Skip to main content
. 2020 Jun 29;22(3):bbaa125. doi: 10.1093/bib/bbaa125

Table 2.

Performance comparison of different models trained based on different ensemble strategies on the 10-fold cross-validation test

Ensemble strategy Model SN SP ACC F-value MCC
Stacking ML model 0.836 ± 0.021 0.916 ± 0.017 0.876 ± 0.013 0.871 ± 0.015 0.755 ± 0.027
DL model 0.623 ± 0.036 0.739 ± 0.030 0.681 ± 0.020 0.661 ± 0.024 0.365 ± 0.038
Hybrid model 0.837 ± 0.023 0.918 ± 0.015 0.878 ± 0.014 0.872 ± 0.016 0.758 ± 0.027
Average scoring ML model 0.847 ± 0.017 0.854 ± 0.020 0.851 ± 0.013 0.850 ± 0.014 0.701 ± 0.026
DL model 0.616 ± 0.033 0.739 ± 0.031 0.678 ± 0.019 0.656 ± 0.022 0.358 ± 0.037
Hybrid model 0.789 ± 0.023 0.865 ± 0.019 0.827 ± 0.015 0.820 ± 0.016 0.657 ± 0.030
Majority voting ML model 0.845 ± 0.016 0.846 ± 0.019 0.845 ± 0.012 0.845 ± 0.013 0.691 ± 0.025
DL model 0.595 ± 0.035 0.765 ± 0.028 0.681 ± 0.018 0.650 ± 0.023 0.367 ± 0.034
Hybrid model 0.743 ± 0.022 0.874 ± 0.020 0.809 ± 0.016 0.795 ± 0.017 0.622 ± 0.032

Note: Values are expressed as mean ± standard deviation. The best performance value is highlighted in bold.