome-wide investigation of mutation gain or
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loss during DR in cancer cells has been conducted [7]. One
representative example is the T315I gatekeeper mutation in ABL
proto-oncogene 1, non-receptor tyrosine kinase (ABL1), which is
resistant to imatinib, dasatinib and nilotinib. This mutation is
known to be the cause for ∼20% of resistant or relapsed chronic
myeloid leukemia (CML) patients [8]. Another example is the
T790M gatekeeper mutation in epidermal growth factor receptor
(EGFR) [9]. T790M occurs concurrently with another primary
EGFR sensitizing mutation (L858R) and has been reported to
be associated with a decreased sensitivity to EGFR tyrosine KIs
(TKIs) [10]. Approximately 60% of patients developing DR have
this gatekeeper mutation in non-small cell lung cancer (NSCLC)
[11]. KIT proto-oncogene receptor tyrosine kinase (KIT) has also
shown resistance to imatinib and sunitinib when it has the
T670I gatekeeper mutation in gastrointestinal stromal tumors
(GIST) [12]. BCR-ABL E255K/V and Y257C are the representative
G-loop mutations. These mutations disrupt an electrostatic triad
required for imatinib-binding, causing imatinib-resistance to the
cells [13].

To overcome DR, next-generation KIs have been developed
including anti-kinase antibodies. Thus far, several studies have
reported the roles of kinase domain (KD) mutations in DR. Many
factors can contribute to resistance to KIs such as the target-
cell extrinsic mechanisms and tumor microenvironment. And
pharmacogenomic factors like gene polymorphisms can cause
considerable variations in drug efficacy and toxicity. Most DR
mutations arise in protein regions involved in drug interactions
such as hydrophobic pocket 1/2 (HP1/2), adenine-region, type 2/3
allosteric site and G-loop. Alternatively, those mutations occur
in the regions of the transitions between active and inactive
kinase conformations such as G-loop, A-loop and αC-helix. To
cause DR, a mutation must impair drug binding or the involved
conformational changes more than ATP-binding and catalysis.
Consequently, directly ATP-interacting residues of hinge or ATP-
phosphate binding region are infrequently involved [13]. To date,
the identified mechanisms of KI-resistant mutations arise in the
four KD regions such as gatekeeper, G-loop, αC-helix and A-loop
loci, but a systematic annotation for these protein substructures
has not been done for somatic mutations. Since there are many
millions of somatic mutations in the cancer genomes, there
would be hotspot residues (i.e. the nucleotide positions with
a high mutation frequency) in these regions [14–16]. Recently,
Catalogue of Somatic Mutations in Cancer (COSMIC) database
added the DR information for 26 drugs that target 15 kinases [17].
Additionally, the Wellcome Trust Sanger Institute screened drug
response in 1001 cancer cell lines that have somatic mutation
profiles after treatment with 265 anti-cancer drugs [18] including
KIs. Through these studies, cancer and drug research communi-
ties have recognized the importance of KD mutations for kina-
sopathies and have called for systematic investigation of kinase
mutation candidates associated with drug response. However,
despite the exponential growth of cancer and drug data, and
many bioinformatics approaches for studying KI targetable sites
using genome-wide cancer mutation data [19–23], systematic
investigation of the kinase mutations on DR hotspots in protein
structure has not been performed yet.

Here, we first determined the loci of four protein structures
in 538 human protein kinases using the annotations from the
representative protein databases. By integrating somatic muta-
tions from the large cancer genomic data sets with the four types
of kinase structures, we identified 358 kinases harboring 3318
mutations that covered 702 KD hotspot residues. Specifically,
there were 73, 147, 181 and 301 kinases that had drug resis-
tance hotspot mutations in four types of structures, gatekeeper,

G-loop, αC-helix and A-loop, respectively. Furthermore, we found
197 kinases that had multiple variants at one hotspot residue;
some of them are well-studied mutations but others are novel.
We found 645 out of 671 DR hotspot mutations in tyrosine
kinases (TK) led to a decrease in the stability of their pro-
tein structure. In validation analysis, we found the evidence of
inducing DR by comparing IC50 value between the cell-line with
L858R primary mutation only and the one with additional EGFR
T790M gatekeeper mutation. We further confirmed our findings
by calculating the free energy of binding between KIs and EGFR
wild type versus mutants in four DR hotspots. Overall, this is
the first systematic investigation of DR hotspot mutations in the
human kinome. This study will help cancer and drug research
communities for the better development of next-generation KIs
in the emerging cancer precision medicine.

Results
Four types of KD mutation hotspots in
humans—gatekeeper, G-loop, αC-helix and A-loop

To induce DR, a mutation must impair drug binding or be
involved in conformational changes. Indeed, most DR mutations
arise in protein regions involved in drug interactions or in the
transition between active and inactive kinase conformations
[13]. To date, there are four models are known that kinase
mutations may influence on the interaction between kinase
and KIs: Gatekeeper, G-loop, αC-helix and A-loop (Figure 1) [13].
Specifically, we have studied and identified the locations of
each of these four categories in the human kinase proteins as
following. Gatekeeper residue is a single amino acid located near
the protein-drug binding site. In wild-type kinases, gatekeeper
residues have small side chains that sterically accommodate
drugs. These small side chains can be mutated into bulky side
chains that impede drug-protein binding [13]. This confers drug
resistance. G-loop, which is also named glycine-rich loop, and P-
loop (phosphorylation loop) have a conserved consensus motif
GxGxxG, where G represents glycine, and x can be any amino
acid [24]. The N-lobe of KD contains a five-stranded β-sheet
(β1–β5). Of these, G-loop lies between the β1 and β2 strands [25,
26]. G-loop mutation can cause clinical resistance to type 2 KIs
(T2KIs) by destabilizing the inactive conformation, stabilizing the
active conformation and/or removing direct drug interactions
[13]. KIs bind to the inactive conformational protein kinases.
αC-helix, also called C-helix and αC, is a single α-helix located
in the N-lobe of KD between β3 and β4 strands [13]. αC-helix
is usually the first α-helix in the kinases domain (from N-
terminus), but in some kinases such as AGC kinases, a short
αB-helix may precede αC-helix [27]. Mutations at this hotspot
may cause DR by destabilizing the inactive conformation of the
KD. A-loop, which called activation loop or T-loop, is located
in the C-lobe. A-loop contains a phosphorylation site, which
upon phosphorylation, induces a conformational change on
the loop, and then allows a substrate to bind. The activation
loop and P + 1 loop constitute the activation segment that runs
from the DFG (Asp-Phe-Gly) motif to the APE (Ala-Pro-Glu) motif
[28]. A-loop mutations may have indirect effects that disfavor
drug binding by increasing entropy or destabilizing the inactive
conformation [29]. We searched the hotspot locus information
of 538 human kinases from UniProt, KSD and NCBI databases.
After removing duplicated kinases and filtering out the kinases
without specific locus information of these categories, we
obtained 396 unique human kinases. Among them, 348, 172,
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Figure 1. Four drug resistance models related to KD mutation hotspots.

231 and 312 kinases had Gatekeeper, G-loop, αC-helix and A-
loop locus information, respectively. The detailed information is
summarized in Supplementary Table S1.

358 human kinases had mutations on KD mutation
hotspot residues

Figure 2 summarizes overall pipeline and our identification
of the KD hotspot somatic mutations in humans. Figure 2A
shows the overall distribution of kinases with hotspot loci
among the four hotspot categories plus the ATP-binding
sites (Supplementary Table S1). Overlapping these hotspot
loci with four largest cancer mutation data sets resulted in
358 kinases having 3318 hotspot mutations (Figure 2B and
Supplementary Table S2). These four sets were The Cancer
Genome Atlas (TCGA), COSMIC, International Cancer Genome
Consortium (ICGC) and Genomics of Drug Sensitivity in Cancer
(GDSC), which had 308, 291, 316 and 175 kinases with mutations
on KD hotspots, respectively. Since the length of hotspot regions
varied, the number of kinases with mutations that occurred
at KD hotspot categories was ordered by 301 (A-loop), 181 (G-
loop), 147 (αC-helix) and 73 (Gatekeeper). Gatekeeper usually
covers only one amino acid, so the number of mutations was
the smallest among the four categories. The average length of
hotspot regions of G-loop, αC-helix and A-loop was 8.6, 11.4 and
19.1 amino acids with standard deviations of 2.10, 7.12 and 4.80,
respectively.

Next, we checked how the kinases with KD hotspot muta-
tions were distributed among the kinase groups. The Human
Kinome database defined 10 groups of kinases: (1) the PKA,
PKG, PKC families (AGC), (2) Atypical, (3) calcium/calmodulin-
dependent protein kinase (CAMK), (4) casein kinase 1 (CK1), (5)
containing CDK, MAPK, GSK3, CLK families (CMGC), (6) Other, (7)

receptor guanylate cyclases (RGC), (8) homologs of yeast Sterile
7, Sterile 11, Sterile 20 kinases (STE), (9) TK and (10) TK-like
(TKL) [30]. TK-related groups (TK and TKL groups) have been
most studied; as expected, they have the highest frequency
(39.0%, 136/349) of mutated hotspot loci among the 10 groups
(Figure 2C). We demonstrated the hotspot mutations across
the full-length protein sequence using EGFR as an example
(Figure 2D). Overall, our work provided a landscape view of
the KD hotspot mutations in thousands of human cancer
genomes.

197 human kinases had multiple variants on individual
KD hotspot residues

To assess the clinical potential [31, 32], we specifically exam-
ined hotspot residues with multiple mutations in four can-
cer datasets. Some examples are ABL1 (T315A/I/L/V/N), ALK
(L1196M/Q), BRAF (G469A/E/R/S/V/X/del), EGFR (T790A/M), ERBB2
(V773A/M), FGFR4 (V550L/M), FLT3 (F691/L) and KIT (T670E/I/S).
Through this filtering, we found 197 kinases had multiple vari-
ants on individual hotspot residues. Tables 1–4 summarize the
mutations in each of the four KD hotspot categories.

Mutated gatekeeper loci

Gatekeeper refers to the amino acid residue at the entrance to
the hinge region of the ATP binding cleft. This residue controls
the kinase sensitivity for small molecule inhibitors by allowing
the inhibitor to access the binding pocket. If the gatekeeper
residue is mutated, the bulky side chain may block the binding
of inhibitor. In this study, we identified 81 gatekeeper mutations
in 73 kinases. Interestingly, we found nine kinases had multi-
ple variants on each hotspot locus (Table 1). It is well known
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Figure 2. Kinase hotspot mutation statistics and the flowchart of annotation of kinase hotspot mutations. (A) Overlapping KD mutation hotspots among five structures

or sites. (B) Flowchart for kinase hotspot mutation annotation. (C) Distribution of mutated kinases among four groups. TK group has the largest number of kinases

harboring KD hotspot mutations. (D) Mutation hotspots on the KD sequence of EGFR. The yellow bar labels the KD of the partial sequence of EGFR. The green, blue,

orange and brown colored lollipops present the mutations overlapped with G-loop, Gatekeeper, αC-helix and A-loop category residues, respectively.

that T315 gatekeeper mutation of ABL1 provided a structural
rationale for the vulnerability of TKIs such as imatinib and
second-generation ABL1 TKIs (dasatinib, nilotinib and bosutinib)
[33]. The murine interleukin-3-dependent pro-B (Ba/F3) cell lines
express EML4-ALK with L1196M gatekeeper mutation. These
cells were resistant to crizotinib, whereas the cells with primary
EML4-ALK were successfully inhibited by crizotinib [34]. The TKI
resistance mechanisms via the secondary mutation T790M of
EGFR has been well-studied for gatekeeper induced drug resis-
tance [35]. Inhibitor ponatinib or PD173074 could not inhibit the
kinase activity of FGFR4 harboring V550E/L gatekeeper mutation
[36]. Fms-like TK 3 (FLT3) is one of the most frequently mutated
genes in acute myeloid leukemia (AML). With F691 gatekeeper

mutation, the drug response to KI gilteritinib decreased in AML
patients [37]. A secondary mutation T670I conferred imatinib
resistance to the cells with a primary mutation on KIT in GIST
[38]. Our results had nine candidates, six of them (66.7%) are
known gatekeeper mutations towards DR, while the other three
(BMPR1B T279, MAP2K7 M196 and SYK M448) are novel candi-
dates, which warrants future investigation.

Mutated G-loop loci

The glycine-rich G-loop controls ATP binding and phosphate
transfer in protein kinases. Mutations limiting the flexibility of
the G-loop may affect ATP binding and drug sensitivity [39]. For
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Table 1. Gatekeeper residues with multiple variants

Kinase Gatekeeper mutations

ABL1 T315A/I/L/V/N
ALK L1196M/Q
BMPR1B T279A/I
EGFR T790A/M
FGFR4 V550L/M
FLT3 F691/L
KIT T670E/I/S
MAP2K7 M196I/T
SYK M448I/L

Note: Among all 73 kinases that harbor Gatekeeper mutations, nine of them had
multiple variants on each Gatekeeper residue.

this category, we found 462 mutations in 147 kinases, among
which, 37 kinases had multiple variants on individual hotspot
residues (Table 2). For ABL1, we identified six G-loop mutated
residues. Five of them (L248, G250, Q252, Y253 and E255) were
discovered as the imatinib-resistant mutations from previous
studies [40]. G251 residue was chosen for studying the struc-
tural effect of three KIs and the results showed different effect
[41]. G469A G-loop mutation increased kinase activity of BRAF
[42]. G719X G-loop mutation is one of the EGFR-TKI-sensitizing
mutations in NSCLC [43].

Mutated αC-helix loci

A conserved salt bridge is formed between Lys and Glu, which
coordinates the α- and β-phosphate groups of the ATP molecule,
and drives the phosphate transfer to the substrate. Here,
the conserved Glu residue is located on the αC-helix [44].
Therefore, disruption of the salt bridge by a mutation could
affect the kinase activity. Our analysis revealed 704 αC-helix
mutations in 181 kinases. Among them, 69 kinases had multiple
variants on a specific residue (Table 3). Several cases have
been reported for their effects on hindering the drug response.
Ceccon et al. reported that E1167 mutation on the salt bridge
of ALK stabilized the active conformation the ALK, reducing
the chance of binding with the KIs [45]. When combined with
a drug-sensitive L858R mutation, the D761Y mutation modestly
reduced the sensitivity of mutant EGFR to TKIs in both surrogate
kinase and cell-viability assays [46]. V773A αC-helix mutation
of ERBB2 decreased the sensitivity to lapatinib [47]. M2001
residue of ROS proto-oncogene 1, receptor TK (ROS1) provided
additional hydrophobic interactions between cabozantinib and
ROS1 [48]. The G571 mutation may cause a conformational
change so that the adjacent Y570 is no longer accessible and
phosphorylated, resulting in a constitutively active kinase JAK2
[49].

Mutated A-loop loci

Protein kinases are themselves controlled by the phosphoryla-
tion of activation loop [50]. When an A-loop is mutated, it may
influence the control of the kinase activity. Our analysis revealed
2077 A-loop mutations in 301 kinases. About 48.8% (147/301) had
multiple variants on each residue (Table 4). For example, when
the cells had both T315I gatekeeper and H396R A-loop mutations
on ABL1, they exhibited high-level rebastinib resistance, having
IC50 value of 464.6–955.3 nM versus <100 nM to native ABL1
cells [51]. Furthermore, MET Y1230 mutants acquired crizotinib
resistance in NSCLC [52]. Although this KD hotspot category

Figure 3. The relative protein structure stability change by a KD mutation in TKs.

Almost all the hotspot mutations in TKs were predicted to decrease the protein

structure stability.

had the largest number of candidate mutations, most of these
mutations have not been studied for DR.

Candidate DR mutations in TK decreases the protein
structure stability

To assess the effect of each mutation on the protein structure,
we calculated the relative protein structure stability change
of each of the 671 mutations in all the 44 kinases within
TK group. For each mutation, we computed the value of
energy change (��G) using MUPro software [53]. Among the
671 mutations, only 26 (3.9%) resulted in a positive value of
energy change (Figure 3). We hypothesized that majority of
DR hotspot mutations in TK group might decrease the protein
structure stability. The decreased protein stability by KD hotspot
mutations might lead to decreased affinity to KIs and, thus,
cause decreased sensitivity to KIs. We specifically studied the
details of four representative TKs (EGFR, ABL1, ALK and KIT)
(Figure 4).

EGFR

Classical activating mutations like exon 19 deletion and L858R
substitution account for ∼45% and ∼40% of the NSCLC cases
with EGFR mutations, respectively [54]. These are known as good
response to EGFR-inhibitors [55]. The secondary mutation T790M
is known to explain ∼50% of NSCLC patients who developed KI
drug resistance [10]. In this study, we identified 253 cancer cells
with hotspot mutations of EGFR. Their mutations covered 46
hotspot residues: 1 Gatekeeper, 8 G-loop, 16 αC-helix and 21 A-
loop residues. Among them, 36 residues had multiple variants
on each residue: one Gatekeeper site (T790), six G-loop sites
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Table 2. G-loop residues with multiple variants

Kinase G-loop mutations Kinase G-loop mutations

ABL1 L248R/V/_K274del, G250E/R, IKBKB R31∗/X
G251C/D/E, Q252E/H/K/M/P/R, KDR R842C/L
Y253C/F, E255D/K/L/V MAP2K1 G80S/D

BMPR2 R211∗/P/Q/X, R213∗/X, Y214∗/X MAP2K4 R110∗/P/X/Q
BRAF G464E/R/V, G466A/E/R/V/X MAP4K4 G37∗/X

S467F/L, F468C/L/S MARK2 G62C/S
G469A/del/E/R/S/V/X, V471A/I/F MAPK9 G35E/R

CDK13 I711L/V MYLK4 R116C/H, Q119∗/R
CDK2 G13C/D/S NTRK2 E546∗/K/V
CLK2 R176∗/X PRKACA S54F/Y
CSNK1A1 S27C/F PRKCB S352N/G, F353L/E
DAPK1 A25P/V ROCK2 G104R/V
DDR1 E618K/Q ROS1 Y1960∗/H
EGFR G719A/C/D/S/V, S720C/F/P/T SGK1 L113F/P

G721A/D/S/V/W, F723L/S STK11 G56GS?/V/W, Y60∗/I?, K62∗/X
G724D/S, T725A/M STK26 S34∗/X

EPHA2 G620E/R STK4 V44A/I
EPHA3 G633E/R TGFBR1 G212D/V, R215∗/G/X/P
EPHA7 I639F/T, G642A/E TNIK G34R/V
EPHA8 G647E/R TNK2 G135D/S
EPHB4 E625K/Q VRK2 G38E/R
FLT3 G617E/V, S618L/_G619ins21

A620_F621ins35/39/58/66
G622R/_K623ins31

Note: Among the 147 kinases that harbor G-loop mutations, 37 had multiple variants on a G-loop residue.

(G719, S720, G721, F723, G724 and T725), 12 αC-helix sites (A750,
T751, S752, N756, K757, E758, I759, D761, A763, Y764, V765 and
A767) and 17 A-loop sites (T854, D855, F856, G857, L858, A859,
K860, L861, L862, G863, A864, E866, E868, H870, A871, E872 and
G873). Figure 4A shows the mutations that decreased the relative
protein structure stability of EGFR. Here, T790M mutation is
a canonical secondary mutation leading to DR [56]. In our
results, seven COSMIC, two TCGA and one GDSC samples had
T790M mutation. G719 accounts for ∼4% of all EGFR activating
mutations [57]. S720-mutated patients showed poor response to
EGFR KIs and short overall survival (OS) in advanced NSCLC [58].
G721 mutation has been reported as potentially causing DR for
erlotinib, gefitinib and lapatinib [59]. D761Y mutation modestly
reduced the sensitivity of mutant EGFR to TKIs [46]. A767
mutation on EGFR exon 20 is known to be a resistant mutation
[60]. M766, T854 and A859 were known as erlotinib resistant
mutations [61, 62]. L858R is the highest prevalence mutation in
EGFR and accounts for ∼41% of all EGFR activating mutations
[57]. The studies of patients with EGFR L861Q mutations showed
inconsistent drug response. OS of the patients with EGFR
L861Q mutations and treated with gefitinib was significantly
shorter than that of other common mutation patients. However,
L861Q showed better sensitivity to afatinib and progression-
free survival was notably improved [63]. Figure 4A visualizes
all the residues known as resistant or sensitive to EGFR
KIs.

ABL1

Mutations in the KDs of BCR-ABL1 are attributed to the acquired
imatinib resistance in CML patients. In particular, T315I is one
of the most studied mutations that induces resistance to ima-
tinib, nilotinib and dasatinib [64]. From our result, ABL1 has

46 mutations on the 28 residues of the KD hotspots: 1 Gate-
keeper, 10 G-loop, 3 αC-helix and 14 A-loop residues. 1 Gate-
keeper, 9 G-loop and 11 A-loop residues decreased the protein
stability as shown in Figure 4B. Furthermore, one Gatekeeper
(T315), six G-loop (L248, G250, G251, Q252, Y253 and E255), two
αC-helix (E282 and V289) and one A-loop (H396) residues had
multiple variants on each residue. Y253H, E255K/V, T315I/ F217L,
F359V/C, Q252 are known as the imatinib-resistant BCR-ABL1
mutations [65–68]. On the other hand, L248, Y253, E255, F359
and H396 have been reported with a high response rate to
dasatinib [51]. With these accumulated drug resistance reports
to ABL inhibitors, the European LeukemiaNet recommends on
mutation identification of the patients before changing to the
treatment of another TKI or to another therapy, if the patient
reaches a suboptimal response or fails to respond to imatinib
[69, 70].

ALK

In our results, ALK had 19 residues with KD hotspot mutations.
Eight residues had multiple variants on each site: 1 Gatekeeper
site (L1196), 4 αC-helix sites (M1166, E1167, I1170 and I1171) and
3 A-loop sites (G1269, D1270 and R1275). Among these, 1 Gate-
keeper, 2 G-loop, 5 αC-helix and 10 A-loop residues decreased
the protein stability as shown in Figure 4C. cells with L1196M
in EML4-ALK markedly reduced the sensitivity to crizotinib [71].
L1196Q and I1171N are known as conferring resistance to crizo-
tinib in Ba/F3 cells expressing NPM-ALK [45]. ALK I1171 mutation
also confers resistance to alectinib in NSCLC [72]. SNU-2535 cells
derived from a NSCLC patient who harbored the G1269 mutation
were resistant to crizotinib [73]. NIH 3T3 cells that had R1275Q
A-loop variant were significantly more sensitive to PF-06463822
and crizotinib [74]. ALK has an ‘YxxxYY’ auto phosphorylation
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Table 3. αC-helix residues with multiple variants

Kinase Mutations Kinase Mutations

ABL1 E282K/G/V, V289A/F/M GRK4 I223K/T
AKT1 V185A/D GSG2 S539F/P
AKT2 A190G/T IKBKB R53Q/W
ALK M1166R/>?, E1167A/K,

I1170N/S/T, I1171N/S/T
IRAK4 Q232∗/X

AURKB Q112∗/H ITK M411L/V
BRAF TAPTP488/K, K499N/Q JAK1 R629K/_D630del, Q644∗/H
BUB1 P828R/S JAK2 G571R/S, E890∗/D, D894E/G
CAMK2B R66H/C JAK3 R870W/Q
CAMK4 L93F/I/R KDR R880∗/Q/X
CDK5 R50L/Q/W KIT R634Q/W, L637F/H/P, K642E/N/Q,
CDK8 R71∗/G Y646H/D, L647F/P
CDKL3 E50∗/X LYN E290D/K
CDKL5 R59∗/Q MAP2K2 Q114∗/H
CDK12 R773C/H MAP2K4 E141∗/K, Q142/L, L146F/P, D148/Y
CLK2 E213A/Q MAP2K7 R162H/C
CSNK1A1 E60∗/K MAPK13 Y70C/H
CSNK2A1 R80C/H MAPKAPK3 K80∗/N/X, Q90E/P
CSNK2A2 K77M/N MARK1 R106∗/X
DAPK1 R58C/H MARK2 V106A/L
DYRK1A R205∗/X MASTL S120F/P
DYRK2 R274Q/W MERTK C640F/X
EGFR E758D/G/K, E749_E758 > QP, NEK7 R76C/L/H

A750_E758del/delATSPKANKE/P, NTRK3 D584E/N, E590D/K
A750_I759 > GS/PT, PAK1 Q304∗/X
T751_E758 > A/del/delTSPKANKE, PDGFRA L641I/V
T751_I759 > AC/del/>N/>
NKA/>REA/>S,

PHKG2 R75Q/W, R82C/H

S752_I759del/delSPKANKEI, PRKAA2 R53C/H
N756S/Y/_L760del, K757M/N/R, PRKCB V378E/M
I759N/V, D761G/N/Y,
D761_E762insEAFQ,

PRKCH D394G/V

A763D/V, Y764S/_V765insHH, PRKCI E288∗/Q
V765G/M/_M766insMAS, ROS1 M2001T/L
A767V/AAWT/_S768insSVG/_
S768insYVM

PTK2B E474K/Q

EIF2AK2 E303K/V ROCK1 K109E/I
EIF2AK3 R633L/Q/W RPS6KA3 R110∗/Q/X, E463K/V
EPHA5 R718C/H, D720E/H/Y STK11 K84∗/X, R86G/X
EPHA7 D678E/N, S684I/R STK17B H79N/R
EPHA8 A685G/T/V STK3 S72F/P
EPHB1 R663L/Q/W STK32A E61∗/X
ERBB2 D769H/N/Y, V773A/M TNNI3K R508∗/8Q, L513F/I/P
FLT3 K663N/Q/R ZAP70 T380K/M, E386K/Q, Q388H/L

Note: Among the 181 kinases that harbor αC-helix mutations, 69 had multiple variants on a αC- helix residue.

motif, where Y represents tyrosine and x can be any amino acid,
in the A-loop and in ALK fusions. The Y1278 in ALK is the first
residue in the motif to be phosphorylated. Hallberg and Palmer
reported that initial activation of ALK might be mediated by
the regulation of Y1278 phosphorylation and releasing ALK from
inactive conformational restraints [75]. If this residue is mutated,
it may affect ALK activation.

KIT

We found 38 residues having KD hotspot mutations in KIT.
Among them, 20 had multiple variants on each residue: 1
Gatekeeper (T670), 5 αC-helix (R634, L637, K642, Y646 and L647)
and 14 A-loop (C809, L813, A814, D816, I817, N819, D820, S821,
N822, Y823, V825, K826, A829 and R830) residues. There were
1 Gatekeeper, 3 G-Loop, 11 αC-helix and 18 A-loop residues

decreased the protein stability as shown in Figure 4D. In KIT,
DR residue T670, which is analogous to T315 in BCR-ABL, is
well studied. The bulky substituent through mutations in T670
obstructs binding of imatinib, nilotinib and dasatinib, thus
conferring resistance [38]. In our study, we found six COSMIC cell
lines that had mutations on these residues, four of which were
derived from GIST. R815 residue corresponds to R405 in ABL1b.
This residue involves in the salt bridges with E305 in the SFK-
like inactive conformation and in inactive SFKs. Thus, deletion of
R815 in KIT might destabilize inactive conformations and confer
DR [13]. D816 mutation in A-loop leads to kinase resistance to
imatinib by strongly favoring the active conformation of the KD
[76]. D820 mutations were identified in three sunitinib resistant
patients of GIST [77]. On the contrary, D816 and N822 mutations
are common activating mutations for KIT kinase activity [38].



8 Kim et al.

Table 4. A-loop residues with multiple variants

Kinase Mutations Kinase Mutations

ABL1 H396P/R MAP3K10 A264E/T
ACVR1B R379∗/X MAP3K12 K267E/N
ACVR1C P361L/S, S350∗/L/X MAP3K2 R507Q/W
ACVRL1 H355P/R MAP3K9 R299L/W
AKT1 M306T/L MAP4K1 R169C/H//QT?, Y177∗/X
ALK G1269A/E, D1270E/G,

R1275∗/L/Q/X
MAPK1 P176S/T, R191C/H

AMHR2 E380K/X, Q373∗/X MAPK10 D207A/N, G215D/S
AURKC P192L/S MAPK12 G173D/S, W190∗/L
BMPR1B R376C/H MAPK3 R189Q/W
BMPR2 M356I/T MAPK6 W196C/L
BTK R544M/W MAPK7 R205C/P
CAMKV G182R/V/W MAPK8 R189C/H/L/P
CDC42BPG R219C/H MAST1 E552∗/K
CDK12 R882L/Q/W MAST2 G655R/V
CDK13 I875S/V MELK A173S/T
CDK19 R178∗/X, L190∗/X MERTK Q756∗/X, R758H/S
CDK7 A159D/T MET Y1230C/H
CDK8 D173G/N/V, R178∗/Q/X MINK1 P192L/S

P186L/S, L190F/V MKNK2 A254T/V
CDKL2 R149∗/Q/X MYLK A1609S/T
CHEK1 R156L/W, R160C/H MYLK3 R662K/M, R666∗/X
CHEK2 S372C/F MYO3A R181C/H/L/S, T184A/I
CLK2 D327H/N MYO3B R185H/L
CSK D332G/N, Q343K/L NEK7 R184L/W
CSNK1A1L H172Q/Y, R186∗/Q NIM1K P234L/T
CSNK1D P166H/L NLK R287K/T, R295C/H
CSNK2A2 E181D/Q NTRK1 D679H/N
DAPK3 G171A/W NTRK3 S701F/T, V704D/F, R735C/H
DCLK3 C514R/Y, F511C/L NUAK1 N201D/I, K207R/T
DDR1 R798C/L PAK4 PR471∗/X, P479L/S
DDR2 Q744∗/X, R752C/H PAK5 E596G/Q, V604F/I
DMPK G233S/V PDGFRB R849∗/G/Q, R853L/Q/W
DYRK1A Q323∗/H, S311F/Y PHKG1 F169C/V
DYRK2 R378C/H/L PIM1 R296Q/X
EGFR T854A/I/P/S, D855G/N, F856L/S/Y,

G857E/R/V,
PIM2 Y194N/S

L858A/G/K/M/P/Q/R/V/W, PKN1 E764D/K
A859D/T/_L883 > V, K860E/I, PKN3 G704∗/R, P723Q/T
L861E/F/G/K/P/Q/R/V, PRKAA2 G159E/R/V
L862P/Q/R/V, G863D/S/V, PRKACA V192/A, W197G/L/R/S
A864E/T/V, E866D/G/K/Q/V, PRKACB W197G/R/S
E868D/G/K/V, H870N/R/Y, PRKACG R195C/H
A871E/G/T/V, E872∗/G/K/X, PRKCB E490D/K
G873E/Q PRKCG P508H/L/S, R513H/L

EIF2AK1 L495M/V, T488A/K PRKCQ D533E/G/H, G541R/V
EPHA2 D757H/N PRPF4B G836R/V/W
EPHA3 G766E/R, P775A/S, R769C/G/H/S PTK2B R586C/H
EPHA5 R823Q/W, A832S/V, G837E/R, RAF1 R495C/H

I840L/N, P841L/S RET S891A/L/X, S904L/Y, R912Q/W
EPHA7 R781∗/Q, R801K/M/S, T793I/S, ROCK2 D255E/V

G795S/V, G796E/R ROR1 R657C/H
EPHB1 D762E/N ROR2 A643P/T, G650E/V
ERBB2 L869Q/R ROS1 V2125A/I, R2126G/L/Q/W
ERBB4 G870E/R, E872K/V, E874∗/K/X, RPS6KA2 R562C/H, A563T/V, G556C/S,

M569I/V
G879∗/E, G880E/R, M882I/R RPS6KA3 E217∗/K

FGFR1 R646Q/W, K656∗/E/M RPS6KA4 T188M/K, R193Q/W
FGFR2 G646∗/E, A648T/V, K659E/M/N RPS6KA6 D565A/N, G574E/R/V, G577R/X
FLT1 R1060∗/X RPS6KB1 E258∗/X
FLT4 R1060Q/W, Y1068∗/N, R1070C/H RPS6KC1 S957C/F
FYN G410E/R/V SGK1 T239N/P

Continued.
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Table 4. Continued

Kinase Mutations Kinase Mutations

GRK1 G345∗/X SIK1 P188L/R
GRK5 E338∗/X, R345Q/W SIK2 F166L/V
ICK R148∗/Q STK11 D194H/N/V/Y, L195M/P,
IGF1R R1158∗/X E199∗/D/K/Q/X, G215D/S, S216F/P
INSRR R1138L/Q, R1157C/H/S STK17A R221∗/X
ITK L508M/Q STK25 G177D/S
JAK2 E1012∗/X STK3 Q170∗/X, D173V/Y, R178C/H
JAK3 G987C/S TEC G509∗/E
KDR D1052G/H/N, G1063E/R, R1066H/C TGFBR2 R403C/H, R423∗/_Y424 > S
KIT C809∗/G/R/X, L813I/P, A814S/T, TIE1 G999C/D/S, R1002Q/W, P1016H/S

R815_D816ins?/insVI, TNIK R180∗/Q
D816?/A/E/F/G/H/I/N/V/Y/>GP/>
VVA,

TNK2 R275∗/Q, Q279∗/X

I817F/L/T/V, K818R/_D820 > N, TNNI3K G608E/R, E618D/K, K623Q/R,
N819S/Y, D820A/E/G/H/N/V/Y, Q624∗/L, R629C/G
S821F/Y/_N822 > GY, TSSK1B R160C/H, R163L/W, R168∗/Q/X
N822D/H/I/K/S/T/, Y823C/D/H/N, TSSK2 R168C/H
V825A/D/I, R830∗/L TTBK1 R204C/H

LCK R387C/L, L388F/I, E393G/K,
A396T/V

TTBK2 R191C/G

LMTK2 R307∗/G TTK G666E/R, T675A/K
LTK R678C/L/P, D681/Y, R682Q/W TXK F428S/Y, S407∗/X
MAP2K3 F209C/V TYK2 E1050G/K, E1053K/_Y1054 > DH,
MAP2K4 G249D/R/V, S251I/N, S257/F/Y, R1058C/H

G265C/D/V TYRO3 R687H/S
MAP2K5 N320H/T VRK1 R203Q/W, G208R/V, K211Q/T,

E212∗/G
MAP2K7 S271C/T WEE1 G462C/D
MAP3K1 A1414/V WEE2 G395E/X, R398C/H

Note: Among the 301 kinases that had A-loop mutations, 147 had multiple variants on an A-loop residue.

Lastly, Y823D is known to stabilize the active or destabilize the
inactive conformation, reducing TKI binding [12].

IC50 evidence in drug resistance by KD hotspot
mutations

The GDSC data provide a systematic measure of drug response
(265 drugs) to many somatic mutations in 1001 cancer cell lines.
Since the matched wild type samples are not available in this
data set, we could not compare the drug sensitivity between
mutant and wild type cells. Alternatively, we compared the IC50

values of the cell lines with the primary mutation only with that
of the cell lines with both the primary and secondary mutations.
This analytical strategy is useful for assessing drug sensitivity
or resistance induced by a secondary mutation. We illustrated
here using EGFR as an example. The primary mutation, L858R,
was in both NSCLC H3255 and NCI-H1975 cell lines, while NCI-
H1975 had additional T790M gatekeeper mutation. Gefitinib was
reported to have a drastic increase of ATP affinity. L858R/T790M
double mutant in NCI-H1975 could retain 18.6 nM affinity for
gefitinib, as compared with Kd = 1.1 nM for the L858R mutant
only [56]. As shown in Figure 5, the difference of IC50 values was
largest between H3255 and NCI-H1975 cell lines with the treat-
ment of gefitinib. Approximately 50% of EGFR-mutant NSCLC
patients who developed resistance to gefitinib or erlotinib
had this T790M mutation. Considering this strong clinical
outcome, a noninvasive detection method of this mutation
has been reported for easy diagnosis and exact therapy [78].
Cetuximab is an anti-EGFR monoclonal antibody. Combination

of afatinib and cetuximab has been reported as overcoming
T790M-mediated resistance in preclinical study [79]. The
treatment of cetuximab alone still suffers from DR by T790M
as shown in the first bar of Figure 5. CUDC-101 is a small
molecule, anticancer agent that targets multiple proteins such
as histone deacetylase (HDAC), EGFR and erb-b2 receptor TK
2 (HER2). Due to this multifunction of CUDC-101, it has been
reported that a combination of EGFR inhibitors with CUDC-
101 might help overcome DR [80]. However, the treatment
with CUDC-101 alone may still suffer from DR as shown in
the second bar. EKB-569 (pelitinib) showed its effectiveness
in lung cancer-bearing T790M mutation in the previous study
[81]. Consistently, in our result, this drug showed the smallest
difference of IC50 compared to other drugs. This means that
pelitinib may act on the cells harboring the secondary mutation.
One limitation of this study is that the GDSC cell lines
included only a small number of DR mutations. When larger
pharmacological data sets for this purpose are available, we
will include them for further examination and validation of our
candidates.

Comparison of relative free energy of binding between
wild-type and mutant EGFR

To characterize the changes on binding affinity and confor-
mation due to mutations, we performed molecular dynamics
(MD) simulation followed by structure analysis and binding free
energy calculation for two drugs, afatinib and gefitinib, that bind
to EGFR. The starting conformations of both complexes came
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Figure 4. The relative protein structure stability change by a KD mutation in four TKs. These plots are drawn for the mutations that decreased the relative protein

structure stability of EGFR (A), ABL1 (B), ALK (C) and KIT (D). Note there is no αC-helix for ABL1.

from a crystal structure of EGFR L858R mutant (PDB code: 4LQM
[82]). The ligand-binding poses were determined by applying the
corresponding transformation matrixes generated by the least-
square fitting of the secondary structures of the receptor. The
root-mean-square deviation (RMSD) values are 0.321 and 0.267 Å
for EGFR/afatinib (PDB code: 4G5J [83]) and EGFR/gefitinib (PDB
code: 2ITY [84]), respectively. The aligned structures are shown in
Figure 6. Computational mutagenesis for the four mutations of
EGFR (G719S, D761Y, T790M and L861Q) was manually performed
and the missing coordinates were added with the Leap module
of the AMBER software package [85]. When there is no exper-

imental structure available for a drug in complex with EGFR,
one can perform molecular docking simulations to predict the
possible binding modes, which can be evaluated by MD simu-
lations and binding free energy calculations. We used the data
from these MD simulations to predict the binding free energies
of these two drugs for EGFR and its mutants. MM-PBSA (molec-
ular mechanics–Poisson-Boltzmann surface area) binding free
energy calculations and MM-GBSA (mechanics-generalized Born
surface area) binding free energy decompositions [86–89] were
performed for the collected snapshots after the MD trajectories
were stabilized (see Methods). Both drugs are potent inhibitors
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Figure 5. IC50 values between cells with primary only mutated and both primary

and secondary mutated EGFR. IC50 value of EGFR with secondary mutation

T790M shows the evidence of drug resistance.

of EGFR and the measured ki values are 0.5 [90] and 0.4 nM [91]
for afatinib and gefitinib, respectively. The absolute values of
different MM-PBSA energy terms are listed in Table 5. The abso-
lute MM-PBSA binding free energies calculated with an internal
dielectric constant of 1.0 are ∼2–3 kcal/mol underestimated for
both drugs (Table 5), the mutation effect on the binding affinities
is overall reasonably predicted. For afatinib, which formed a
covalent bond with the receptor with CYS797, the T790M single
mutation significantly increases the binding affinity, while the
L858R mutation decreases the binding affinity. In contrast, for
gefitinib, which does not form any covalent bond with the recep-
tor, both the L858R and T790M mutations increase the binding
affinity. For both drugs, the double mutation (L858R/T790M)
significantly decreases the binding affinities. The pattern of the
G-loop mutation, G719S, is different between the two drugs due
to the same fact that afatinib covalently binds to the receptor
but gefitinib not. The G719S mutation significantly increases the
binding affinity of afatinib, but decreases that of gefitinib. The
double mutation (L858R/G719S) decreases the binding affinity for
both drugs as expected (Supplementary Figures S1 and S2).

For the αC-helix (D761Y) and A-Loop (L861Q) mutations, the
ligand-binding affinities of both drugs are much less affected,
because the two residues have no direct contact with the lig-
ands. As shown in Table 5, the relative binding free energies,
��Gbind, are rather small for both the D761Y and L861Q single
mutations and the L858R/D761Y and L858R/L861Q double muta-
tions, except for Afatinib binding to L858R/D761Y for which the
binding affinity is very low. We believed that allosteric regulation
plays a more important role in explaining the drug resistance
of the two mutations as detailed below. Overall, the predic-
tion performance is acceptable given the fact that MM-PBSA
is inferior to a theoretically more rigorous method like free-
energy perturbation and thermodynamic integration [92, 93]. It
is encouraging that the MM-PBSA method can correctly predict
that the additional gatekeeper and G-loop mutations can signif-
icantly decrease the binding potency of the L858R mutant for
both drugs. It is demonstrated by Figure 6E that the main chain
RMSDs of the secondary structures of EGFR/afatinib are ∼1.2 Å,

smaller than those (∼1.4 Å) for EGFR/gefitinib. EGFR/afatinib is
more stable than EGFR/gefitinib, which is reasonable because
afatinib is covalently bonded to the receptor but gefitinib not.
This observation is particularly true for the T790M and D761Y
mutants. Representative MD structures of both the wild types
and mutants are shown in Supplementary Figure S3.

To investigate the mutation effects of D761Y and L861Q, we
performed correlation analysis using a method developed by
Kong and Karplus [94]. All the calculated residue–residue corre-
lations are normalized. For afatinib, the mean residue–residue
correlations are 0.0292, 0.0298 for L858R/D761Y and L858R/L861Q,
respectively, while the corrections for gefitinib are 0.0277 and
0.0288 for the two double mutants. The result suggests that
afatinib has larger impact than gefitinib on the signaling path-
ways. The key signaling pathways linking D761 and L861 to the
key residues for protein–ligand bindings were also identified by
network analysis. As shown in Figure 7, hot spots residues of
protein–ligand binding, such as LYS745, are linked by residues
761 and 861 through one or several bridging residues. Overall,
the mutation on D761 has stronger effect on protein–ligand
binding than L861, since the interaction pathways between them
are shorter and have high correlation. The conclusion that afa-
tinib has stronger impact than gefitinib on the signaling path-
ways is further confirmed by the interaction pathways shown in
Figure 7, where afatinib has shorter and more highly correlated
interaction pathways than gefitinib. Furthermore, we inspected
the trajectories for L858R/D761Y and L858R/L861Q, respectively.
As shown in Figure 7Bi, D761Y mutation may bring an oppor-
tunity on forming strong molecular interactions between Y761
and K860, that is, a hydrogen bond or cation-π interaction. As
a result, the conformation of the αC-helix could be obviously
changed and the space of the binding site for the drugs may be
consequently changed, leading to a shift in the binding mode
of the drug. Similar phenomenon is observed in the mutation
system of L858R/L861Q, as shown in Figure 7Bii, a hydrogen bond
between Q861 and Y764 is observed. However, when comparing
the conformations between these different mutations, it seems
the conformational change caused by the D761Y is larger than
L861Q, which is consistent with the correlation analysis, as the
average correlation is smaller for D761Y than L861Q for both
drugs.

Discussion
In this study, we systematically collected and curated four main
protein substructures that are related to drug response and resis-
tance and then identified 3318 mutations in 358 human kinases
in these substructures as the potential candidates of associa-
tion with DR. These candidates were pinpointed by our ana-
lytical framework (Figure 2B) using four large cancer genomics
datasets: TCGA, ICGC, COSMIC and GDSC. Our analytical strategy
could find known and novel mutations in KD hotspots (Figure 4).
Among the 358 kinase candidates, we selected more reliable
kinases (n = 197) with multiple variants at the same hotspot
residue, based on the assumption that these kinases are com-
mon in high mutation frequency in cancer. Indeed, many known
mutations with DR were included in these lists. These mutations
serve as the candidates that induce different drug response,
either resistant or more sensitive response, using protein struc-
ture analysis methods or cell-based assays in near future. Note
that we found a feature that multiple mutations occur on a
specific site, especially at gatekeeper residues (Table 1). This is
commonly observed in oncogenic regions, as such mutations
(e.g. EGFTR T790 site; BRAF V600 and Q61 sites) may have gained

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa108#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa108#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa108#supplementary-data
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Figure 6. Comparisons of ligand-bound crystal structures and RMSD of wild type EGFR versus the mutant. (A) Comparisons of ligand bound crystal structures of the

L858R mutant and wild type EGFR with afatinib (PDB code 2ITY) and (B) gefitinib (PDB code 4G5J). The PDB code of the L858R mutant crystal structure is 4LQM. (C-D)

Comparisons of RMSD of the L858R mutant and wild type EGFR with afatinib (C) and gefitinib (D). (E) RMSD of main chain atoms of EGFR compared to a wild type crystal

structure (PDB 2ITY for afatinib and 4G5J for gefitinib). (i) and (v): G719S; (ii) and (vi): D761Y; (iii) and (vii): T790M; (iv) and (viii): L861Q. i-iv are for afatinib and v-viii are

for gefitinib. It is shown that all double mutants have comparable RMSDs (red curves, all ∼1.2 Å for afatinib and ∼1.4 for gefitinib). T790M mutants have relatively large

RMSDs for both drugs.

some advantages on driving cellular signaling, leading to abnor-
mal cell growth [95].

This study has several limitations, such as incomplete cura-
tion of the protein substructure sequences, the overlap of the
somatic mutation data in the three data sets (TCGA, ICGC and
COSMIC), and the limited validation by simulations and molec-
ular docking. However, these limitations do not impact much
our analysis. For example, we used the union of the somatic
mutations in three datasets, so overlap will not affect our results.
In summary, our result is still first comprehensive and unique
genomic/clinical resource for drug resistance hotspot mutations
in four critical protein substructures of the human kinome.

This study will be helpful for the development of personalized
medicine and the design of next-generation KIs.

We attempted to find evidence that shows the drug response
of different mutations from the public chemical reaction data
sets like GDSC. We found the evidence of EGFR’s T790M gate-
keeper mutation in DR by comparing the drug sensitivity val-
ues between the cell line with primary mutation (L858R) and
the cell line with both of primary and secondary mutations
(L858R + T790M). We identified the consistent result across four
KIs and the result explained the most well-known case of the
kinase mutation inducing DR. Through the computational muta-
genesis and molecular modeling approaches, we identified the
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Table 5. Individual energy terms of MM-PBSA binding free energies of afatinib and gefitinib binding to EGFR and its mutants

AA change �EVDW ± SD �Eeel ± SD �Gsol
PB ± SD �Gsol

nonpol ±
SD

−T�S ± SD �Gbind ± SD ��Gbind

Afatinib
Wild type −61.40 ± 0.10 −48.15 ± 0.18 73.63 ± 0.27 −4.98 ± 0.00 −26.44 ± 0.04 −10.82 ± 0.11 0.00
L858R −57.30 ± 0.07 −39.64 ± 0.11 63.08 ± 0.35 −4.86 ± 0.01 −25.08 ± 0.05 −9.82 ± 0.15 1.00
T790M −61.81 ± 0.12 −51.89 ± 0.04 75.89 ± 0.24 −4.89 ± 0.00 −26.59 ± 0.04 −12.52 ± 0.04 -1.70
L858R/T790M −56.20 ± 0.19 −44.91 ± 0.51 67.44 ± 0.63 −4.81 ± 0.01 −25.08 ± 0.01 −9.70 ± 0.09 1.12
G719S −61.60 ± 0.07 −49.44 ± 0.13 72.29 ± 0.17 −5.08 ± 0.00 −27.02 ± 0.01 −13.41 ± 0.06 -2.53
L858R/G719S −59.91 ± 0.17 −44.81 ± 0.42 69.70 ± 0.73 −5.03 ± 0.01 −26.18 ± 0.02 −9.95 ± 0.42 0.87
D761Y −59.70 ± 0.15 −43.60 ± 0.32 68.53 ± 0.33 −5.00 ± 0.01 −25.79 ± 0.07 −10.18 ± 0.16 0.64
L858R/D761Y −60.82 ± 0.21 −43.61 ± 0.62 68.08 ± 0.41 −4.95 ± 0.01 −26.34 ± 0.05 −11.18 ± 0.29 -0.36
L861Q −57.05 ± 0.19 −45.41 ± 0.19 68.56 ± 0.21 −4.85 ± 0.01 −25.25 ± 0.05 −9.62 ± 0.02 1.20
L858R/L861Q −57.84 ± 0.41 −44.37 ± 0.22 69.58 ± 0.27 −4.93 ± 0.00 −25.50 ± 0.00 −7.71 ± 0.31 3.11
Gefitinib
Wild type −55.40 ± 0.14 −13.78 ± 0.18 40.40 ± 0.43 −4.52 ± 0.01 −24.05 ± 0.02 −9.25 ± 0.36 0.00
L858R −55.89 ± 0.24 −13.48 ± 0.22 38.70 ± 0.04 −4.62 ± 0.01 −24.38 ± 0.07 −10.92 ± 0.21 -1.67
T790M −57.62 ± 0.24 −15.56 ± 0.49 41.91 ± 0.35 −4.45 ± 0.01 −24.84 ± 0.07 −10.88 ± 0.05 -1.63
L858R/T790M −52.81 ± 0.29 −11.59 ± 0.34 36.72 ± 0.28 −4.28 ± 0.01 −23.32 ± 0.03 −8.64 ± 0.20 0.61
G719S −54.02 ± 0.10 −23.07 ± 0.18 50.34 ± 0.55 −4.33 ± 0.01 −23.75 ± 0.03 −7.33 ± 0.51 1.92
L858R/G719S −53.62 ± 0.41 −12.49 ± 0.33 39.51 ± 0.18 −4.40 ± 0.01 −23.72 ± 0.08 −7.29 ± 0.26 1.96
D761Y −54.15 ± 0.13 −15.11 ± 0.25 41.75 ± 0.34 −4.57 ± 0.01 −23.78 ± 0.03 −8.30 ± 0.28 0.95
L858R/D761Y −54.48 ± 0.31 −17.72 ± 0.15 45.08 ± 0.60 −4.39 ± 0.01 −23.85 ± 0.08 −7.66 ± 0.19 1.59
L861Q −51.40 ± 0.22 −17.36 ± 0.17 42.07 ± 0.41 −4.31 ± 0.01 −22.94 ± 0.06 −8.06 ± 0.18 1.19
L858R/L861Q −52.43 ± 0.04 −13.57 ± 0.31 38.82 ± 0.43 −4.23 ± 0.00 −23.24 ± 0.05 −8.18 ± 0.74 1.07

Note: All energy terms are in kcal/mol. The relative binding free energy of a mutant, ��Gbind, is calculated by subtracting the MM-PBSA binding free energy of the wild
type from that of the mutant. The following is the detailed description of energy terms listed in the table. �EVDW: van der Waals energy. �Eeel: electrostatic energy.
�Gsol

PB : the polar part of the solvation free energy. �Gsol
nonpol: the nonpolar part of the solvation free energy. −T�S: the entropic contribution to the binding free energy.

�Gbind, the binding free energy, which is the sum of the above individual energy terms. ��Gbind is the relative binding free energy compared to the wild type. SD:
standard deviation.

effects of four different hotpot mutations of EGFR (G719S, D761Y,
T790M and L861Q) on kinase–ligand interaction. Our simulation
study confirmed the working mechanism of afatinib again for
T790M gatekeeper and G719S G-loop mutations, which have
direct interaction with drugs. From the correlation and trajecto-
ries studies on αC-helix D761Y and the A-Loop L861Q mutations,
which do not have direct contact with the ligand, we revealed
evidence that these mutations may bring an opportunity of
forming strong molecular interactions in the proximal regions,
which may further affect the kinas–ligand binding affinity by
differentiating the space of binding sites. In future work, we may
expand the selection of candidate DR mutations for computa-
tional validation. For example, a web server has been recently
built for evaluating drug resistance mutations in kinases by
molecular docking. Using this online service, we may obtain
better candidate information from the assessment of the effects
of drug resistance mutations on kinase–ligand interactions. In
addition, we will continue on the curation of the protein sub-
structures as well as other functional annotations, such as the
transformation of accessible chromatin, 3D nucleome and 4D
nucleome, and then map the somatic mutations to them for
identifying critical functional sites. Finally, we may find other
types of mutations such as splicing variants and investigate their
features in DR in cancer.

Materials and methods
Annotations of four types of protein substructures

We collected the information of four DR hotspots in human
kinases from three resources: Kinase Sequence Database (KSD,
July 2016) [12], the Universal Protein Resource (UniProt, June

2017) [96] and the Protein database of the National Center
for Biotechnology Information (NCBI, June 2017) [97]. Using
these data sets, we arranged the following information: hotspot
residue, gene symbol, RefSeq mRNA accession, RefSeq protein
accession, UniProt accession and sequence for 538 unique
human kinases. The specific detail is provided below.

Collection of gatekeeper loci in human kinases. KSD contains
gatekeeper and ATP-binding sites for 946 partial KD sequences,
not the full-length amino-acid sequence. Since this information
is not based on full-length protein sequence, we ran Basic Local
Alignment Search Tool for Protein (BLASTP) to convert these
amino acid residue loci into the full protein sequences [98].
From the hits of BLASTP for all 946 partial protein sequences,
we extracted those with 100% identity hits only. In total, we
obtained 348 kinases having gatekeeper residue information
(Supplementary Table S1).

Collection of G-loop and αC-helix in human kinases. Through
the literature review, we found that the G-loop lies between the
β1 and β2 strands and contains a consensus GxGxxG motif [99].
After downloading the gff format file describing the β strand loci
for all reviewed human kinases from UniProt, we first searched
the locations of the first two β strands (β1 and β2) within the KD.
Because some kinases have the first β strand located before the
starting point of the KD, we allowed a ± 2 amino acids [2] window
in the search. For kinases that have at least two β strands in
the KD, we searched for the motif ‘GxGxxG’ in the middle of the
β1 and β2 strands. For the kinases that do not have complete
secondary structure information on UniProt, we checked the first
22 residues in the KD to look for the G-loop motif with ±2 AA
window, since we found that the G-loop motif usually occurs in
the first 20 amino acids in the KD. If a kinase had more than one
KD, we searched for the G-loop (and αC-helix too) in all of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa108#supplementary-data
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Figure 7. Identified interaction pathways and comparison of conformational changes due to L858R/D761Y and L858R/L861Q. (A) Interaction pathways identified by

analyzing the correlations of the collected MD snapshots using Kong and Karplus’s method. (i) and (ii) L858R/D761Y; (iii) and (iv) L858R/L861Q. i and iii are for afatinib.

ii and iv are for gefitinib. The number adhered to the double-head arrow indicates the correlation (ranged from 0 to 1) between two residues. The key residues which

have strong contact with the ligands are labeled in red. The origin of the pathway, TYR761 or GLN861, is colored in purple. (B) Comparison of conformational changes

caused by mutation L858R/D761Y (i) or L858R/L861Q (ii). Green cartoon is the experimentally obtained binding mode of gefitinib to wide type of EGFR (PDB code: 2ITY),

the other colored cartoons are the binding modes of gefitinib to mutant L858R/D761Y or mutant L858R/L861Q obtained from MD simulations described in main text.

Red dashed lines indicate hydrogen bonds.

KD separately. This analysis resulted in 175 kinases having the
G-loop residue loci information.

The αC-helix is defined as the first α-helix in the KD from
the N-terminus and is located between β3 and β4 strands [27,
100]. However, in special kinase groups like the AGC kinase,
which has 16 protein kinase families including protein kinase
A, G and C families (PKA, PKC, PKG), the aC-helix is the second

helix following a short αB-helix [101]. To determine the location
of αC-helix, we adopted a similar strategy to that we used for
the G-loop loci. We first determined the range of the KD and
all the α-helix loci inside the domain for each kinase based on
the full-length protein sequences using the gff format data from
UniProt. We labeled the first α-helix as the αC-helix except for
AGC kinases, which the second α-helix was labeled. Since the
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KD usually starts with a β strand, we did not check if the first
α-helix begins outside the KD. We obtained αC-helix loci in 245
kinases.

Collection of A-loop in human kinases. We considered the
kinases that were described as ‘Reviewed human kinase’ and
whose KD locus information is defined from UniProt. As a result,
499 unique kinases were selected. For these validated kinases,
we searched for A-loop information from GenPept from NCBI
Protein. Using batch Entrez available at the NCBI database, we
retrieved the A-loop loci information of 367 kinases.

Overlap of hotspot loci with point somatic mutations
in cancer

We downloaded somatic point mutation data from four
databases: TCGA, ICGC, COSMIC and GDSC. We overlapped
the kinase mutation hotspot loci with non-synonymous single
nucleotide variations (nsSNVs) from these mutation data sets.
The UniProt accessions across all kinases from the hotspot
loci table were mapped to all RefSeq mRNA accessions using
the BioMart data mining tool of Ensembl [102]. We selected
the mutations whose Refseq mRNA accessions were matched.
We kept the mutations when the amino acid sequence of the
original residue at the mutation site matched the one at the full-
length amino acid sequence. Among 3327 nsSNVs, we obtained
86, 462, 705 and 2077 nsSNVs in Gatekeeper, G-loop, αC-helix and
A-loop, respectively.

Relative stability change of protein structure
by a hotspot mutation

We calculated the relative stability change of protein structure by
a DR hotspot mutation using MuPro1.1, a computational tool that
predicts the protein stability changes for single-site mutation
using support vector machine [53]. A score of energy change
(��G) less than 0 means that the mutation would decrease
protein stability. The smaller the score is, the more confidence
the prediction has. A score larger than 0 means that the mutation
would increase the protein stability. The larger the score is, the
more confidence the prediction has.

Drug sensitivity scores of cell lines harboring DR
hotspot mutations

We downloaded the cell line information including somatic
point mutations, treated drug name and drug sensitivity scores
(IC50) from the Database Genomics of Drug Sensitivity in Cancer
(GDSC) [18]. To search the kinases that have the DR hotspot
mutations and IC50 values for the KIs, we overlapped the nsSNVs
from GDSC with our hotspot loci. Since the GDSC used the cell
lines from COSMIC, there is no matched normal samples in
this data set. Therefore, we adopted the following comparison
strategy. If there is a kinase with the primary mutation in mul-
tiple cell lines, some of which had a secondary mutation, we
considered secondary mutations may confer DR, and compared
their IC50 values with those cell lines without the secondary
mutation.

Molecular dynamics simulation and free energy
calculation

We studied a total of 20 EGFR complexes with either afatinib or
gefitinib resides in the binding pocket, including the wild type,
five single mutants (G719S, D761Y, T790M, L858R, L861Q) and four

double mutants (L858R/G719S, L8585R/D761Y, L858R/T790M and
L858R/L861Q). All 20 MD systems consist of one copy of EGFR, one
copy of afatinib or gefitinib, 16 265 TIP3P [103] water molecules,
50 Cl− and a number of Na+ to neutralize the MD systems. For
the force field parameters, the partial atomic charges of two
ligands were derived by using the RESP [104] program to fit the
HF/6-31G∗ electrostatic potentials generated using the GAUS-
SIAN 16 software package [105]. The other force field parameters
came from GAFF [106] and the AMBER FF14SB [107] force field
was used to model proteins. The residue topologies for ligands
were prepared using the Antechamber module [108]. MD simu-
lation was performed to produce isothermal–isobaric ensembles
using the pmemd.cuda program in AMBER 18 [85]. The Particle
Mesh Ewald (PME) method [109] was used to calculate the full
electrostatic energy of a unit cell in a macroscopic lattice of
repeating images. All bonds were constrained using the SHAKE
algorithm [110] in both the minimization and MD simulation
stages. For each MD simulation, the system was first relaxed to
remove any possible steric clashes by a set of 10 000-step mini-
mizations with the main chain atoms restrained using the har-
monic restraint force constants decreased from 20 to 10, 5 and
1 kcal/mol/Å2, progressively. After that, the system was further
relaxed by a 10 000-step minimization without any constraints
or restraints. There were three phases for the subsequent MD
simulations: the relaxation phase, the equilibrium phase and the
sampling phase. In the relaxation phase, the simulation system
was heated up progressively from 50 to 250 K at steps of 50 K.
At each temperature, a 1-ns MD simulation was run without any
restraints or constraints. In the following equilibrium phase, the
system was equilibrated at 298 K, 1 bar for 10 ns. Finally, a 150-
ns MD simulation was performed at 298 K, 1 bar to produce NTP
(constant temperature and pressure) ensembles. In total, 1500
snapshots were recorded from the last simulation. A total of
300 snapshots were evenly selected for the MM-PBSA binding
free energy calculation. The following are the additional settings
for constant pressure MD simulations performed in this work:
temperature was regulated using Langevin dynamics [111] with
a collision frequency of 5 ps−1; pressure was regulated using the
isotropic position scaling algorithm with the pressure relaxation
time set to 1.0 ps; integration of the equations of motion was
conducted at a time step of 1 fs for the relaxation phase and 2 fs
for the equilibrium and sampling phases.

MM-PB/SA energy calculation and correlation analysis

For each MD snapshot, the molecular mechanical (MM) energy
(EMM) and the MM-PB/SA solvation free energy were calculated
without further minimization [86–89, 112, 113]. Key parameters
controlling the MM-PB/SA analyses were listed as follows: exter-
nal dielectric constant, ∼80; internal dielectric constant, ∼4; and
the surface tension for estimating the nonpolar solvation energy,
∼0.054. The Parse radii [114] was used in the MM-PB/SA solvation
calculation using the Delphi package (http://compbio.clemson.e
du/delphi). The entropic term was estimated using a method
described elsewhere [115]. We conducted residue–residue cor-
relation analysis for L858R/D761Y and L585R/L861Q for both
afatinib and gefitinib using the method in Kong and Karplus
[94]. Instead of only applying electrostatic and van der Waals
energies in the analysis, the solvent effect was also considered
by using a Generalized Born model [116]. For each MD system,
6000 MD snapshots were recorded for correlation analysis and
the residue-residue interaction energies were calculated using
the Sander program in AMBER18.

http://compbio.clemson.edu/delphi
http://compbio.clemson.edu/delphi
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