Skip to main content
. 2020 Aug 6;22(3):bbaa145. doi: 10.1093/bib/bbaa145

Table 2.

Summary of methods for analyzing spatial molecular profiling data

Method Framework Data Implementation Link
SpatialDE GP spatial gene expression profile Python https://github.com/Teichlab/SpatialDE
SPARK GP R https://xzhoulab.github.io/SPARK/
trendsceek marked point process R https://github.com/edsgard/trendsceek
staNMF matrix factorization Python https://github.com/greenelab/staNMF
SVCA GP Python https://github.com/damienArnol/svca
Moran’s I spatial autocorrelation R https://cran.r-project.org/web/packages/lctools/index.html
K,G,F,J,L function point process spatial coordinates R https://cran.r-project.org/web/packages/spatstat/index.html
BayesHiddenPottsMixture Potts model spatial coordinates, cell type annotation R https://github.com/liqiwei2000/BayesHiddenPottsMixture
BayesMarkInteractionModel marked point process R https://github.com/liqiwei2000/BayesMarkInteractionModel
histoCAT NA image Matlab http://www.bodenmillerlab.com/research-2/histocat/
GripDL neural network spatial gene expression profile, gene regulatory network Python https://github.com/2010511951/GripDL
SpaCell neural network spatial gene expression profile, image Python https://github.com/BiomedicalMachineLearning/Spacell