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Abstract

Molecular profiling technologies, such as genome sequencing and proteomics, have transformed biomedical research, but
most such technologies require tissue dissociation, which leads to loss of tissue morphology and spatial information. Recent
developments in spatial molecular profiling technologies have enabled the comprehensive molecular characterization of
cells while keeping their spatial and morphological contexts intact. Molecular profiling data generate deep
characterizations of the genetic, transcriptional and proteomic events of cells, while tissue images capture the spatial
locations, organizations and interactions of the cells together with their morphology features. These data, together with cell
and tissue imaging data, provide unprecedented opportunities to study tissue heterogeneity and cell spatial organization.
This review aims to provide an overview of these recent developments in spatial molecular profiling technologies and the
corresponding computational methods developed for analyzing such data.
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Introduction

Understanding the spatial organization of cells, together with
their mRNA and protein abundances, is essential to understand-
ing how cells from different origins form tissues with distinctive
structures and functions. Such information can bridge the gap
between biological functions and morphological/genomic fea-
tures and advance our understanding of important biological
activity, such as tumorigenesis, embryonic development and
tissue morphogenesis. However, for a long time, information
gathered from molecular profiling and tissue imaging was ana-
lyzed separately with little or no crosstalk and was limited
either by the low throughput of measuring one target at a time
[1–3] or by the difficulties involved with manually collecting
samples from multiple tissue locations [4, 5]. This was due to
the technical difficulties involved: most of the current molec-
ular profiling technologies require tissue dissociation, which
leads to the loss of tissue morphology and spatial information,
while current microscopes can only detect a limited number of
fluorescent channels, which constrains the number of mark-
ers available for visualization over tissue slides. To overcome
the problem of missing information, scientists have come up
with different strategies, such as cell type deconvolution [6–
10] from RNA-seq data or spatial reconstruction of cell posi-
tions through unsupervised [11] or supervised learning [12, 13].
However, such algorithms rely on statistical assumptions that
might not hold in real data and can only recover limited infor-
mation, hampering their applications in downstream analysis.
Only recently, researchers have developed spatial molecular pro-
filing technologies that can quantify and map gene expression
and protein abundance simultaneously. Specifically, molecular
profiling technologies provide high-throughput quantification
of gene products (mostly RNA transcripts with a few being
able to measure protein abundance), while imaging technologies
provide the positions of individual cells and their morphological
features. Together, these techniques provide a comprehensive
characterization of cells and their spatial organizations.

Spatial molecular profiling technologies
To map and measure gene expression or protein abundance
simultaneously, either of the following technical challenges
needs to be addressed: how to quantify transcript and protein
abundance in situ in a multiplexed manner or how to retain
spatial information during sequencing. This leads to two
main approaches for developing spatial molecular profiling
technologies: imaging-based and sequencing-based.

Imaging-based spatial molecular profiling technologies

On the imaging side, single-molecule fluorescence in situ
hybridization (smFISH) [1, 2] enables scientists to visualize the
locations of individual molecules within a cell. By counting the
fluorescent signals of a gene product, one can directly deduce
its expression value. In 2014, Lubeck et al. [14] developed a
sequential barcoding technique to uniquely identify a variety of
RNA species by florescent sequence readouts through multiple
rounds of smFISH, which greatly expanded the set of RNA
molecules that could be measured at the same time. In one
round of hybridization, probes labeled with one of the four
fluorophores were introduced to immobilized samples, imaged
and then stripped by DNase treatment. In the next round of
hybridization, the same probes were used but labeled with
different dyes. This procedure was repeated for N rounds,

and the number of unique barcodes to represent different
transcripts could scale quickly as 4N. The authors named their
technology seqFISH. In this first paper, the authors barcoded
12 genes in single yeast cells with 4 dyes and 2 rounds of
hybridization for demonstration. In 2019, the same group
presented an improved version, seqFISH+ [15], in which they
used 60 pseudocolors, 3 fluorescent channels and 4 rounds of
pseudocolor imaging to achieve transcriptome-wide profiling
(theoretically, 24 000 genes). Multiplexed error-robust FISH
(MERFISH), developed by Chen et al. [16], was another sequential
barcoding FISH technology that shared a largely similar strategy
with seqFISH. Compared with seqFISH, MERFISH employed fewer
fluorescent channels (only 0 and 1) and more hybridization
rounds. As a consequence, MERFISH was less efficient in terms
of multiplexing, but because it conducted more hybridization
rounds than the theoretical requirement, it was able to distance
target transcript barcodes from each other to prevent potential
misidentification due to one-bit color error, and that was
why the authors named their method ‘error-robust’. They
measured the expression of 1001 genes with 14 rounds of
hybridization using 14 bits Hamming-distance-2 (MHD2) code.
osmFISH developed by Codeluppi et al. [17] was also based
on smFISH, but instead of applying sequential barcoding, like
seqFISH and MERFISH, osmFISH only involved one round of
hybridization per transcript. Therefore, the number of profiled
targets only scaled linearly with the number of fluorescence
channels and the number of hybridization cycles. There are also
non-FISH-based methods that use the florescent sequence as
readout. Spatially resolved transcript amplicon readout mapping
(STARmap) [18] first labeled cellular RNAs by pairs of DNA
probes followed by enzymatic amplification to form a DNA
amplicon. The amplicon contained a five-base unique barcode
that later could be used as the identifier of its target and amine-
modified nucleotides that could be conjugated into a polymer
network. Following polymerization fixed the amplicons in their
native spatial coordinates in a hydrogel polymer network.
Proteins and lipids were digested to enhance transparency of
the hydrogel polymer. The identities of the probes were later
determined by decoding five-base DNA barcodes in multicolor
fluorescence. STARmap achieved 3D structure restoration of
cellular RNAs, compared with FISH methods, which are all in
2D. Also, it had a better signal-to-noise ratio compared with
smFISH by removing unwanted substances. GeoMx Digital
Spatial Profiler (DSP) [19] is a commercially available platform
developed by NanoString for spatial protein or RNA detection.
Formalin-fixed paraffin-embedded samples are hybridized with
photo-cleavable oligonucleotide-tagged antibodies or probes.
Specific regions of interest are then subjected to UV light
ablation, causing the detachment of oligonucleotide tags from
their targets. The florescent sequences of the oligo-tags are
then scanned in the microscope and quantified. Instead of
using fluorescence, Giesen et al. [20] and Angelo et al. [21]
employed mass spectrometry (MS) for multiplexing. Unique
metal isotopes were conjugated to antibodies specific to targets
and were later liberated using a UV laser or duoplasmatron
ion beam and further visualized and quantified as a readout.
Fluidigm Hyperion Imaging System [22] is a commercially
available multiplexed imaging mass cytometry platform that is
capable of detecting dozens of protein markers simultaneously.
Note that theoretically, all these hybridization-based strategies
can detect both RNAs and proteins based on the probes
selected (DNA or antibodies) such as DSP, while FISH methods
are developed more for RNAs as proteins usually do not
allow multiple probes binding and MS methods are more for
proteins.
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Figure 1. Overview of the workflows of imaging- and sequencing-oriented spatial molecular profiling technologies. Because each method differs in technical detail,

the figure is intended to give only a demonstrative idea. (A) Prepared tissue slides. (B) Hybridization phase. Proteins or RNAs are hybridized with metal conjugated

antibodies or fluorescent probes. (C) Quantification phase. Metal isotopes or fluorescent sequences are quantified as readout by MS or microscopy. (D) Barcoding phase.

RNA molecules are captured by barcoded surface probes. (E) Sequencing phase. cDNA library is synthesized and sequenced. (F) Visualization of spatial transcriptomic

data as a heatmap.

Sequencing-based spatial molecular profiling
technologies

Sequencing-based spatial molecular profiling technologies
mainly focus on measuring spatially mapped cell transcriptomic
activities. Its major challenge is to trace back the original
location of RNA molecules, since transcriptome-wide transcript
quantification is well established. To achieve this, additional
barcodes need to be incorporated into the sequences before
collecting and pooling RNA samples. This gave rise to the
development of several methods for adopting such strategies.
In 2016, Ståhl et al. [23] first brought up this idea and
developed spatial transcriptomics (ST) technology. Histological
sections were positioned on glass slides and deposited with
reverse transcription primers containing spatial barcodes.
Complementary DNA molecules were then synthesized and
sequenced to capture both expression and spatial information.
In 2018, Spatial Transcriptomics, the original Swedish company
that invented the technology, was acquired by 10x Genomics
[24]. Slide-seq [25] is a recently developed spatial sequencing
method that also borrowed the idea of using drop-seq [26] for
single-cell RNA sequencing (scRNA-seq) to introduce unique
DNA barcodes onto 10 μm microparticles (‘beads’). In this
method, they then transferred frozen tissue sections to the
arrayed beads’ surfaces to prepare for the barcoded RNA-seq
library. It was able to reveal the fine single cell layer features
in a mouse hippocampus coronal section experiment. High-
definition spatial transcriptomics [27] is an upgraded version of
ST that produced barcoded beads with an even smaller size than
Slide-seq. It increased the spatial resolution from 100 μm in the
original ST to 2 μm.

Figure 1 demonstrates the workflows of imaging- and
sequencing-oriented spatial transcriptomic technologies, and
Table 1 provides a summary of current spatial molecular
profiling technologies. There have been successful applications
of both of these two branches of methods to the profiling embry-
onic development [28], cancer tissue [27] and complex structure
of neural layers [25, 29]; the differences between the technologies
and strategies behind them give them their unique features.
The advantages of the probe hybridization-based approach

are that (i) it is capable of quantifying both RNA transcript
and protein abundance while sequencing is only suitable for
measuring RNA; (ii) in measuring RNA, it avoids the reverse
transcription and amplification required by sequencing, which
may introduce bias; and (iii) for FISH-based technologies that
use super-resolution microscopy, the resolution is at the single-
molecule level, allowing further subcellular analysis such as RNA
compartmentalization [30]. The advantages of the sequencing-
based approach are that it is a mature technology and relatively
easy to operate and that, because the actual nucleotide
sequences are obtained, traditional mutation calling and copy
number analysis are also suitable to detect genomic variations.

Analyze spatial molecular profiling data
These new developments in spatial molecular profiling have
enabled the comprehensive molecular characterization of cells
while keeping their spatial and morphological contexts intact.
This opens up new possibilities for scientists to look into the
heterogeneity of mRNA expression, protein abundance, gene
regulation and cell interaction in space. Recently, different analy-
sis methods have been proposed to utilize spatial molecular pro-
filing datasets in studying novel biological questions. In this sec-
tion, we summarize the newly proposed methodologies for ana-
lyzing spatial molecular profiling data grouped by their applica-
tion scopes (demonstrated in Figure 2). Table 2 (at the end of this
section) provides a brief summary of existing analysis methods.
Most of the existing analysis methods use spatial transcription
profiling data, but they are also applicable to other types of
spatial molecular profiling data. We also include methods that
have been developed for pure spatial coordinate data without
expression values, as they aim to address the same question of
understanding cell spatial organizations and interactions.

Spatial differential gene expression or protein
abundance analysis

Traditional differential gene analysis methods, such as ANOVA,
significance analysis of microarrays [31], DEseq [32] and EdgeR
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Table 1. Summary of spatial molecular profiling technologies

Name Spatial
information

Expression
quantification

Target Target size Year Reference

CyTOF-ICC/IHC image MS protein ∼100 2014 [18]
MIBI protein ∼100 2014 [19]
Hyperion protein ∼30 2017 [20]
seqFISH fluorescent probe mRNA ∼16 2014 [12]
seqFISH+ mRNA ∼10 000 2019 [13]
MERFISH mRNA ∼1000 2015 [14]
osmFISH mRNA ∼50 2018 [15]
STARmap mRNA ∼1000 2018 [16]
DSP mRNA, protein ∼1000 2019 [17]
ST spatial barcode sequencing mRNA Transcriptome 2016 [21]
HDST mRNA Transcriptome 2019 [25]
Slide-seq mRNA Transcriptome 2019 [23]

Table 2. Summary of methods for analyzing spatial molecular profiling data

Method Framework Data Implementation Link

SpatialDE GP spatial gene expression
profile

Python https://github.com/Teichlab/
SpatialDE

SPARK GP R https://xzhoulab.github.io/
SPARK/

trendsceek marked point process R https://github.com/edsgard/
trendsceek

staNMF matrix factorization Python https://github.com/greenela
b/staNMF

SVCA GP Python https://github.com/damienA
rnol/svca

Moran’s I spatial autocorrelation R https://cran.r-project.org/we
b/packages/lctools/index.
html

K,G,F,J,L function point process spatial coordinates R https://cran.r-project.org/we
b/packages/spatstat/index.
html

BayesHiddenPottsMixture Potts model spatial coordinates, cell
type annotation

R https://github.com/liqi
wei2000/BayesHiddenPottsMi
xture

BayesMarkInteractionModel marked point process R https://github.com/liqi
wei2000/BayesMarkInteractio
nModel

histoCAT NA image Matlab http://www.bodenmillerlab.
com/research-2/histocat/

GripDL neural network spatial gene expression
profile, gene regulatory
network

Python https://github.co
m/2010511951/GripDL

SpaCell neural network spatial gene expression
profile, image

Python https://github.com/Biomedi
calMachineLearning/Spacell

[33], focused on comparative analysis between groups of sam-
ples with different phenotypes or between cells manually col-
lected from distinct locations, in order to test the significance
of the correlation between a grouping variable and gene expres-
sion. In spatially resolved expression profiles, a new statistical
problem is how to test the association between gene expression
levels and their spatial coordinates and reject the null hypothe-
sis when spatial inhomogeneity is exhibited. The Gaussian pro-
cess (GP) model, which was adopted by both SpatialDE [34] and
SPARK [35], can serve as a natural fit for this problem because
of its ability to model temporal [36] or spatial [37] dependence.
These two methods share a common methodology framework,
with SPARK being more explicit in modeling count data, sample

normalization and P-value calibration. The general framework
can be formulated as a multivariate normal distribution of the
following form:

Y = N
(
0, σ 2

s · (� + δ · I)
)

.

Here, Y = (
y1, . . . , yn

)
represents the normalized expression

values of a given gene across n spatial coordinates, σ 2
s is a scaling

factor, δ · I is the independent nonspatial variance and � is the
spatial covariance matrix defined by a covariance function k for
expression levels in every pair of locations (e.g. cells) i and j:

�i,j = k
(
xi, xj

)
.

https://github.com/Teichlab/SpatialDE
https://github.com/Teichlab/SpatialDE
https://xzhoulab.github.io/SPARK/
https://xzhoulab.github.io/SPARK/
https://github.com/edsgard/trendsceek
https://github.com/edsgard/trendsceek
https://github.com/greenelab/staNMF
https://github.com/greenelab/staNMF
https://github.com/damienArnol/svca
https://github.com/damienArnol/svca
https://cran.r-project.org/web/packages/lctools/index.html
https://cran.r-project.org/web/packages/lctools/index.html
https://cran.r-project.org/web/packages/lctools/index.html
https://cran.r-project.org/web/packages/spatstat/index.html
https://cran.r-project.org/web/packages/spatstat/index.html
https://cran.r-project.org/web/packages/spatstat/index.html
https://github.com/liqiwei2000/BayesHiddenPottsMixture
https://github.com/liqiwei2000/BayesHiddenPottsMixture
https://github.com/liqiwei2000/BayesHiddenPottsMixture
https://github.com/liqiwei2000/BayesMarkInteractionModel
https://github.com/liqiwei2000/BayesMarkInteractionModel
https://github.com/liqiwei2000/BayesMarkInteractionModel
http://www.bodenmillerlab.com/research-2/histocat/
http://www.bodenmillerlab.com/research-2/histocat/
https://github.com/2010511951/GripDL
https://github.com/2010511951/GripDL
https://github.com/BiomedicalMachineLearning/Spacell
https://github.com/BiomedicalMachineLearning/Spacell
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Figure 2. Summary of the applications of spatial transcriptomic data. (A) Identify SV genes. (B) Cluster SV genes into patterns. (C) Spatial cell–cell interaction analysis.

(D) Integrate image data with spatial transcriptomic data for downstream functional analysis.

The advantage of GP is that it is versatile for different pattern
identification based on the covariance function k selected using
prior knowledge. SpatialDE tested three types of kernels—
square exponential, linear and periodic—to search for focal
correlation, linear trend and spatial oscillation, respectively.
SPARK devised a total of 10 kernels (5 periodic and 5 square-
exponential) with different hyper-parameters to capture spatial
patterns.

Trendsceek [38] took another approach. It modeled the spatial
distribution of cells as a realization of the point process and the
gene expression value of cells as their attached marks. It calcu-
lated four summary statistics, Stoyan’s mark-correlation, mean-
mark function, variance-mark function and mark-variogram for
all pairs of points in the space and examined whether the dis-
tributions of the four statistics are independent of the pairwise
distance of points to identify explainable spatial variability.
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We performed a benchmark comparison of the three meth-
ods in simulated datasets (Supplementary S1). Our result was
consistent with Sun et al. [35] that SPARK had the best perfor-
mance, followed by SpatialDE in most settings (Figures S2–S10).
The four statistics of Trendsceek have less statistical power in
identifying spatial variable (SV) genes, while also suffering from
a long computation time because of the permutations needed
to generate null distributions. In real dataset, Sun et al. [35]
reported that SPARK detected 772 SV genes, SpatialDE detected
67 and Trendsceek detected none in mouse olfactory bulb data.
In a human breast cancer dataset, they showed that the three
methods identified 290, 115 and 15 SV genes, respectively.

Spatial pattern identification

An immediate task following spatial differential gene detec-
tion is to group those genes into distinctive clusters based on
their spatial gene expression pattern, thus summarizing high-
dimensional spatial data into a number of histological patterns.
This can help reveal the underlying causal effect of spatial vari-
ability and explicate how genes are spatially regulated. Both Spa-
tialDE and SPARK implement this function. SpatialDE extends its
GP model to a GP mixture model and clusters SV genes identified
beforehand into pre-specified K patterns. SPARK, on the contrary,
performs an ad hoc hierarchical agglomerative clustering on
spatial genes independent of the GP framework, thus ignoring
spatial information. Stability-driven nonnegative matrix factor-
ization (staNMF) [39] is another spatial decomposition algorithm
that was applied to the Drosophila embryonic spatial expres-
sion dataset and decomposed the gene expression into con-
cise spatial representations that corresponded to biologically
meaningful regions in the Drosophila embryo.

Spatial cell–cell interaction and neighborhood analysis

Cell–cell interaction and cell community analyses are longstand-
ing interests in scientific domains like the tumor microenvi-
ronment and brain regional functionality studies. The task is
usually to assess whether any attractive or repulsive effect exists
between cells or different types of cells, statistically speaking,
in order to determine how much the spatial distribution of cells
deviates from spatial randomness. Schapiro et al. [40] and Enfield
et al. [41] performed a simple calculation of the proportions of
different types of cells adjacent to a given cell type. Xia et al.
[30] used Moran’s I in spatial autocorrelation to evaluate the
expression spatial heterogeneity. de Back et al. [42] introduced
the usage of the K function in point processes, which is similar
to Moran’s I, to detect any clustering or dispersion that occurs in
the distribution of spatial points (Figure 2). There are also other
distance-based measurements, like G-, F-, J- and L-functions and
their bivariate versions, that accomplish the same goal [43, 44].

Beyond descriptive statistics, there are more complicated
model-based approaches for analyzing spatial patterns and
interactions, especially when cell marks can be decoded as
a categorical variable. Bayesian hidden Potts mixture [45] is
a Bayesian hierarchical model that incorporates a hidden
Potts model and a Markov random field model. It projects the
irregularly distributed cells onto a square lattice and quantifies
the interactions between different regions (small squares
defined by the grid). The Bayesian mark interaction model [46]
aims to directly model the interaction of spatial points rather
than grid regions through a geostatistical marking model under
the Bayesian framework. The advantage of these two methods
is that they can output scalar parameters indicating interaction
strengths, which can be later used to correlate with outcome

variables for downstream analysis. The authors investigated the
associations between inferred interaction parameters among
tumor, stromal and lymphocyte cells in non-small-cell lung
cancer (NSCLC) patients’ pathology images and their survivals
and found that the interaction between tumor and stromal cells
can be a predictor for patients’ prognoses after adjusting for
clinical information.

Spatial variance component analysis (SCVA) [47] is a recently
published method that incorporates both spatial coordinates
and transcriptomic data for spatial interaction inference. Similar
to SpatialDE, SCVA also borrows the framework of GP, while
extending the covariance matrix to contain three terms: intrinsic
effect Kint, environmental effect Kenv and cell–cell interaction
effect Kc−c. This gives

Y = N
(
0, Kint + Kc−c + Kenv + σ 2

ε · In
)

,

where Kenv is the same as the square exponential kernels of
SpatialDE, Kint measures the similarity of cells in terms of their
intrinsic state and Kc−c quantifies the similarity between neigh-
boring cells. Unlike the previous methods in this section, which
were purely based on the spatial distribution of cells, SCVA
also utilizes their expression profiles to generate a quantitative
measurement of the fraction of the variability from cell–cell
interaction for each cell rather than a single coefficient over a
whole image slide.

Integrative analysis and spatial prediction

The aforementioned methods focused mainly on mining the
spatial gene profile to uncover spatial patterns and potential
explanatory factors; however, a few studies took a step fur-
ther to explore the possibility of using features extracted from
spatial context as predictors for downstream functional analy-
sis. GripDL [48] is a supervised deep learning model for recon-
structing gene regulatory networks using spatial gene expres-
sion images. SpaCell [49] is also a deep learning framework
that incorporates pixel information from Hematoxylin and Eosin
staining images with matched gene expression measurements
for cell-type and disease-stage classification. Jackson et al. [50]
quantified 35 biomarkers in 720 breast cancer pathology images
and identified survival-associated tumor microenvironment and
subgroups.

With both the spatial coordinates and expression profiles of
cells available, Battich et al. [51] examined the interplay of these
two sources of information and found that transcript abundance
was predictable by 183 predefined features capturing the intrin-
sic and microenvironmental properties of cells, including cell
crowding, molecular profiles, nuclear morphology and neighbor-
hood activity. Goltsev et al. [52] conducted a similar study and
discovered that some surface-marker expressions in immune
cells were highly correlated with the neighborhood cell type
composition. While these two studies elucidated some aspects
of the dependency of RNA/protein expression on spatial context,
the spatial abundance of transcripts will likely be more readily
known in the future, obviating the need to predict them.

Other potential analyses

Besides the above-mentioned methods, there are still many
interesting potential applications worth exploring. Note that
the sequencing-based spatial profiling technology is just an
extension of regular scRNA-seq; analysis performed with
scRNA-seq is also suitable for spatial molecular profiling data
with an additional layer of spatial information. There are tools
that have been developed to identify mutation and copy number

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa145#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa145#supplementary-data
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alteration events in single-cell sequencing data [53, 54]. Lu et al.
[55] and Zhou et al. [56] leveraged genetic variations to perform
single-cell lineage tracing and phylogenetic tree reconstruction.
Joshi et al. [57] examined the spatial heterogeneity of the T-cell
receptor repertoire in NSCLC. Adding spatial information can
potentially further enhance the analysis of scRNA-seq data and
generate more insights.

Table 2 provides a summary of current analysis methods for
spatial molecular profiling datasets.

Conclusion and outlook
With the rapid emergence of spatial molecular profiling tech-
nologies and platforms, the prevalence of high-throughput spa-
tial gene expression profiling with high resolution is foreseeable
in the near future. It will not only enable scientists to see the real
geographical landscape of gene expression in cellular resolution
but also spark new opportunities to investigate novel scientific
questions that could not be addressed otherwise. Currently,
various exciting applications of spatial molecular profiling tech-
nologies indicate that this will be the trend for future molecular
profiling analysis.

However, there are several potential caveats and challenges
we need to be aware of when investigating spatial data.
Currently, most spatial gene identification and clustering
algorithms lack meaningful biological assumptions. It is not
of primary interest to simply match spatial inhomogeneity
patterns with tissue morphology. In fact, this can already be
done by using morphological features to partially predict spatial
transcript abundance, according to [51] and [52]. Although the
authors of SCVA tried to decompose variance even further, their
definitions of cell–cell interaction and environmental effect are
still based on the same rule; exponentially decaying correlation
with distance and other artificially designed kernels do not
generate obviously meaningful patterns. It would be a critical
step to properly incorporate spatial molecular profiling with
genetic information and morphological features, and it would
be even more interesting to have spatial-temporal data for more
systematic modeling. Moreover, a comparative analysis of how
the spatial pattern of a particular gene or a group of genes varies
among different experimental conditions can be an important
topic in fields like tumor immune cell infiltrating. A statistical
model that is extended to take multiple conditions into
consideration is desired. In multi-condition setting, researchers
need to be aware of batch effects. For an imaging approach,
involving negative control (background noise) probes and
positive control (stable expressed gene) probes in experiments
like DSP is suggested. For a sequencing approach, applying
typical RNA-seq or scRNA-seq normalization methods, such
as DEseq [32] and Seurat [58], to the spatial expression matrix
is recommended. In summary, the development and further
evolution of spatial molecular profiling technology together with
new analysis methods is an important breakthrough in the field
and will greatly facilitate biomedical research.

Key Points
• This article is by far to our knowledge the first paper

that summarizes the development of spatial molecu-
lar profiling technologies and the corresponding sta-
tistical analysis methods.

• We introduced both the imaging- and sequencing-
based spatial molecular profiling technologies, com-
pared their different strategies to obtain gene expres-
sion profile with spatial resolution and discussed their
advantages and disadvantages.

• We did a comprehensive overview of the statistical
methods for spatial molecular data analysis, including
spatial gene identification, spatial pattern clustering,
spatial interaction and neighborhood analysis, with
more focus on the GP-based model.

• We also discussed the future outlook of integrative
analysis and challenge for spatial molecular data anal-
ysis.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.

Funding

This work was partially supported by the National Institutes
of Health [R35 GM136375, P30 CA142543 and P50CA70907],
and the Cancer Prevention and Research Institute of Texas
[RP190107 and RP180805].

Conflict of interest

None declared.

References
1. Femino AM, Fay FS, Fogarty K, et al. Visualization of single

RNA transcripts in situ. Science 1998;280(5363):585–90.
2. Raj A, Van Den Bogaard P, Rifkin SA, et al. Imaging individual

mRNA molecules using multiple singly labeled probes. Nat
Methods 2008;5(10):877.

3. Frise E, Hammonds AS, Celniker SE. Systematic image-
driven analysis of the spatial Drosophila embryonic expres-
sion landscape. Mol Syst Biol 2010;6(1):345.

4. Junker JP, Noël ES, Guryev V, et al. Genome-wide RNA tomog-
raphy in the zebrafish embryo. Cell 2014;159(3):662–75.

5. Lovatt D, Ruble BK, Lee J, et al. Transcriptome in vivo analysis
(TIVA) of spatially defined single cells in live tissue. Nat
Methods 2014;11(2):190.

6. Du R, Carey V, Weiss S. deconvSeq: deconvolution of
cell mixture distribution in sequencing data. Bioinformatics
2019;35(24):5095–5102.

7. Wang X, Park J, Susztak K, et al. Bulk tissue cell type decon-
volution with multi-subject single-cell expression reference.
Nat Commun 2019;10(1):1–9.

8. Cao Y, Lin Y, Ormerod JT, et al. scDC: single cell differential
composition analysis. BMC Bioinformatics 2019;20(19):721.

9. Wang T, Lu R, Kapur P, et al. An empirical approach lever-
aging tumorgrafts to dissect the tumor microenvironment
in renal cell carcinoma identifies missing link to prognostic
inflammatory factors. Cancer Discov 2018;8(9):1142–55.

10. Zhang Z, Luo D, Zhong X, et al. SCINA: a semi-supervised
subtyping algorithm of single cells and bulk samples. Genes
2019;10(7):531.

11. Nitzan M, Karaiskos N, Friedman N, et al. Gene expression
cartography. Nature 2019;576(7785):132–7.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa145#supplementary-data
https://academic.oup.com/bib


8 Zhang et al.

12. Satija R, Farrell JA, Gennert D, et al. Spatial reconstruc-
tion of single-cell gene expression data. Nat Biotechnol
2015;33(5):495.

13. Achim K, Pettit JB, Saraiva LR, et al. High-throughput spatial
mapping of single-cell RNA-seq data to tissue of origin. Nat
Biotechnol 2015;33(5):503.

14. Lubeck E, Coskun AF, Zhiyentayev T, et al. Single-cell in
situ RNA profiling by sequential hybridization. Nat Methods
2014;11(4):360.

15. Eng CHL, Lawson M, Zhu Q, et al. Transcriptome-scale
super-resolved imaging in tissues by RNA seqFISH+. Nature
2019;568(7751):235–9.

16. Chen KH, Boettiger AN, Moffitt JR, et al. Spatially resolved,
highly multiplexed RNA profiling in single cells. Science
2015;348(6233):aaa6090.

17. Codeluppi S, Borm LE, Zeisel A, et al. Spatial organization of
the somatosensory cortex revealed by osmFISH. Nat Methods
2018;15(11):932–5.

18. Wang X, Allen WE, Wright MA, et al. Three-dimensional
intact-tissue sequencing of single-cell transcriptional states.
Science 2018;361(6400):eaat5691.

19. Merritt CR, Ong GT, Church SE, et al. Multiplex digital spa-
tial profiling of proteins and RNA in fixed tissue. Nature
Biotechnology 2020;38(5):586–599.

20. Giesen C, Wang HA, Schapiro D, et al. Highly multiplexed
imaging of tumor tissues with subcellular resolution by
mass cytometry. Nat Methods 2014;11(4):417–22.

21. Angelo M, Bendall SC, Finck R, et al. Multiplexed ion beam
imaging of human breast tumors. Nat Med 2014;20(4):436.

22. Fluidigm. Hyperion Imaging System: A comprehensive sys-
tem for highly multiplexed imaging. https://fluidigm.com/
products/hyperion-imaging-system (access date: 21 June
2020).

23. Ståhl PL, Salmén F, Vickovic S, et al. Visualization and
analysis of gene expression in tissue sections by spatial
transcriptomics. Science 2016;353(6294):78–82.

24. 10x Genomics. 10x Genomics Acquires Spatial
Transcriptomics. https://www.10xgenomics.com/news/10x-
genomics-acquires-spatial-transcriptomics/ (access date:
21 June 2020).

25. Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable
technology for measuring genome-wide expression at high
spatial resolution. Science 2019;363(6434):1463–7.

26. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter
droplets. Cell 2015;161(5):1202–14.

27. Vickovic S, Eraslan G, Salmén F, et al. High-definition spa-
tial transcriptomics for in situ tissue profiling. Nat Methods
2019;16(10):987–90.

28. Frieda KL, Linton JM, Hormoz S, et al. Synthetic recording and
in situ readout of lineage information in single cells. Nature
2017;541(7635):107–11.

29. Lignell A, Kerosuo L, Streichan SJ, -et al. Identification of a
neural crest stem cell niche by Spatial Genomic Analysis. Nat
Commun 2017;8(1):1–11.

30. Xia C, Fan J, Emanuel G, et al. Spatial transcriptome profiling
by MERFISH reveals subcellular RNA compartmentalization
and cell cycle-dependent gene expression. Proc Natl Acad Sci
2019;116(39):19490–9.

31. Tusher VG, Tibshirani R, Chu G. Significance analysis of
microarrays applied to the ionizing radiation response. Proc
Natl Acad Sci 2001;98(9):5116–21.

32. Anders S, Huber W. Differential expression analysis for
sequence count data. Genome Biol 2010;11:R106–6.

33. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconduc-
tor package for differential expression analysis of digital
gene expression data. Bioinformatics 2010;26(1):139–40.

34. Svensson V, Teichmann SA, Stegle O. SpatialDE: identifica-
tion of spatially variable genes. Nat Methods 2018;15(5):343.

35. Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression
patterns for spatially resolved transcriptomic studies. Nat
Methods 2020;17(2):193–200.

36. Roberts S, Osborne M, Ebden M, et al. Gaussian processes
for time-series modelling. Philos Trans A Math Phys Eng Sci
2013;371(1984):20110550.

37. Diggle PJ, Tawn JA, Moyeed RA. Model-based geostatistics. J
R Stat Soc Ser C Appl Stat 1998;47(3):299–350.

38. Edsgärd D, Johnsson P, Sandberg R. Identification of spatial
expression trends in single-cell gene expression data. Nat
Methods 2018;15(5):339.

39. Wu S, Joseph A, Hammonds AS, et al. Stability-driven
nonnegative matrix factorization to interpret spatial gene
expression and build local gene networks. Proc Natl Acad Sci
2016;113(16):4290–5.

40. Schapiro D, Jackson HW, Raghuraman S, et al. histoCAT:
analysis of cell phenotypes and interactions in multiplex
image cytometry data. Nat Methods 2017;14(9):873.

41. Enfield KS, Martin SD, Marshall EA, et al. Hyperspectral cell
sociology reveals spatial tumor-immune cell interactions
associated with lung cancer recurrence. J Immunother Cancer
2019;7(1):13.

42. de Back W, Zerjatke T, Roeder I. Statistical and mathematical
modeling of spatiotemporal dynamics of stem cells. In: Stem
Cell Mobilization. New York, NY: Humana, 2019, 219–43.

43. Illian J, Penttinen A, Stoyan H, et al. Statistical Analysis and
Modelling of Spatial Point Patterns, Vol. 70. John Wiley & Sons:
Hoboken, New Jersey, 2008.

44. Baddeley A, Turner R. spatstat: an R package for analyzing
spatial point patterns. J Stat Softw 2005;(i06):12.

45. Li Q, Wang X, Liang F, et al. A Bayesian hidden Potts mix-
ture model for analyzing lung cancer pathology images.
Biostatistics 2018; 20(4):565–581.

46. Li Q, Wang X, Liang F, et al. A Bayesian mark interaction
model for analysis of tumor pathology images. Ann Appl
Statistics 2019;13(3):1708–32.

47. Arnol D, Schapiro D, Bodenmiller B, et al. Modeling cell-
cell interactions from spatial molecular data with spatial
variance component analysis. Cell Rep 2019;29(1):202–11.

48. Yang Y, Fang Q, Shen HB. Predicting gene regulatory inter-
actions based on spatial gene expression data and deep
learning. PLoS Comput Biol 2019;15(9):e1007324.

49. Tan X, Su A, Tran M, et al. SpaCell: integrating tissue mor-
phology and spatial gene expression to predict disease cells.
Bioinformatics 2019;36(7):2293–2294.

50. Jackson HW, Fischer JR, Zanotelli VR, et al. The single-cell
pathology landscape of breast cancer. Nature 2020;1–6.

51. Battich N, Stoeger T, Pelkmans L. Control of transcript
variability in single mammalian cells. Cell 2015;163(7):
1596–610.

52. Goltsev Y, Samusik N, Kennedy-Darling J, et al. Deep profil-
ing of mouse splenic architecture with CODEX multiplexed
imaging. Cell 2018;174(4):968–81.

53. Vu TN, Nguyen HN, Calza S, et al. Cell-level somatic mutation
detection from single-cell RNA sequencing. Bioinformatics
2019;35(22):4679–87.

54. Petti AA, Williams SR, Miller CA, et al. A general approach for
detecting expressed mutations in AML cells using single cell
RNA-sequencing. Nat Commun 2019;10(1):1–16.

https://fluidigm.com/products/hyperion-imaging-system
https://fluidigm.com/products/hyperion-imaging-system
https://www.10xgenomics.com/news/10x-genomics-acquires-spatial-transcriptomics/
https://www.10xgenomics.com/news/10x-genomics-acquires-spatial-transcriptomics/


Spatial molecular profiling 9

55. Lu T, Park S, Zhu J, et al. Overcoming genetic drop-outs
in variants-based lineage tracing from single-cell RNA
sequencing data. bioRxiv 2020.

56. Zhou Z, Xu B, Minn A, et al. DENDRO: genetic hetero-
geneity profiling and subclone detection by single-cell RNA
sequencing. Genome Biol 2020;21(1):1–15.

57. Joshi K, de Massy MR, Ismail M, et al. Spatial heterogene-
ity of the T cell receptor repertoire reflects the muta-
tional landscape in lung cancer. Nat Med 2019;25(10):
1549–59.

58. Stuart T, Butler A, Hoffman P, et al. Comprehensive integra-
tion of single-cell data. Cell 2019;177(7):1888–902.


	Spatial molecular profiling: platforms, applications and analysis tools
	Introduction 
	Spatial molecular profiling technologies
	Imaging-based spatial molecular profiling technologies
	Sequencing-based spatial molecular profiling technologies

	Analyze spatial molecular profiling data
	Spatial differential gene expression or protein abundance analysis
	Spatial pattern identification
	Spatial cell--cell interaction and neighborhood analysis
	Integrative analysis and spatial prediction
	Other potential analyses

	Conclusion and outlook
	Key Points

	Supplementary Data
	Funding
	Conflict of interest


