Table 2.
Summary of methods for analyzing spatial molecular profiling data
Method | Framework | Data | Implementation | Link |
---|---|---|---|---|
SpatialDE | GP | spatial gene expression profile | Python | https://github.com/Teichlab/SpatialDE |
SPARK | GP | R | https://xzhoulab.github.io/SPARK/ | |
trendsceek | marked point process | R | https://github.com/edsgard/trendsceek | |
staNMF | matrix factorization | Python | https://github.com/greenelab/staNMF | |
SVCA | GP | Python | https://github.com/damienArnol/svca | |
Moran’s I | spatial autocorrelation | R | https://cran.r-project.org/web/packages/lctools/index.html | |
K,G,F,J,L function | point process | spatial coordinates | R | https://cran.r-project.org/web/packages/spatstat/index.html |
BayesHiddenPottsMixture | Potts model | spatial coordinates, cell type annotation | R | https://github.com/liqiwei2000/BayesHiddenPottsMixture |
BayesMarkInteractionModel | marked point process | R | https://github.com/liqiwei2000/BayesMarkInteractionModel | |
histoCAT | NA | image | Matlab | http://www.bodenmillerlab.com/research-2/histocat/ |
GripDL | neural network | spatial gene expression profile, gene regulatory network | Python | https://github.com/2010511951/GripDL |
SpaCell | neural network | spatial gene expression profile, image | Python | https://github.com/BiomedicalMachineLearning/Spacell |