
1

Briefings in Bioinformatics, 22(3), 2021, 1–15

doi: 10.1093/bib/bbaa125
Problem Solving Protocol

DeepVF: a deep learning-based hybrid framework
for identifying virulence factors using the stacking
strategy

Ruopeng Xie†, Jiahui Li†, Jiawei Wang†, Wei Dai, André Leier,
Tatiana T. Marquez-Lago, Tatsuya Akutsu, Trevor Lithgow,
Jiangning Song and Yanju Zhang

Corresponding authors: Jiawei Wang, Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash
University, Melbourne, Victoria 3800, Australia. Tel.: +61-04-9905-1031; E-mail: Jiawei.Wang@monash.edu; Jiangning Song, Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology and Monash Centre for Data Science, Monash University, Melbourne, Victoria 3800,
Australia. Tel.: +61-3-9902-9304; E-mail: Jiangning.Song@monash.edu; Yanju Zhang, Bioinformatics Group, School of Computer Science and Information
Security, Guilin University of Electronic Technology, Guilin, 541004, China. Tel.: +86-13687737912; E-mail: yanjuzhang@guet.edu.cn
†These authors contributed equally to this work.

Abstract

Virulence factors (VFs) enable pathogens to infect their hosts. A wealth of individual, disease-focused studies has identified
a wide variety of VFs, and the growing mass of bacterial genome sequence data provides an opportunity for computational
methods aimed at predicting VFs. Despite their attractive advantages and performance improvements, the existing
methods have some limitations and drawbacks. Firstly, as the characteristics and mechanisms of VFs are continually
evolving with the emergence of antibiotic resistance, it is more and more difficult to identify novel VFs using existing tools
that were previously developed based on the outdated data sets; secondly, few systematic feature engineering efforts have
been made to examine the utility of different types of features for model performances, as the majority of tools only focused
on extracting very few types of features. By addressing the aforementioned issues, the accuracy of VF predictors can likely
be significantly improved. This, in turn, would be particularly useful in the context of genome wide predictions of VFs. In
this work, we present a deep learning (DL)-based hybrid framework (termed DeepVF) that is utilizing the stacking strategy to
achieve more accurate identification of VFs. Using an enlarged, up-to-date dataset, DeepVF comprehensively explores a
wide range of heterogeneous features with popular machine learning algorithms. Specifically, four classical algorithms,
including random forest, support vector machines, extreme gradient boosting and multilayer perceptron, and three DL
algorithms, including convolutional neural networks, long short-term memory networks and deep neural networks are
employed to train 62 baseline models using these features. In order to integrate their individual strengths, DeepVF
effectively combines these baseline models to construct the final meta model using the stacking strategy. Extensive
benchmarking experiments demonstrate the effectiveness of DeepVF: it achieves a more accurate and stable performance
compared with baseline models on the benchmark dataset and clearly outperforms state-of-the-art VF predictors on the
independent test. Using the proposed hybrid ensemble model, a user-friendly online predictor of DeepVF (http://deepvf.erc.
monash.edu/) is implemented. Furthermore, its utility, from the user’s viewpoint, is compared with that of existing toolkits.
We believe that DeepVF will be exploited as a useful tool for screening and identifying potential VFs from protein-coding
gene sequences in bacterial genomes.

Key words: virulence factor prediction; recognition; sequence analysis; machine learning; deep learning; ensemble learning

Submitted: 18 October 2019; Received (in revised form): 22 May 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

https://academic.oup.com/
http://orcid.org/0000-0001-8031-9086
http://orcid.org/0000-0002-8629-258X
http://deepvf.erc.monash.edu/
http://deepvf.erc.monash.edu/


2 Xie et al.

Introduction
The spread of infectious diseases caused by pathogenic bac-
teria is a major cause of human and animal mortality [1–3],
and predictions for how dire this problem will grow due to
increases in drug-resistant bacteria are being revised upwards
[4]. The pathogenesis associated with a bacterial infection can
be complex but, in many cases, is primarily driven by virulence
factors (VFs): proteins produced by the bacterium that enable
it to persist, grow and do damage to the tissues of its human
or animal host [3, 5, 6]. Indeed, the presence or absence of a
VF can be the difference between two closely related species:
Bacillus anthracis (which causes anthrax) and Bacillus cereus (a
non-harmful soil bacterium) differ chiefly in a set of VFs encoded
by plasmids found in B. anthracis [7]. Escherichia coli and Vibrio
cholerae are not usually dangerous to humans, but acquisition
of one or a few genes makes them deadly pathogens [8–10]: the
primary VF in enterohemorrhagic E. coli O157:H7 is a shiga-like
toxin that directly causes the kidney failure that can lead to
death [9] and, in V. cholerae, acquisition of the gene encoding
cholera toxin transduces the otherwise harmless species to be
a highly virulent pathogen causing cholera [10].

In addition to toxins, other VFs mediate a vast array of func-
tions, including mediating bacterial adhesion to host tissues,
modulation of the immune system by various means, lysis of red
blood cells, etc. Effectively identifying VFs has been suggested as
a means to devise novel drug/vaccine targets for preventing and
treating infectious diseases [11–13]. However, the great diversity
in the structure and function of VFs should preclude the use
of computational methods as means to finding VFs from large-
scale protein sequences. It was therefore initially surprising to
see the successful publication of several key studies in this area
[11, 14–21] (summarized in Table S1).

One strategy was to greatly narrow the focus of the VF
types being addressed. The software program SPAAN was
developed to predict a single class of VF, the adhesins, using
a neural network based on five different features (amino
acid frequencies, multiplet frequencies, dipeptide frequencies,
charge composition and hydrophobic composition) pertinent to
the frequencies or compositions of amino acids, and achieved a
considerable accuracy [16]. In the second study, a broader range
of VFs were used to construct an inspiring bi-layer cascade
support vector machine (SVM) using the stacking strategy for
predicting VFs together with sequence-based and position-
specific scoring matrix (PSSM)-based features, and a user-
friendly web server was developed and called VirulentPred [11].
Further three algorithms were proposed to predict virulent
proteins, and while their performance was only marginally
better than VirulentPred, this independently supported the
prospect that the VFs of diverse structure, function and
origins could be detected with a single tool [14, 15, 17]. Later,
Zheng et al. [18] proposed a novel network-based method
based on the protein–protein interaction networks to predict
VFs in the proteomes of six bacteria species. This method
achieved a high-prediction performance on their benchmark
tests; however, it was not expanded and implemented as a
universal VF prediction predictor and, therefore, could not be
further validated and applied in general and practical scenarios.
Another VF prediction method took into account the protein–
protein interactions based on the STRING database and KEGG
pathways [21]. This method was validated through analysis
of three specific species recorded in the VFDB [22]. In 2014,
the MP3 method [19], implemented as both standalone tool
and web server, combined an SVM classifier trained with
sequence-based features and the hidden Markov model to

Ruopeng Xie is currently a Research Assistant in the Bioinformatics Lab at Guilin University of Electronic Technology. He received his master degree in the
School of Computer Science and Information Security, Guilin University of Electronic Technology, China, and his bachelor degree in computer science and
technology from Shanghai Business School, China. His research interests are bioinformatics, machine learning and data mining.
Jiahui Li is currently a Research Assistant in the Bioinformatics Lab at the Guilin University of Electronic Technology. She received her master degree
from The First Affiliated Hospital of Wenzhou Medical University, China, and was a visiting master student at the Biomedicine Discovery Institute and
the Department of Microbiology, Monash University. Her interests cover bacterial secretion mechanism, bacterial antimicrobial resistance, bacteria-phage
interaction and bioinformatics.
Jiawei Wang is currently a postdoctoral research fellow in the Biomedicine Discovery Institute and the Department of Microbiology at Monash University,
Australia. He received his bachelor degree in software engineering from Tongji University, master degree in computer science from Peking University, China
and PhD degree from Monash University. His research interests are computational biology, bioinformatics, machine learning and data mining.
Wei Dai is currently a master student in the School of Computer Science and Information Security, Guilin University of Electronic Technology, China. His
research interests are bioinformatics, computational biology, machine learning and ensemble learning.
André Leier is currently an Assistant Professor in the Department of Genetics and the Department of Cell, Developmental and Integrative Biology, University
of Alabama at Birmingham (UAB) School of Medicine, USA. He is also an Associate Scientist in the UAB Comprehensive Cancer Center. He received his Ph.D.
in computer science (Dr. rer. nat.) from the University of Dortmund, Germany. His research interests are in biomedical informatics and computational and
systems biomedicine.
Tatiana T. Marquez-Lago is an Associate Professor in the Department of Genetics and the Department of Cell, Developmental and Integrative Biology,
University of Alabama at Birmingham (UAB) School of Medicine, USA. Her research interests include multiscale modelling and simulations, artificial
intelligence, bioengineering and systems biomedicine. Her interdisciplinary lab studies stochastic gene expression, chromatin organization, antibiotic
resistance in bacteria and host–microbiota interactions in complex diseases.
Tatsuya Akutsu received his DEng degree in information engineering in 1989 from the University of Tokyo, Japan. Since 2001, he has been a Professor in
the Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan. His research interests include bioinformatics and discrete algorithms.
Trevor Lithgow is a Professor in the Biomedicine Discovery Institute and the Director of the Centre to Impact AMR at Monash University, Australia.
He received his PhD degree in 1992 from La Trobe University. His research interests particularly focus on bacterial cell biology. His lab develops and
deploys multidisciplinary approaches, ranging from bioinformatics to biochemical assays to nanoscale imaging to characterize bacterial cell surfaces and
to discover and characterize the bacteriophages that kill antibiotic resistant ‘superbugs’.
Jiangning Song is an Associate Professor and the Group Leader in the Biomedicine Discovery Institute and the Department of Biochemistry and
Molecular Biology, Monash University, Melbourne, Australia. He is a member of the Monash Centre for Data Science, Monash University. He is also an
Associate Investigator at the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University. His research interests include bioinformatics,
computational biomedicine, machine learning, functional genomics and enzyme engineering.
Yanju Zhang received her PhD degree at the Leiden Institute of Advanced Computer Science, Leiden University, the Netherlands, in 2011. She is currently
a Professor and the Head of the Bioinformatics Group, School of Computer Science and Information Security, Guilin University of Electronic Technology,
China. Her research interests are bioinformatics, algorithms and modeling, machine learning, data mining and precision medicine.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data


DeepVF for virulence factor prediction 3

Figure 1. An overview of the ML- and DL-based hybrid framework of DeepVF for predicting VFs in bacterial pathogens. Schematic displaying the four stages in

construction of DeepVF.

predict virulent proteins. MP3 showed a better performance over
VirulentPred in three different datasets. More recently, Rentzsch
et al. [20] proposed (termed as PBVF) effective negative data
selection strategies to construct novel and more diverse data
set. Based on this, they explored various SVM-based and random
forest (RF)-based classifiers, a direct sequence similarity
(seqsim)-based method and their combinations for VF prediction.
They showed that seqsim plays an unparalleled important role
in VF identification. Its combination with other features could
lead to performance improvement when being incorporated to
machine learning (ML) models. In addition, the performance of
the seqsim-based method turned out to be much better than that
of MP3 based on the same training data set.

With the recent, rapid advances of artificial intelligence, an
increasingly diverse range of deep learning (DL) and classical ML
algorithms have been developed. This provides opportunities to
develop and apply new methods to address the VF prediction
problem. In addition, the new VF database (Victors) [3] and
another two databases (VDFB [22] and Pathosystems Resource

Integration Center (PATRIC) [23, 24]) provide comprehensive data
sources for constructing ML models to enable better VF predic-
tion from sequence data.

In this study, we present DeepVF, a DL-based hybrid frame-
work for accurately identifying VFs from genome sequence data.
We assembled an up-to-date benchmark dataset by collecting
positive samples from multiple recently published VF databases
[3, 22, 25] and negative samples from PBVF [20]. DeepVF employs
four classical ML methods and three DL algorithms (Figure 1):
to this end, we constructed a total of 62 baseline models and
effectively integrated them using the stacking strategy inspired
by previous work [11]. For classical ML, a comprehensive set
of traditional ML features (including sequence-based features,
physicochemical property-based features and evolutionary
information-based features) was extracted to represent the
characteristic features of VFs. Accordingly, four commonly used
classical ML algorithms [26–29], including RF, SVM, extreme
gradient boosting (XGBoost) and multilayer perceptron (MLP),
were utilized to construct such ML baseline models. For DL, three



4 Xie et al.

different DL techniques were employed, namely convolutional
neural networks (CNNs), long short-term memory networks
(LSTMs) and deep neural networks (DNNs). Sequence-to-vector
encoding was used to train these individual DL baseline models.
Next, the prediction labels of the baseline models (including ML
baseline models and DL baseline models) were used as inputs
to train the final meta model using the XGBoost algorithm. We
show that the final meta model that is based on the stacking
strategy achieves a better overall performance compared with
the baseline models on cross-validation and independent tests.
Moreover, DeepVF achieves significantly a better performance
than several existing state-of-the-art methods for VF prediction
in terms of ACC (0.812), F-value (0.807), Matthew’s correlation
coefficient (MCC) (0.624) and AUC (0.896) on the independent
test. The results highlight the effectiveness of the proposed
hybrid framework. As an implementation of this method, we
also established a user-friendly online web server of DeepVF,
which is publicly accessible at http://deepvf.erc.monash.edu/.
The utility of DeepVF is further compared with that of other
existing toolkits, focusing on user guidance, data requirements,
computational costs and output interpretation. We anticipate
that DeepVF will greatly facilitate users’ efforts for screening
and mining more novel putative VFs from sequence information
in bacterial pathogens.

Methods
The overall workflow of the development of DeepVF (Figure 1)
can be summarized by the following steps, which include: (i) data
collection and curation; (ii) feature extraction; (iii) model training
and optimization and (iv) integrative model construction.

Data collection and curation

To construct an up-to-date dataset, we collected 9749 VFs from
the three public databases (Victors [3], VDFB [22] and PATRIC [25])
associated with several bacterial pathogens. For the negative
samples, we extracted 66 982 non-VFs from PBVF [20], which
was constructed based on the proposed effective negative data
selection strategy. Next, the CD-HIT [30] program was applied to
cluster the sequences and remove the sequence redundancy in
the positive and negative datasets, respectively. The sequence
identity threshold was set as 0.3 to remove the sequence redun-
dancy (Table S2). As a result, the final non-redundant dataset
contained 3576 VFs and 4910 non-VFs. Among these, 576 VFs
and 576 non-VFs were randomly selected as the independent
test dataset, while the remaining were used as the training
dataset (3000 VFs and 4334 non-VFs). To solve the data imbalance
problem, we constructed five balanced training datasets (each
of them contained 3000 VFs and 3000 non-VFs) by randomly
selecting the same number of non-VFs as that of VFs.

Feature extraction

Comprehensive and effective feature extraction is a key to con-
struct stable and reliable models with a competitive perfor-
mance. In view of the differences between classical ML and DL
algorithms, two different types of feature extraction methods
were used in this study. A detailed description of these methods
is provided in the following subsections.

Feature extraction for classical ML

We extracted three major groups of features, including sequence-
based features, physicochemical property-based features and
evolutionary information-based features [26, 28, 29, 31, 32] to

systematically explore the representative and specific patterns
of VF proteins.

Group 1: Sequence-based feature group. Three features
primarily describe the frequencies or compositions of sequence
elements, namely amino acid composition (AAC), dipeptide
composition (DPC) and dipeptide deviation from expected
mean (DDE) [33].

Amino Acid composition. AAC defines the frequency of an
amino acid type present in a protein sequence [34], which can
be calculated as follows:

ri = Ci

len
(
seq

) , i = 1, . . . 20, (1)

where Ci denotes the number of occurrences of theith amino
acid, len(seq) is the length of the query sequence and ri is the
ratio of amino acid i in the whole sequence. As a result, a
20-dimensional feature vector is generated.

Dipeptide composition. DPC measures the relevant frequencies
of all possible dipeptides in a given protein sequence [29]. Using
DPC, any protein sequence can be encoded as a 400-dimensional
feature vector, in which each element fpi

can be calculated as
follows:

fpi
= pi

len
(
seq

) − 1
, i = 1, 2, 3, . . . , 400, (2)

where pi and len(seq) − 1 denote the number of occurrences of
dipeptide i in the sequence and the total number of dipeptides
in a sequence of length len(seq), respectively.

Dipeptide deviation from expected mean. DDE [33] generates a
400-dimensional feature vector from a protein sequence in three
steps. The first step is to calculate the DPC fr,s as follows:

fr,s = Nr,s

N − 1
, r, s = 1, 2, 3, . . . , 20, (3)

where Nr,s is the number of the dipeptide r, s in the sequence.
N − 1 represents the total number of dipeptides in the sequence
of length N. Second, the theoretical mean Tm(r, s) and theoretical
variance Tv(r, s) for the dipeptide r, s can be calculated by

Tm (r, s) = Cr

CN
× Cs

CN
(4)

Tv (r, s) = Tm (r, s) (1 − Tm (r, s))
N − 1

, (5)

where Cr and Cs are the numbers of codons coded for the
corresponding amino acids, respectively. CN is the total number
of possible codons that are not any of the three stop codons (64–
3 = 61). Finally, the DDE of the dipeptide r, s can be calculated
as

DDE (r, s) = fr,s − Tm (r, s)√
Tv (r, s)

. (6)

Group 2: Physicochemical property-based features. Physic-
ochemical property-based features describe the statistical
information pertinent to the physicochemical properties of
amino acids in a protein sequence.

Pseudo-AAC. Pseudo-ACC (PAAC) [35] has been successfully
applied to solve various problems in bioinformatics tasks that
are related to protein sequence analysis [36]. In this algorithm,
let Ho

1, Ho
2, . . . , Ho

N denote the numbers of N original property
values of 20 natural amino acids. We obtain H1, H2, . . . , HN using

http://deepvf.erc.monash.edu/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data


DeepVF for virulence factor prediction 5

the following formula:

Hn(i) = Ho
n(i) − 1

20

∑20
i=1Ho

n(i)√ ∑20
i=1 [Ho

n (i)− 1
20

∑20
i=1Ho

n (i)]2

20

, n = 1, 2, . . . , N. (7)

For amino acids Ri and Rj, their correlation can be defined as

c
(
Ri, Rj

) = 1
N

∑N

k=1

[
Hk (Ri) − Hk

(
Rj

)]2, (8)

where Hk(Ri) is the kth property of Ri. For a sequence of length L,
the sequence order-correlated factors θj can be defined as

θj = 1
L − j

∑L−j

i=1
c
(
Ri, Ri+j

)
, j = 1, 2, . . . , L − 1. (9)

Accordingly, a (20 + λ (λ = 2))-dimensional vector can be
obtained by

XC =
⎧⎨
⎩

fc
1+w

∑λ
i=1 θi

, (1 ≤ c ≤ 20)

wθc−20

1+w
∑λ

i=1 θi
, (21 ≤ c ≤ 20 + λ)

, (10)

where fc denotes the frequency of amino acid c in the sequence,
while w is the weighting factor for the sequence-order with the
default value of 0.1.

Quasi-sequence order. Quasi-sequence order (QSO) describes
the probability of occurrence of amino acids in the protein
sequence based on two distance matrices, namely the Schnei-
der–Wrede and the Grantham distance matrices [37]. For any
given distance matrix (either Schneider–Wrede or Grantham),
we calculate

τd =
∑L−d

i=1

(
disti,i+d

)2, d = 1, 2, . . . maxlag, (11)

Xr = fr

1 + w
∑maxlag

d=1 τd

, r = 1, 2, 3, 4, . . . , 20, (12)

Xd = wτ d−20

1 + w
∑maxlag

d=1 τd

, = 21, . . . , 20 + maxlag, (13)

where L is the length of the sequence, fr denotes the normalized
occurrence for amino acidr, w is the weighting factor with the
default value of 0.1, maxlag is set as 10 and disti,i+d denotes the
distance between amino acids at the ith position and (i + d)th
position according to the distance matrix. As a result, a (2 ×
20 + 2 × maxlag)-dimensional vector will be obtained for the
sequence.

Group 3: Evolutionary information-based features. Evolutionary
information in the form of PSSM can add potentially useful value
to the analysis of protein sequences [38–40]. The PSSM describes
the characteristics of each amino acid at different positions in
the protein sequence. It was shown that the use of PSSM can
make a difference in many biological classification problems.
In this work, we performed the PSI-BLAST search against the
uniref50 database with the parameters j = 3 andh = 0.001to
get the PSSM profiles. In this way, a sequence with the length
of N will generate an N×20 matrix as there are 20 native amino
acid types. Accordingly, three types of evolutionary information-
based features are represented through different forms of PSSM
transformation [39], which include PSSM-composition [40], S-
FPSSM [41] and Residue Probing Method (RPM)-PSSM [42].

PSSM-composition. PSSM-composition [40] represents a row
transformation of the original PSSM, by summing and averaging
the row vectors that belong to the same type of amino acid. Thus,
a 20×20 matrix can be obtained using the following formula:

Ri = 1
L

∑L

k=1
rk × δk (14)

subject to

{
δk = 1, pk = ai

δk = 0, pk �= ai

(
i = 1, . . . , 20; k = 1, . . . , L

)
, (15)

where Ri denotes the ith row of the transformed matrix, rk

describes the kth row of the original PSSM, pk is the kth amino
acid in the original sequence, L is the length of the sequence and
ai denotes the ith amino acid of the 20 natural amino acids.

S-FPSSM. S-FPSSM [41] extracts evolutionary information
from a formulated matrix FPSSM obtained from the original
PSSM profile, by setting all scores less than 0–0 and all positive
scores greater than n to n (n = 7). Based on the FPSSM, the
S-FPSSM can be calculated as follows:

s(i)
j =

∑L

k=1
fpk,j × δk,j (16)

subject to

{
δk,i = 1, pk = ai

δk,i = 0, pk �= ai

(
i = 1, . . . , 20; k = 1, . . . , L

)
, (17)

where fpk,j denotes the element of the kth row and the jth column
of the FPSSM, pk denotes the kth residue in the original protein
sequence, while ai denotes the ith natural amino acid. As a result,
the sequence is encoded as a 400-dimensional vector.

RPM-PSSM. RPM-PSSM transforms the original PSSM by bor-
rowing the probe concept employed in microarray technologies
[42]. RPM-PSSM first transforms the original PSSM profile into
a new ‘filtered’ matrix (named as PPSSM) by setting all negative
elements to zero. Then, the RPM-PSSM features can be calculated
based on the PPSSM using the similar formula as the PSSM-
composition

R′
i = 1

L

∑L

k=1
r′

k × δk (18)

subject to

{
δk = 1, pk = ai

δk = 0, pk �= ai

(
i = 1, . . . , 20; k = 1, . . . , L

)
, (19)

where R′
i denotes the ith row of the resultant matrix, r′

k denotes
the kth row of the PPSSM, pk denotes the kth residue in the
original protein sequence and ai denotes the ith native type
of amino acid. Similarly, a 400-dimensional feature vector is
obtained.

Feature extraction for DL

Compared with classical ML algorithms, it is often not straight-
forward for DL to identify useful and relevant information from
complex features for making prediction, especially considering
the limited volume of data. Alternatively, the sequence-to-vector
encoding has been successfully applied to DL modelling in order



6 Xie et al.

to address a wide range of biological sequence analysis tasks [43–
45]. It conveniently converts protein sequences into numerical
vectors, which can subsequently serve as the input to train DL
models. Here, the 20 native types of amino acids in protein
sequences are mapped into 1, 2, 3, . . . , 20 according to the alpha-
betical order. As can be seen from Figure S1, the lengths of the
protein sequences in the dataset were mostly distributed within
the 1000 limit. In view of this, we extracted different dimensional
features based on different sequence length windows, ranging
from 100 to 1000, with an interval of 100. Specifically, when the
length of a protein sequence was less than the specified window
size, the corresponding numeric vectors were padded with 0 at
the tail. As a result, 10 feature vectors in different dimensions
(i.e., L100, L200, . . . , and L1000) were generated for constructing
the DL models, based on different window sizes.

Model training and optimization

In this work, four classical ML methods (RF, SVM, XGBoost and
MLP) and three popular DL algorithms (CNN, LSTM and DNN)
were employed. Their detailed implementations and parameter
optimizations are introduced below.

Classical ML

RF [46] integrates multiple decision trees based on the bagging
strategy. It has been successfully applied to address a variety of
research questions in bioinformatics and computational biology
with excellent effectiveness and stability [26, 29, 47, 48]. In this
study, the RF algorithm was implemented using the randomFor-
est package [49] in R. The number of randomly selected features
(mtry) was optimized, and the number of decision trees was
set to 1000. The parameter tuning was based on the training
dataset, and the tuned parameter was then applied to conduct
all experiments in this study. These apply to the following ML
parameter tuning (if necessary).

SVM has been shown to achieve reasonably good perfor-
mance on small-scale datasets with many successful applica-
tions to biological classification problems [11, 28, 29]. Training of
SVM models involves the optimization of two essential param-
eters, i.e. the Cost C and Gamma γ . In this study, we trained
the SVM models with the Gaussian radial basis kernel using the
e1071 package (https://cran.r-project.org/web/packages/e1071/)
in R. The parameters C ∈ {2−10, 2−9, . . . , 1, 29, 210} and Gamma
γ ∈ {2−10, 2−9, . . . , 1, 29, 210} were optimized by grid search.

As an effective implementation and extension of gradient
boosting decision tree, XGBoost is specifically designed to handle
industrial-scale, ‘big’ data and parallel computing [50]. XGBoost
can generate a strong learning model by linearly integrating
weak learning models composed of decision trees. As such, it
has been widely applied to solve a variety of bioinformatics tasks
[27, 51, 52]. In this study, XGBoost was implemented using the
xgboost package (https://cran.r-project.org/web/packages/xgboo
st) in R language. We performed a random search [53] to tune
the multiple parameters (Table S3) by maximizing the AUC value
based on 5-fold cross validation test.

MLP is a feed forward artificial neural network that consists
of multiple layers, i.e. the input layer, output layer and one
or more non-linear layers (hidden layers). MLP has demon-
strated its usefulness by achieving superior performance in a
number of classification problems, including secreted protein
classification [29], molecular classification [54] and automated
cancer diagnosis [55]. Using the R implementation of Keras
(https://keras.rstudio.com/), we trained the MLP model with

three hidden layers, with the number of nodes for each hidden
layer set to 256 and a dropout rate of 0.05. To prevent overfitting,
the value of epochs was set to 30. In addition, we defined the
callbacks function, which allows the early termination of the
iteration while preserving the optimal model.

Deep learning

With the explosive growth of biological data in recent years, the
advantages and utility of DL techniques have been demonstrated
by numerous applications in biological research [56–61].

CNN is a class of feed forward neural networks with convo-
lutional computation and deep structure. In CNNs, each neuron
connects only to a small number of neurons in the upper layer,
instead of all neurons. This architecture is able to achieve a better
learning effect by retaining, as much as possible, the impor-
tant parameters (often a much smaller number) while removing
unimportant parameters [62]. In recent years, many biomedical
classification problems have been addressed using CNNs, such
as DNA–protein binding prediction [63], protein solubility pre-
diction [44], somatic mutation detection [64] and cancer imaging
analysis [65, 66]. In this work, the embedding layer was added to
the first layer (output_dim: 256) with a dropout rate of 0.01. Next,
the obtained symbols were fed into a one-dimensional convolu-
tional layer (filters: 64, kernel_size: 16, activation: relu and strides: 1).
This layer creates a convolution kernel that utilizes 64 filters to
intensify the representation of valid features. The default global
max pooling layer employs an undersampling strategy to reduce
the dimensionality of these features, compress the number of
data points and parameters and improve the fault tolerance of
the model to avoid potential overfitting. Finally, the hidden layer
was added with a total of 256 nodes and a dropout rate of 0.01.

A recurrent neural network (RNN) is a type of directed (one-
way) recursive neural network in which all nodes are connected
by chains. The RNN has been demonstrated to be superior on
dealing with different bioinformatics tasks [43, 47, 67, 68]. As
a common type of RNN, LSTM has been successfully applied
to protein subcellular localization prediction [69] and antimi-
crobial peptide recognition [43] with an outstanding ability to
‘recognize’ and ‘forget’ gap-separated patterns [70]. Here, we
substituted the hidden layer in the abovementioned CNN with
the LSTM layer (units: 128, return_sequences: FALSE, dropout: 0.01)
to construct a LSTM model, which can identify effective gap-
separated patterns from sequences.

Characterized by multiple hidden layers, DNN has been suc-
cessfully applied in bioinformatics and computational biology in
recent years [71–73]. In this study, the first layer in the DNN was
an embedding layer with the output_dim of 256 and the dropout
rate of 0.01. Following the embedding layer was a default global
average pooling layer, which was used to replace traditionally
fully connected layers to avoid potential overfitting [74]. Finally,
three hidden layers, each of which contained 64 units, were
added to construct the final architecture of DNN.

All the three aforementioned neural networks were imple-
mented by the Keras package in R using a sequential model.
The models were compiled with the ‘adam’ optimizer using
30 epochs (loss: binary_crossentropy, metrics: accuracy). The call-
backs function was defined similarly to the one used by the MLP.

Integrative model construction

Numerous previous studies have indicated that ensemble mod-
els are able to achieve significantly improved performance over
their baseline models [26, 28, 29, 31, 32, 75–78]. To this end, we
constructed a number of baseline models and integrated them

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/xgboost
https://cran.r-project.org/web/packages/xgboost
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://keras.rstudio.com/


DeepVF for virulence factor prediction 7

into a single stable hybrid model using the stacking strategy. A
detailed description is provided in the following subsections.

Construction of baseline models

As described in Sections 2.2 and 2.3, eight different types of fea-
tures (AAC, DPC, DDE, PAAC, QSO, PSSM-composition, S-FPSSM
and RPM-PSSM) were used to construct models based on four
classical ML algorithms (RF, SVM, XGBoost and MLP), while 10
features (L100, L200, . . . , L1000) were used to construct mod-
els based on three DL algorithms (CNN, LSTM and DNN). In
total, 62 baseline models were constructed, which included 32
(4×8) ML baseline models plus 30 (3×10) DL baseline models. To
construct each baseline model (Figure S2), the training dataset
was randomly partitioned into 10 equally sized subsets. One
subset was retained as the validation set, whereas the remain-
ing subsets were used to construct a subset-based model. This
procedure was repeated 10 times to generate 10 subset-based
models and to ensure that each sequence in the training set
would receive one prediction score. Finally, the prediction scores
of all the 62 baseline models were obtained for the training
dataset. Specifically, the prediction score of the baseline model
on the independent dataset was calculated by averaging the
prediction scores of 10 subset-based models (Figure S2).

Generation of a new and informative feature vector

A new and informative feature vector was generated based on
62 prediction scores as follows. For a given protein sequence P,
its 62 prediction scores generated by 62 baseline models were
converted to 62 labels, which can be represented by

{
fsi(P) = 1, if Si(P) > 0.5
fsi(P) = 0, if Si(P) ≤ 0.5

, i = 1, 2, . . . , 62, (20)

where fsi(P) and Si(P) denote the prediction label and prediction
score of the ith baseline model, respectively. Then, a new feature
vector Featurenew can be generated by concatenating the 62
prediction labels

Featurenew = (
fs1(P), fs2(P), . . . , fs62(P)

)
, (21)

Finally, the protein sequence P was converted to a 62-
dimensional feature vector.

Establishment of a meta model using XGBoost

A meta model was constructed using XGBoost based on the new
62-dimensional feature vector. Unlike those models constructed
with straightforward ensemble strategies (such as average scor-
ing and majority voting), this stacking strategy enables an auto-
matic exploration of different baseline models. Through intel-
ligent integration of their respective strength without human
intervention, the final metal model can potentially provide a bet-
ter and more stable performance [11, 79–81]. Moreover, XGBoost
also allows the feature importance analysis in a statistically
sound manner, to quantify the impact of each baseline model
on the performance of the final meta model (data shown in
the Section Effect of baseline models on the performance of
the final meta model). This will allow us to better characterize
and understand the contribution of each of the features and
individual baseline models to the performance improvement of
the final meta model.

Performance evaluation

In this study, five performance measures, including sensitiv-
ity (SN), specificity (SP), accuracy (ACC), F-value and MCC, are
employed to quantify the performance of the constructed mod-
els according to the confusion matrix [82]. These measures are
defined as follows:

SN = TP
TP + FN

(22)

SP = TN
FP + TN

(23)

ACC = TP + TN
TP + FN + FP + TN

(24)

F − score = 2 × TP
2TP + FP + FN

(25)

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

, (26)

where TP, TN, FP and FN represent the numbers of true positives,
true negatives, false positives and false negatives, respectively.
In addition, we also plotted the receiver operating characteristic
(ROC) curves to visualize the comprehensive performance of the
models and calculated the area under ROC curve (AUC). The
higher the AUC value, the better the model performance.

Experimental results
Performance evaluation based on 10-fold
cross-validation test

In this section, we conducted, analyzed and compared the
performance results using the training dataset on the 10-fold
cross-validation test. In this work, all 10-fold cross-validation
tests were conducted based on five balanced training datasets,
and the results were averaged as the final performance. The
results are provided in Tables 1, 2 and S4–S9 and also shown in
Figures 2, 3 and S3.

Performance evaluation of baseline models

We assessed the performance of baseline models with a default
threshold of 0.5 by performing the 10-fold cross-validation test
on the training dataset.

The results show that models trained with the seqsim feature
clearly outperformed those trained with traditional ML features
across different ML algorithms (Table S4). This observation high-
lighted the importance of the seqsim feature, which is consistent
with previous work [20] where the combination of seqsim and
DPC was demonstrated to achieve an improved performance.

Here, we further explored whether combining the seqsim
feature could boost the performance of VF prediction in general.
To generate the seqsim feature, we used the BLAST+ software
[83] to search a query protein against the positive and negative
training sets with an E-value of 10, respectively. Finally, we
generated a two-dimensional feature vector (seqsim) with the
highest bitscores against the positive and negative training sets.
The seqsim feature was incorporated into each of traditional ML
features to retrain the models. Specially, the combined features
were normalized to a range of 0 and 1, when training SVM mod-
els, as their performance are easily influenced by features with
large variations [26, 29]. As shown in Figure 2A, the performance
of most ML models trained with combined features (detailed in
Table 1) generally improved compared with those trained with

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data


8 Xie et al.

Table 1. Performance comparison of baseline models with combined features (seqsim incorporated) for predicting VFs on 10-fold cross-
validation test

Model Encoding SN SP ACC F-value MCC

RF AAC 0.839 ± 0.017 0.812 ± 0.023 0.825 ± 0.014 0.827 ± 0.014 0.651 ± 0.027
DPC 0.799 ± 0.033 0.809 ± 0.030 0.804 ± 0.018 0.802 ± 0.020 0.608 ± 0.036
DDE 0.820 ± 0.028 0.780 ± 0.022 0.800 ± 0.019 0.803 ± 0.020 0.600 ± 0.037
PAAC 0.838 ± 0.017 0.812 ± 0.023 0.825 ± 0.015 0.827 ± 0.015 0.651 ± 0.029
QSO 0.829 ± 0.017 0.817 ± 0.022 0.823 ± 0.013 0.824 ± 0.014 0.646 ± 0.026
PSSM-composition 0.763 ± 0.025 0.907 ± 0.015 0.835 ± 0.015 0.822 ± 0.018 0.677 ± 0.029
S-FPSSM 0.796 ± 0.022 0.863 ± 0.018 0.830 ± 0.015 0.823 ± 0.017 0.661 ± 0.030
RPM-PSSM 0.765 ± 0.029 0.890 ± 0.018 0.828 ± 0.017 0.816 ± 0.020 0.661 ± 0.033

SVM AAC 0.821 ± 0.018 0.764 ± 0.025 0.792 ± 0.017 0.798 ± 0.018 0.586 ± 0.033
DPC 0.738 ± 0.023 0.738 ± 0.025 0.738 ± 0.016 0.738 ± 0.015 0.476 ± 0.032
DDE 0.742 ± 0.021 0.725 ± 0.028 0.734 ± 0.016 0.736 ± 0.015 0.468 ± 0.032
PAAC 0.823 ± 0.019 0.761 ± 0.025 0.792 ± 0.015 0.798 ± 0.016 0.585 ± 0.029
QSO 0.808 ± 0.021 0.754 ± 0.024 0.781 ± 0.014 0.787 ± 0.014 0.563 ± 0.029
PSSM-composition 0.792 ± 0.029 0.836 ± 0.025 0.814 ± 0.019 0.810 ± 0.020 0.629 ± 0.038
S-FPSSM 0.797 ± 0.026 0.776 ± 0.028 0.786 ± 0.021 0.788 ± 0.021 0.573 ± 0.042
RPM-PSSM 0.760 ± 0.034 0.830 ± 0.024 0.795 ± 0.018 0.787 ± 0.021 0.591 ± 0.035

XGBoost AAC 0.836 ± 0.017 0.813 ± 0.024 0.825 ± 0.015 0.827 ± 0.015 0.650 ± 0.029
DPC 0.845 ± 0.016 0.802 ± 0.024 0.823 ± 0.015 0.827 ± 0.016 0.648 ± 0.030
DDE 0.843 ± 0.016 0.814 ± 0.020 0.829 ± 0.013 0.831 ± 0.015 0.658 ± 0.026
PAAC 0.832 ± 0.015 0.816 ± 0.021 0.824 ± 0.014 0.825 ± 0.015 0.649 ± 0.028
QSO 0.838 ± 0.017 0.820 ± 0.019 0.829 ± 0.013 0.831 ± 0.014 0.659 ± 0.025
PSSM-composition 0.833 ± 0.017 0.885 ± 0.017 0.859 ± 0.012 0.855 ± 0.013 0.719 ± 0.024
S-FPSSM 0.841 ± 0.019 0.871 ± 0.019 0.856 ± 0.015 0.854 ± 0.016 0.713 ± 0.029
RPM-PSSM 0.835 ± 0.018 0.874 ± 0.019 0.854 ± 0.014 0.852 ± 0.015 0.710 ± 0.028

MLP AAC 0.858 ± 0.027 0.741 ± 0.032 0.800 ± 0.012 0.811 ± 0.014 0.604 ± 0.024
DPC 0.855 ± 0.032 0.754 ± 0.035 0.804 ± 0.013 0.813 ± 0.015 0.613 ± 0.025
DDE 0.804 ± 0.038 0.804 ± 0.046 0.804 ± 0.012 0.804 ± 0.013 0.610 ± 0.023
PAAC 0.856 ± 0.030 0.743 ± 0.028 0.800 ± 0.013 0.810 ± 0.016 0.604 ± 0.026
QSO 0.849 ± 0.036 0.764 ± 0.036 0.806 ± 0.013 0.814 ± 0.016 0.616 ± 0.025
PSSM-composition 0.819 ± 0.026 0.886 ± 0.025 0.852 ± 0.009 0.847 ± 0.011 0.707 ± 0.019
S-FPSSM 0.801 ± 0.039 0.876 ± 0.034 0.839 ± 0.014 0.832 ± 0.018 0.680 ± 0.028
RPM-PSSM 0.826 ± 0.031 0.863 ± 0.034 0.844 ± 0.008 0.841 ± 0.010 0.691 ± 0.017

CNN L100 0.565 ± 0.094 0.680 ± 0.092 0.623 ± 0.015 0.596 ± 0.047 0.251 ± 0.029
L200 0.606 ± 0.093 0.683 ± 0.084 0.645 ± 0.018 0.627 ± 0.047 0.295 ± 0.033
L300 0.608 ± 0.097 0.689 ± 0.093 0.649 ± 0.014 0.630 ± 0.047 0.303 ± 0.029
L400 0.601 ± 0.085 0.711 ± 0.078 0.657 ± 0.016 0.633 ± 0.043 0.318 ± 0.030
L500 0.610 ± 0.092 0.704 ± 0.085 0.657 ± 0.018 0.637 ± 0.044 0.321 ± 0.035
L600 0.610 ± 0.081 0.711 ± 0.078 0.660 ± 0.019 0.639 ± 0.038 0.326 ± 0.037
L700 0.619 ± 0.067 0.700 ± 0.078 0.660 ± 0.018 0.644 ± 0.027 0.324 ± 0.036
L800 0.608 ± 0.069 0.711 ± 0.071 0.659 ± 0.016 0.639 ± 0.030 0.324 ± 0.033
L900 0.598 ± 0.087 0.724 ± 0.084 0.661 ± 0.017 0.635 ± 0.042 0.329 ± 0.032
L1000 0.615 ± 0.085 0.705 ± 0.085 0.660 ± 0.015 0.641 ± 0.036 0.326 ± 0.030

LSTM L100 0.566 ± 0.107 0.674 ± 0.112 0.621 ± 0.018 0.594 ± 0.052 0.249 ± 0.038
L200 0.565 ± 0.084 0.727 ± 0.077 0.647 ± 0.019 0.612 ± 0.045 0.300 ± 0.036
L300 0.567 ± 0.117 0.723 ± 0.114 0.645 ± 0.018 0.609 ± 0.055 0.302 ± 0.035
L400 0.589 ± 0.061 0.707 ± 0.071 0.648 ± 0.023 0.625 ± 0.031 0.301 ± 0.046
L500 0.557 ± 0.092 0.737 ± 0.086 0.647 ± 0.020 0.609 ± 0.046 0.304 ± 0.036
L600 0.544 ± 0.082 0.754 ± 0.070 0.649 ± 0.024 0.605 ± 0.052 0.308 ± 0.046
L700 0.522 ± 0.114 0.758 ± 0.098 0.640 ± 0.034 0.584 ± 0.077 0.294 ± 0.066
L800 0.552 ± 0.102 0.745 ± 0.092 0.648 ± 0.026 0.606 ± 0.058 0.307 ± 0.050
L900 0.535 ± 0.091 0.763 ± 0.080 0.649 ± 0.028 0.600 ± 0.058 0.311 ± 0.054
L1000 0.560 ± 0.102 0.748 ± 0.093 0.654 ± 0.028 0.613 ± 0.062 0.318 ± 0.051

DNN L100 0.580 ± 0.057 0.694 ± 0.054 0.637 ± 0.017 0.614 ± 0.028 0.277 ± 0.035
L200 0.598 ± 0.063 0.719 ± 0.050 0.659 ± 0.017 0.635 ± 0.034 0.321 ± 0.031
L300 0.594 ± 0.065 0.729 ± 0.057 0.661 ± 0.017 0.635 ± 0.033 0.328 ± 0.032
L400 0.632 ± 0.060 0.706 ± 0.060 0.669 ± 0.016 0.655 ± 0.027 0.341 ± 0.031
L500 0.620 ± 0.054 0.730 ± 0.050 0.675 ± 0.019 0.655 ± 0.027 0.353 ± 0.036
L600 0.613 ± 0.058 0.734 ± 0.062 0.674 ± 0.019 0.651 ± 0.027 0.352 ± 0.036
L700 0.599 ± 0.063 0.744 ± 0.058 0.672 ± 0.019 0.645 ± 0.031 0.349 ± 0.035
L800 0.606 ± 0.060 0.736 ± 0.063 0.671 ± 0.019 0.647 ± 0.029 0.348 ± 0.036
L900 0.604 ± 0.061 0.740 ± 0.059 0.672 ± 0.018 0.647 ± 0.030 0.349 ± 0.034
L1000 0.601 ± 0.070 0.741 ± 0.070 0.671 ± 0.018 0.644 ± 0.033 0.349 ± 0.034

Note: Values are expressed as mean ± standard deviation. The best performance value for each metric across different encoding methods in each model is highlighted
in bold.



DeepVF for virulence factor prediction 9

Table 2. Performance comparison of different models trained based on different ensemble strategies on the 10-fold cross-validation test

Ensemble strategy Model SN SP ACC F-value MCC

Stacking ML model 0.836 ± 0.021 0.916 ± 0.017 0.876 ± 0.013 0.871 ± 0.015 0.755 ± 0.027
DL model 0.623 ± 0.036 0.739 ± 0.030 0.681 ± 0.020 0.661 ± 0.024 0.365 ± 0.038
Hybrid model 0.837 ± 0.023 0.918 ± 0.015 0.878 ± 0.014 0.872 ± 0.016 0.758 ± 0.027

Average scoring ML model 0.847 ± 0.017 0.854 ± 0.020 0.851 ± 0.013 0.850 ± 0.014 0.701 ± 0.026
DL model 0.616 ± 0.033 0.739 ± 0.031 0.678 ± 0.019 0.656 ± 0.022 0.358 ± 0.037
Hybrid model 0.789 ± 0.023 0.865 ± 0.019 0.827 ± 0.015 0.820 ± 0.016 0.657 ± 0.030

Majority voting ML model 0.845 ± 0.016 0.846 ± 0.019 0.845 ± 0.012 0.845 ± 0.013 0.691 ± 0.025
DL model 0.595 ± 0.035 0.765 ± 0.028 0.681 ± 0.018 0.650 ± 0.023 0.367 ± 0.034
Hybrid model 0.743 ± 0.022 0.874 ± 0.020 0.809 ± 0.016 0.795 ± 0.017 0.622 ± 0.032

Note: Values are expressed as mean ± standard deviation. The best performance value is highlighted in bold.

Figure 2. Performance comparison of different models. (A) Performance comparison between the models trained using the original features (appearing at the left, light

green bars within each panel) and those trained using the combined features (i.e. the seqsim feature incorporated; appearing at the right, dark green bars within each

panel). The red bar in the middle of each panel represents the model trained using the seqsim feature; (B) Performance comparison between baseline models (trained

using the combined features) and their ensemble models based on 10-fold cross-validation test; (C) ROC curves of 62 baseline models (trained using the combined

features) and their ensemble models using different ensemble strategies based on 10-fold cross-validation tests.



10 Xie et al.

Figure 3. The effect of the top 30 selected features on the predictive performance of the meta XGBoost model. Bar chart lists the Gain values of these features, while

the pie chart shows the proportions of the top 30 features according to the six different ML and DL algorithms.

traditional ML features or only the seqsim feature (detailed in
Table S4). In particular, the XGBoost model trained with the
combined PSSM-composition and seqsim feature achieved the
best performance with an AAC of 0.859, an F-value of 0.855, an
MCC of 0.719 and an AUC value of 0.927, respectively (Table 1
and Figure 2B and C). These observations again confirmed the
generalized capability of the seqsim feature for enhancing the VF
prediction performance of ML models.

Among these models trained with the combined features, in
most cases, the performances of the models trained using evo-
lutionary information-based features (e.g., PSSM-composition,
S-FPSSM and RPM-PSSM) were found to be superior to those
of the models trained using the other two groups of features.
The results are consistent with a number of previous studies
which show that the evolutionary information-based features
can be used as primary information for predicting different
protein attributes [14, 15, 28, 29, 31, 32, 38, 40]. From the algorith-
mic point of view, MLP and XGBoost achieved an overall better
performance than RF and SVM (Table 1 and Figure 2B and C).

Hereafter, ML baseline models adopted in this work refer to
the model trained with the combined features instead of the
traditional ML features if not explicitly specified.

In the case of DL algorithms, DNN outperformed CNN
and LSTM trained with different features in most cases. This
is expected as the DNN models with three hidden layers
were able to mine deeper patterns and characteristics from
sequences. In contrast, the CNN models only recognized local
sequence motif, while LSTM models captured relatively remote
interactions. Specifically, the DNN model trained using 500-
dimensional features achieved the overall best performance
with an AAC of 0.675, an F-value of 0.655, an MCC of 0.353 and
an AUC value of 0.716. Those results indicate that DNN has
certain advantages in analyzing biological sequence data and
training more accurate models [73, 84]. Generally, as the feature
dimension increased, the performance of a model gradually
increased and then reached a stable plateau (Figure S3). The
overall best performance for CNN, LSTM and DNN was achieved

in feature dimensions of 900, 1000 and 500, respectively (Table 1).
We also re-trained the three DL models using their optimal
features but with different dropout rates ranging from 0.01 to
0.3 and compared their performance based on 10-fold cross-
validation test. The results indicate that, with the increase of
dropout rate, the performance of DL models did not have any
obvious change (Table S5). Among them, the dropout rate of 0.01
showed more stable performance compared with the others and
exhibited general fitness among various DL models.

In addition to the threshold of 0.5, we also investigated the
effect of different thresholds (ranging from 0.3 to 0.7) on the
performance of models. The experimental results showed that
models with the threshold of 0.5 (Table 1) achieved more stable
performance, with a better balance of SN and SP, than those with
other thresholds (Table S6). Therefore, if not explicitly specified,
the default threshold was set to 0.5 in this work. This is also the
default setting on the DeepVF server, but with an option for users
to customize their own thresholds for specific demands.

We found that the effectiveness of DL algorithms was not
as good as that of classical ML algorithms, which is reflected
by the comparatively lower performance measures (Table 1 and
Figure 2). The possible reason is that DL can better leverage very
large datasets (typically millions of samples) to achieve high
performance [56]; however, it is difficult for DL algorithms to
extract highly useful information just from a limited number
of sequences. Moreover, the complex features (e.g. sequence-
based features, physicochemical property-based features and
evolutionary information-based features), which can be effec-
tively used to construct ML models, lead to underfitting in DL
models due to the constraints of limited data. Having that said, it
might be possible for the DL models to identify specific patterns
from sequences via self-learning without human intervention.
Without manually assuming how a model could contribute to
the final ensemble predictor, we integrated both ML and DL mod-
els to construct a hybrid ensemble model. The hybrid ensemble
model will determine on its own how to utilize its baseline
models based on their contributions.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data


DeepVF for virulence factor prediction 11

The performance of ensemble models

To examine the performance of the ensemble models trained
based on the stacking strategy, we designed and performed three
sets of experiments: 32 ML, 30 DL and all 62 baseline models
were integrated to establish three different ensemble models,
which were termed as ML model, DL model and hybrid model,
for brevity, respectively. As shown in Figure 2 and Tables 1 and 2,
it is apparent that ML and DL stacking strategy-based ensemble
models consistently achieved an overall better performance in
terms of all metrics (i.e., SN, SP, ACC, F-value and MCC) compared
with their respective baseline models. These results demon-
strate that the prediction performance of individual models can
indeed be improved by using ensemble models with stacking
strategy, as has been shown in a number of previous studies
[11, 79, 81]. Moreover, the hybrid model appeared to be the most
powerful classifier, which achieved the highest values for SN
(0.837), SP (0.918), ACC (0.878), F-value (0.872) and MCC (0.758).
This again confirmed that the stacking strategy-based ensemble
model can take advantages of individual ML and DL models to
make more stable and accurate VF prediction.

We also compared our stacking strategy-based ensemble
model with another two commonly used ensemble strategies,
namely the average scoring [26, 28, 31, 32] and majority voting
[29, 75]. These two strategies either average or vote the prediction
scores of ML, DL and all baseline models to construct simpli-
fied ensemble models. As shown in Figure 2 and Tables 1 and
2, most of these ensemble models did not obviously improve
the prediction performance compared with their correspond-
ing baseline models. In contrast, the stacking strategy-based
hybrid model achieved the overall best performance, thereby
validating its strengths to utilize individual baseline models
based on XGBoost. We also constructed the ensemble meta
models using MLP (which achieved the second-best performance
amongst ML models) and DNN (which achieved the best per-
formance amongst DL models). The results confirmed XGBoost
as the optimal choice for constructing the meta model of VF
prediction (Table S7). Using XGBoost, we further constructed
the meta model based on the prediction scores instead of the
prediction labels of the baseline models. The results (Table S8)
showed that the meta model using the prediction label of base-
line models outperformed the counterpart model using the raw
prediction scores. A possible reason might be that prediction
scores are highly variable and too sensitive for the meta-model
to learn.

Effect of baseline models on the performance of the final meta model

To better understand the contributions of individual baseline
models to the performance of the final meta model, we per-
formed a feature importance analysis of the meta model using
the built-in function of XGBoost. The importance of each feature
was generated and ranked using the xgb.importance function
of the xgboost package (https://cran.r-project.org/web/packages/
xgboost) in R language. As each feature used by the meta model
represents the output of a baseline model, the importance of a
feature directly shows how many contributions the associated
baseline model can make to the meta model. Specifically, three
measures, namely Gain, Cover and Frequency, were calculated
for each feature (Table S9). As a result, we identified the top 30
features and listed their Gain values and the proportions with
respect to each of the ML and DL algorithms (Figure 3).

Generally, the better a baseline model performs, the more
it contributes to the final meta model (Table 1 and Figure 3).
The prediction labels of the MLP baseline models trained using

the evolutionary information-based features (S-FPSSM and RPM-
PSSM) were the most important amongst all features, suggesting
their crucial contribution to VF prediction. Specifically, the pre-
diction label of the MLP baseline model trained using S-FPSSM
was ranked with the highest importance with a Gain of 0.585, a
Cover of 0.148 and a Frequency of 0.016, respectively. The pre-
diction labels of the CNN and SVM baseline models appeared to
contribute more, both achieving the highest percentage (23.33%)
amongst all the top 30 features. This observation was not intu-
itive as they achieved the worst performance among the DL
and ML baseline models, respectively (Table 1). In contrast, the
prediction labels of DNN models, which achieved the best per-
formance among DL baseline models (Table 1), were not ranked
in the top 30 feature list. Similar situations also occurred to the
prediction labels of the MLP baseline models, which achieved
the best performance among ML baseline models (Table 1) but
only accounted for 13.33% of the top 30 features. Altogether,
these results illustrate that although the baseline models with a
better performance could generally contribute more, those with
lower performance may also make an indispensable contribu-
tion to the performance of the final meta model. In this way,
the stacking strategy-based meta model could make a good use
of the seemingly uninformative features to achieve its superior
performance, as opposed to other straightforward ensemble
models.

Performance validation on the independent test

We first benchmarked and compared the performance of the
baseline models with the final hybrid meta model (termed
DeepVF) on the independent test dataset. From Tables 3 and S10,
several observations can be made: (i) baseline models trained
with evolutionary information-based features achieved a better
performance compared with other baseline models in most
cases; (ii) the performance of DL baseline models was worse
than that of ML baseline models, possibly due to limited dataset,
and (iii) the final meta model achieved a top-level performance
but performed slightly worse than a few baseline models on the
independent test. Taking into consideration the performance
on both training and independent tests, the hybrid meta model
showed a stable performance, highlighting its robustness and
excellent generalization ability.

Moreover, we compared the performance of DeepVF with
the BLAST-based baseline predictor and three state-of-the-art
methods (i.e. VirulentPred [11], MP3 [19] and PBVF [20]). For
VirulentPred and MP3, we tested their webservers using their
own default prediction cutoff thresholds. As PBVF [20] did not
provide an online webserver for VF prediction, we implemented
an RF-based hybrid classifier (which achieved the top perfor-
mance reported in the PBVF work) by strictly following the
original method based on our training datasets. The BLAST-
based baseline predictor was constructed based on the seqsim
vector [20], which would predict a query protein as positive if
the bitscore against the positive training set was higher, and
otherwise negative.

As can be seen from Table 3 and Figure S4, DeepVF clearly
outperformed the BLAST-based baseline predictor and the
three state-of-the-art methods in terms of all performance
metrics. In particular, DeepVF achieved an ACC of 0.812,
an F-value of 0.807, an MCC of 0.624 and an AUC of 0.896,
respectively. Benefitting from the combination of the DPC and
seqsim features, PBVF achieved the second-best performance.
In contrast, DeepVF stepped further in performance improve-
ment, presumably because it integrated more informative

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://cran.r-project.org/web/packages/xgboost
https://cran.r-project.org/web/packages/xgboost
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data


12 Xie et al.

Table 3. Performance comparison of DeepVF and existing toolkits for predicting VFs on the independent test

Methods SN SP ACC F-value MCC

VirulentPred 0.641 0.573 0.607 0.620 0.214
MP3 0.536 0.783 0.66 0.612 0.33
PBVF 0.774 0.814 0.794 0.790 0.589
DeepVF 0.790 0.833 0.812 0.807 0.624
BLAST 0.682 0.818 0.750 0.732 0.505

Note: The best performance value for each metric across different toolkits is highlighted in bold.

features and models within its hybrid framework. The BLAST-
based baseline predictor ranked the third, highlighting the
effectiveness of the seqsim feature. MP3 followed the BLAST-
based baseline predictor in the performance ranking. This is in
accordance with the previous work [20], which showed that the
performance of MP3 was far worse than that of PBVF on the
same dataset.

As the earliest webserver of its type, VirulentPred performed
the worst on the independent test. To make a fair and objec-
tive comparison, we retrained the model of DeepVF based on
VirulentPred’s training dataset. In this way, we aimed to avoid
the potential influence of different training datasets, without re-
implementing the algorithm of VirulentPred. We compared the
performance of DeepVF and VirulentPred based on the indepen-
dent test datasets of both VirulentPred and DeepVF. As shown
in Table S11, DeepVF achieved a higher (or equal) performance
based on the two different independent datasets of Virulent-
Pred and the independent dataset of DeepVF. In the latter case,
DeepVF failed to perform the prediction as accurately as it
achieved when trained on its own dataset. The decrease in
the prediction performance might be attributed to the outdated
training dataset of VirulentPred.

Application of DeepVF to genome-scale VF prediction

We further applied our DeepVF approach to perform a genome-
wide VF prediction across three bacterial pathogens (including
E. coli O157:H7, Streptococcus pneumoniae (strain ATCC BAA-255/R6)
and Mycobacterium tuberculosis (strain ATCC 25618/H37Rv)). The
BLAST-based baseline predictor was also used for comparison.
As the original BLAST-based baseline predictor only provided the
prediction label, we upgraded it to a classifier that was able to list
the detailed prediction score by following the PBVF method [20].
The overlapping sequences between our training dataset and
bacterial genomes were removed, while those sequences shared
by our independent dataset and the genomes were retained to
measure the predictors’ capabilities.

Upon looking at the top 100 sequences with the highest
prediction scores, we found that DeepVF identified a larger
number of positive samples (5/1/3 samples) in the independent
dataset than the BLAST-based baseline predictor (0/1/0 sam-
ples) among the three genomes (Table S12). This suggests that
DeepVF achieved a better recall of VFs than the BLAST-based
baseline predictor in genome-wide prediction. There were also
a few sequences that were predicted as VFs by both DeepVF
and the BLAST-based baseline predictor in the top 100 ranks
among three genomes (highlighted in Supplementary File S2
and summarized in Table S12). Those sequences would be of
particular interest for further experimental validation. For the
same purpose, the gene ontology terms of the top 100 proteins
predicted by DeepVF in the three genomes are provided in the
Supplementary File S2.

For genome-scale prediction, application of a default cutoff
threshold of 0.5 often led to a large number of false-positives.
To address this, we conducted a series of experiments to
determine a proper threshold that could keep the false-positive
rate under a low level of 5%. We added the known positives
and negatives samples (those included in the training and
independent datasets) into the three genomes and then ranked
the entire genomes according to the DeepVF prediction scores.
Accordingly, there were no false-positive samples across all
three genomes when the threshold was set as higher than
0.85 (Supplementary File S2). We further applied this threshold
to the three genomes and finally predicted 974, 473 and 508
putative VFs and recalled 11, 1 and 12 experimentally validated
VFs (i.e., positive samples appearing in the independent test)
among E. coli O157:H7, S. pneumoniae (strain ATCC BAA-255/R6)
and M. tuberculosis (strain ATCC 25618/H37Rv), respectively
(Supplementary File S2).

Discussion of DeepVF and existing toolkits from the
user’s viewpoint

The value of a toolkit lies in its ability to provide users with
convenient, fast and high-quality services in practical scenarios.
In this section, we discuss DeepVF and two existing toolkits
(i.e. VirulentPred and MP3) for predicting VFs from the user’s
viewpoint. We particularly focus on four aspects including user
guidance, data requirements, computational costs and output
interpretation (summarized in Table S13).

Generally, VirulentPred and DeepVF provide sustained ser-
vice through web servers, while MP3 provides both web server
and standalone toolkit. The standalone toolkit could act as a
substitution for the MP3 server that often provides intermit-
tent access. Another advantage of such standalone toolkit is
that it allows local execution of VF prediction in batches and
integration into downstream pipelines.

To improve user experience, MP3 and DeepVF offer a well-
documented guidance to facilitate users’ interactions with the
servers and interpretation of their prediction results. To use
these toolkits, users are required to submit protein sequences
in FASTA format, while DeepVF also accepts raw sequences
that will be automatically formatted into FASTA format upon
submission. Unlike MP3 that has no limitation on the num-
ber of submitted sequences, VirulentPred and DeepVF specify
the max numbers of 500 and 5000 sequences per submission,
respectively. These considerations are based on the fact that
their computational costs are relatively high (Table S13). Both
of them engage more features (e.g. PSSM-based features) or
ML models to achieve better predictive performance (shown in
the Section Performance validation on the independent test)
with high computational costs incurred. After accomplishing the
prediction tasks, VirulentPred and DeepVF present the detailed
results at the webpage, while MP3 directly provides weblinks for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data


DeepVF for virulence factor prediction 13

result download without the online presentation. DeepVF fur-
ther provides auxiliary functions including output rank, search
and filter to enable a quick and preliminary analysis of the
prediction results. These functionalities cater for users’ common
needs, which often require ranking of the top candidate VFs or
nomination of certain proteins of interest that are worthy of
further experimental validation.

Conclusion
In this work, we have developed DeepVF, which is a DL-based
hybrid framework for accurate identification of VFs in bacte-
rial pathogens. To establish an effective and accurate predic-
tion model, we first collected an up-to-date and high-quality
dataset from recently published literature and public databases.
Based on this dataset, we explored a variety of features for both
classical ML and DL algorithms: four classical ML and three
DL algorithms were employed to construct 62 baseline models
using proposed effective features. To maximize the utility of
each baseline model, we effectively combined them to obtain
the final hybrid meta model based on the stacking strategy.
Extensive benchmarking experiments show that the final hybrid
meta model achieved a higher performance compared with
baseline models, thereby demonstrating the effectiveness of this
strategy. When compared with three existing state-of-the-art
methods (i.e. VirulentPred, MP3 and PBVF) on the independent
test, DeepVF was more effective and outperformed the other
methods for VF prediction, with an ACC of 0.812, an F-value
of 0.807, an MCC of 0.624 and an AUC of 0.896, respectively.
The application of DeepVF to three bacterial genomes led to
the in silico identification of 24 experimentally validated VFs
and 1955 putative VFs, the latter of which could be worthy of
further experimental investigations. Using the proposed hybrid
ensemble model, we implemented DeepVF as a publicly available
web server. We further discussed and compared its practical
utility with the existing toolkits from the user’s viewpoint. We
anticipate that DeepVF will be used as a powerful tool to expedite
the discovery of novel putative VFs for various bacterial species
and therefore facilitate the community-wide effort for in-depth
interrogation and characterization of mechanisms of VFs. More-
over, the proposed DL-based hybrid framework of DeepVF can
serve as a useful template to guide future developments of
prediction models for other classification problems in bioinfor-
matics and computational biology.

Key Points
• We propose a hybrid framework termed DeepVF and

implement it as a user-friendly web server for accu-
rate identification of virulence factors from sequence
information.

• DeepVF trains a number of baseline models with het-
erogeneous features based on four classical machine
learning algorithms and three deep learning algo-
rithms and integrates them within the hybrid frame-
work using the stacking strategy.

• Extensive benchmarking experiments demonstrate
that DeepVF achieves a superior performance of VF
prediction compared with its constituent baseline
models and the existing state-of-the-art toolkits.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.

Acknowledgements

We would like to express our sincere gratitude to the four
anonymous reviewers for their constructive comments and
suggestions, which have considerably improved the pre-
sentation of our work. This work was financially supported
by grants from the National Natural Science Foundation
of China (61862017), the Natural Science Foundation of
Guangxi (2018GXNSFAA138117, 2016GXNSFCA380005), the
National Health and Medical Research Council of Australia
(NHMRC) (1092262, 1144652 and 1127948), the Australian
Research Council (ARC) (LP110200333 and DP120104460),
the National Institute of Allergy and Infectious Diseases
of the National Institutes of Health (R01 AI111965), the
Collaborative Research Program of Institute for Chemical
Research and Kyoto University (2019-32 and 2018-28). TML
and AL’s work was supported in part by the Informatics
Institute of the School of Medicine at UAB.

References
1. Becker K, Hu Y, Biller-Andorno N. Infectious diseases - a

global challenge. Int J Med Microbiol 2006;296:179–85.
2. Miller RS, Farnsworth ML, Malmberg JL. Diseases at the

livestock-wildlife interface: status, challenges, and oppor-
tunities in the United States. Prev Vet Med 2013;110:
119–32.

3. Sayers S, Li L, Ong E, et al. Victors: a web-based knowledge
base of virulence factors in human and animal pathogens.
Nucleic Acids Res 2019;47:D693–700.

4. Burnham JP, Olsen MA, Kollef MH. Re-estimating annual
deaths due to multidrug-resistant organism infections. Infect
Control Hosp Epidemiol 2019;40:112–3.

5. Casadevall A, Pirofski L. Host-pathogen interactions: the
attributes of virulence. J Infect Dis 2001;184:337–44.

6. Cross AS. What is a virulence factor? Crit Care 2008;12:196.
7. Helgason E, Okstad OA, Caugant DA, et al. Bacillus anthracis,

Bacillus cereus, and bacillus thuringiensis–one species
on the basis of genetic evidence. Appl Environ Microbiol
2000;66:2627–30.

8. Brussow H, Canchaya C, Hardt WD. Phages and the evolution
of bacterial pathogens: from genomic rearrangements to
lysogenic conversion. Microbiol Mol Biol Rev 2004;68:560–602
table of contents.

9. Eppinger M, Mammel MK, Leclerc JE, et al. Genomic anatomy
of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A
2011;108:20142–7.

10. Pant A, Das B, Bhadra RK. CTX phage of Vibrio
cholerae: genomics and applications. Vaccine 2019,doi:
10.1016/j.vaccine.2019.06.034

11. Garg A, Gupta D. VirulentPred: a SVM based prediction
method for virulent proteins in bacterial pathogens. BMC
Bioinformat 2008;9:62.

12. Weiss RA. Virulence and pathogenesis. Trends Microbiol
2002;10:314–7.

13. Keen EC. Paradigms of pathogenesis: targeting the mobile
genetic elements of disease. Front Cell Infect Microbiol
2012;2:161.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa125#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://doi.org/10.1016/j.vaccine.2019.06.034


14 Xie et al.

14. Nanni L, Lumini A. An ensemble of support vector
machines for predicting virulent proteins. Expert Syst Appl
2009;36:7458–62.

15. Nanni L, Lumini A, Gupta D, et al. Identifying bacterial viru-
lent proteins by fusing a set of classifiers based on variants
of Chou’s pseudo amino acid composition and on evolu-
tionary information. IEEE/ACM Trans Comput Biol Bioinform
2012;9:467–75.

16. Sachdeva G, Kumar K, Jain P, et al. SPAAN: a software program
for prediction of adhesins and adhesin-like proteins using
neural networks. Bioinformatics 2005;21:483–91.

17. Tsai C-T, Huang W-L, Ho S-J, et al. Virulent-GO: prediction
of virulent proteins in bacterial pathogens utilizing gene
ontology terms. Development 2009;1:3.

18. Zheng LL, Li YX, Ding J, et al. A comparison of computa-
tional methods for identifying virulence factors. PLoS One
2012;7:e42517.

19. Gupta A, Kapil R, Dhakan DB, et al. MP3: a software tool
for the prediction of pathogenic proteins in genomic and
metagenomic data. PLoS One 2014;9:e93907.

20. Rentzsch R, Deneke C, Nitsche A, et al. Predicting bac-
terial virulence factors – evaluation of machine learn-
ing and negative data strategies. Brief Bioinform 2019, doi:
10.1093/bib/bbz076.

21. Cui W, Chen L, Huang T, et al. Computationally identify-
ing virulence factors based on KEGG pathways. Mol Biosyst
2013;9:1447–52.

22. Liu B, Zheng D, Jin Q, et al. VFDB 2019: a comparative
pathogenomic platform with an interactive web interface.
Nucleic Acids Res 2019;47:D687–92.

23. Mao C, Abraham D, Wattam AR, et al. Curation, integration
and visualization of bacterial virulence factors in PATRIC.
Bioinformatics 2015;31:252–8.

24. Wattam AR, Davis JJ, Assaf R, et al. Improvements to
PATRIC, the all-bacterial bioinformatics database and anal-
ysis resource center. Nucleic Acids Res 2017;45:D535–42.

25. PATRIC v2 FTP Download Site. ftp://ftp.patricbrc.org/patric2/
specialty_genes/referenceDBs.

26. Zhang Y, Xie R, Wang J, et al. Computational analysis and pre-
diction of lysine malonylation sites by exploiting informa-
tive features in an integrative machine-learning framework.
Brief Bioinform 2019;20:2185–99.

27. Yu J, Shi S, Zhang F, et al. PredGly: predicting lysine gly-
cation sites for Homo sapiens based on XGboost feature
optimization. Bioinformatics 2019;35:2749–56.

28. Wang J, Yang B, Leier A, et al. Bastion6: a bioinformatics
approach for accurate prediction of type VI secreted effec-
tors. Bioinformatics 2018;34:2546–55.

29. Wang J, Yang B, An Y, et al. Systematic analysis and
prediction of type IV secreted effector proteins by
machine learning approaches. Brief Bioinform 2019;20:
931–51.

30. Huang Y, Niu B, Gao Y, et al. CD-HIT suite: a web server for
clustering and comparing biological sequences. Bioinformat-
ics 2010;26:680–2.

31. Wang J, Li J, Yang B, et al. Bastion3: a two-layer ensem-
ble predictor of type III secreted effectors. Bioinformatics
2019;35:2017–28.

32. Zhang Y, Yu S, Xie R, et al. PeNGaRoo, a combined
gradient boosting and ensemble learning framework for
predicting non-classical secreted proteins. Bioinformatics
2020;36:704–12.

33. Saravanan V, Gautham N. Harnessing computational biol-
ogy for exact linear B-cell epitope prediction: a novel

amino acid composition-based feature descriptor. OMICS
2015;19:648–58.

34. Li K, Xu C, Huang J, et al. Prediction and identification of the
effectors of heterotrimeric G proteins in rice (Oryza sativa
L.). Brief Bioinform 2017;18:270–8.

35. Shen HB, Chou KC. PseAAC: a flexible web server for generat-
ing various kinds of protein pseudo amino acid composition.
Anal Biochem 2008;373:386–8.

36. Chou KC. Prediction of protein cellular attributes using
pseudo-amino acid composition. Proteins 2001;43:246–55.

37. Chou KC. Prediction of protein subcellular locations by incor-
porating quasi-sequence-order effect. Biochem Biophys Res
Commun 2000;278:477–83.

38. An Y, Wang J, Li C, et al. Comprehensive assessment and
performance improvement of effector protein predictors for
bacterial secretion systems III, IV and VI. Brief Bioinform
2018;19:148–61.

39. Wang J, Yang B, Revote J, et al. POSSUM: a bioinformatics
toolkit for generating numerical sequence feature descrip-
tors based on PSSM profiles. Bioinformatics 2017;33:2756–8.

40. Zou L, Nan C, Hu F. Accurate prediction of bacterial type IV
secreted effectors using amino acid composition and PSSM
profiles. Bioinformatics 2013;29:3135–42.

41. Zahiri J, Yaghoubi O, Mohammad-Noori M, et al. PPIevo:
protein-protein interaction prediction from PSSM based evo-
lutionary information. Genomics 2013;102:237–42.

42. Jeong JC, Lin X, Chen XW. On position-specific scoring
matrix for protein function prediction. IEEE/ACM Trans Com-
put Biol Bioinform 2011;8:308–15.

43. Veltri D, Kamath U, Shehu A. Deep learning improves antimi-
crobial peptide recognition. Bioinformatics 2018;34:2740–7.

44. Khurana S, Rawi R, Kunji K, et al. DeepSol: a deep learning
framework for sequence-based protein solubility prediction.
Bioinformatics 2018;34:2605–13.

45. Jurtz VI, Johansen AR, Nielsen M, et al. An introduction to
deep learning on biological sequence data: examples and
solutions. Bioinformatics 2017;33:3685–90.

46. Breiman L. Random forests. Mach Learn 2001;45:5–32.
47. Chen Z, Liu X, Li F, et al. Large-scale comparative assessment

of computational predictors for lysine post-translational
modification sites. Brief Bioinform 2019;20:2267–90.

48. Pouyan MB, Kostka D. Random forest based similarity
learning for single cell RNA sequencing data. Bioinformatics
2018;34:i79–88.

49. Liaw A, Wiener M. Classification and regression by Random-
Forest. R News 2002;2:18–22.

50. Chen T, Guestrin C. Xgboost: A scalable tree boosting system.
In: Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining. ACM, San Francisco,
2016, 785–94.

51. Zhang L, Ai H, Chen W, et al. CarcinoPred-EL: novel models
for predicting the carcinogenicity of chemicals using molec-
ular fingerprints and ensemble learning methods. Sci Rep
2017;7:2118.

52. Babajide Mustapha I, Saeed F. Bioactive molecule prediction
using extreme gradient boosting. Molecules 2016;21:983.

53. Bergstra J, Bengio Y. Random search for hyper-parameter
optimization. J Mach Learn Res 2012;13:281–305.

54. Wang Z, Wang Y, Xuan J, et al. Optimized multilayer per-
ceptrons for molecular classification and diagnosis using
genomic data. Bioinformatics 2006;22:755–61.

55. Demir C, Gultekin SH, Yener B. Augmented cell-graphs for
automated cancer diagnosis. Bioinformatics 2005;21(Suppl
2):ii7–12.

https://doi.org/10.1093/bib/bbz076
ftp://ftp.patricbrc.org/patric2/specialty_genes/referenceDBs
ftp://ftp.patricbrc.org/patric2/specialty_genes/referenceDBs


DeepVF for virulence factor prediction 15

56. Angermueller C, Parnamaa T, Parts L, et al. Deep learning for
computational biology. Mol Syst Biol 2016;12:878.

57. Busia A, Jaitly N. Next-Step Conditioned Deep Convolutional Neu-
ral Networks Improve Protein Secondary Structure PredictionarXiv
preprint arXiv:1702.03865. 2017.

58. Di Lena P, Nagata K, Baldi P. Deep architectures for protein
contact map prediction. Bioinformatics 2012;28:2449–57.

59. Singh R, Lanchantin J, Robins G, et al. DeepChrome: deep-
learning for predicting gene expression from histone modi-
fications. Bioinformatics 2016;32:i639–48.

60. Zhou J, Troyanskaya OG. Predicting effects of noncoding vari-
ants with deep learning-based sequence model. Nat Methods
2015;12:931–4.

61. Kuksa PP, Min MR, Dugar R, et al. High-order neural networks
and kernel methods for peptide-MHC binding prediction.
Bioinformatics 2015;31:3600–7.

62. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief
Bioinform 2017;18:851–69.

63. Zeng H, Edwards MD, Liu G, et al. Convolutional neural
network architectures for predicting DNA-protein binding.
Bioinformatics 2016;32:i121–7.

64. Sahraeian SME, Liu R, Lau B, et al. Deep convolutional neu-
ral networks for accurate somatic mutation detection. Nat
Commun 2019;10:1041.

65. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classifi-
cation and mutation prediction from non-small cell lung
cancer histopathology images using deep learning. Nat Med
2018;24:1559–67.

66. Kather JN, Pearson AT, Halama N, et al. Deep learning can
predict microsatellite instability directly from histology in
gastrointestinal cancer. Nat Med 2019;25:1054–6.

67. Hamid MN, Friedberg I. Identifying antimicrobial peptides
using word embedding with deep recurrent neural net-
works. Bioinformatics 2019;35:2009–16.

68. Hochreiter S, Heusel M, Obermayer K. Fast model-based pro-
tein homology detection without alignment. Bioinformatics
2007;23:1728–36.

69. Sønderby SK, Sønderby CK, Nielsen H, et al. Convolutional
LSTM networks for subcellular localization of proteins. In:
International Conference on Algorithms for Computational Biology.
Springer, Cham, 2015, 68–80.

70. Schmidhuber J. Deep learning in neural networks: an
overview. Neural Netw 2015;61:85–117.

71. Leung MK, Xiong HY, Lee LJ, et al. Deep learning of
the tissue-regulated splicing code. Bioinformatics 2014;30:
i121–9.

72. Asgari E, Mofrad MR. Continuous distributed representation
of biological sequences for deep proteomics and genomics.
PLoS One 2015;10:e0141287.

73. Shi Q, Chen W, Huang S, et al. DNN-Dom: predicting pro-
tein domain boundary from sequence alone by deep neural
network. Bioinformatics 2019;35:5128–36.

74. Lin M, Chen Q, Yan S. Network in networkarXiv preprint
arXiv:1312.4400. 2013.

75. Chen XW, Jeong JC. Sequence-based prediction of protein
interaction sites with an integrative method. Bioinformatics
2009;25:585–91.

76. Chen W, Xing P, Zou Q. Detecting N(6)-methyladenosine
sites from RNA transcriptomes using ensemble support
vector machines. Sci Rep 2017;7:40242.

77. Wan S, Duan Y, Zou Q. HPSLPred: An ensemble multi-label
classifier for human protein subcellular location prediction
with imbalanced source. Proteomics 2017;17:1700262.

78. Zou Q, Guo J, Ju Y, et al. Improving tRNAscan-SE annota-
tion results via ensemble classifiers. Mol Inform 2015;34:
761–70.

79. Wei L, Zhou C, Chen H, et al. ACPred-FL: a sequence-
based predictor based on effective feature representation to
improve the prediction of anti-cancer peptides. Bioinformat-
ics 2018;34:4007–16.

80. Xiong Y, Wang Q, Yang J, et al. PredT4SE-stack: predic-
tion of bacterial type IV secreted effectors from protein
sequences using a stacked ensemble method. Front Microbiol
2018;9:2571.

81. Zhang L, Zhang C, Gao R, et al. An ensemble method to
distinguish bacteriophage Virion from non-Virion proteins
based on protein sequence characteristics. Int J Mol Sci
2015;16:21734–58.

82. Azadpour M, McKay CM, Smith RL. Estimating confidence
intervals for information transfer analysis of confusion
matrices. J Acoust Soc Am 2014;135:EL140–6.

83. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architec-
ture and applications. BMC Bioinformat 2009;10:421.

84. Lochel HF, Eger D, Sperlea T, et al. Deep learning on
chaos game representation for proteins. Bioinformatics
2020;36:272–9.


	DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy
	Introduction
	Methods
	Data collection and curation
	Feature extraction
	Model training and optimization
	Integrative model construction
	Performance evaluation

	Experimental results
	Performance evaluation based on 10-fold cross-validation test
	Performance validation on the independent test
	Application of DeepVF to genome-scale VF prediction
	Discussion of DeepVF and existing toolkits from the user's viewpoint

	Conclusion
	Key Points

	Supplementary Data


