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Abstract

Alternative polyadenylation (APA) in breast tumor samples results in the removal/addition of cis-regulatory elements such
as microRNA (miRNA) target sites in the 3′-untranslated region (3′-UTRs) of genes. Although previous computational APA
studies focused on a subset of genes strongly affected by APA (APA genes), we identify miRNAs of which widespread APA
events collectively increase or decrease the number of target sites [probabilistic inference of microRNA target site
modification through APA (PRIMATA-APA)]. Using PRIMATA-APA on the cancer genome atlas (TCGA) breast cancer data, we
found that the global APA events change the number of the target sites of particular microRNAs [target sites modified
miRNA (tamoMiRNA)] enriched for cancer development and treatments. We also found that when knockdown (KD) of
NUDT21 in HeLa cells induces a different set of widespread 3′-UTR shortening than TCGA breast cancer data, it changes the
target sites of the common tamoMiRNAs. Since the NUDT21 KD experiment previously demonstrated the tumorigenic role
of APA events in a miRNA dependent fashion, this result suggests that the APA-initiated tumorigenesis is attributable to the
miRNA target site changes, not the APA events themselves. Further, we found that the miRNA target site changes identify
tumor cell proliferation and immune cell infiltration to the tumor microenvironment better than the miRNA expression
levels or the APA events themselves. Altogether, our computational analyses provide a proof-of-concept demonstration that
the miRNA target site information indicates the effect of global APA events with a potential as predictive biomarker.
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Introduction
The dynamic usage of the messenger RNA (mRNA) 3′-untranslated
region (3′-UTR) through alternative polyadenylation (APA)
results in transcription of distinct isoforms with shortened or
lengthened 3′-UTRs. 3′-UTR lengthening (3′UL) was recently
reported to regulate cell senescence [1] that is linked with
tumor-suppressive pathways such as cell cycle inhibitors and
DNA damage markers [2–4]. 3′-UTR shortening (3′US) was
reported widespread in diverse types of human cancers [5].
Further, the reported impact of 3′US on cancer prognosis [5]
and on drug sensitivity [6] suggests clinical implications of
APA events in human cancer. We recently identified a 3′US
trans tumorigenic mechanism [7] that concerns the microRNA
(miRNA) target activity [8]. Since 3′US removes miRNA target
sites in the 3′-UTRs, genes with shortened 3′UTRs (3′US genes)
do not sequester the miRNAs. Then, the miRNAs released from
the 3′US genes would be redirected to and repress the other
genes that would compete for the miRNAs with the 3′US genes
if they did not undergo 3′US events. Since the repressed genes
are enriched for tumor suppressors such as the phosphatase
and tensin homologue (PTEN), 3′US promotes tumorigenesis
in trans. Recently, several studies emerge supporting this trans
effect e.g. for PTEN [9] and in the context of alternative splicing
[10], another posttranscriptional regulation concerning the
miRNA target activity. Further, we also found that this 3′US trans
mechanism is involved in the subtype-specific tumor growth of
breast cancer [11].

Although global 3′US events remove miRNA target sites in
cancer cells, it is challenging to accurately estimate the effect of
3′US events for each miRNA. First, although 3′US removes miRNA
target sites in the 3′-UTRs, another type of APA events, 3′UL,
can add some of the target sites back. Second, APA events and
their associated miRNAs are on many-to-many relationships,
making it difficult to pinpoint the miRNAs of which global APA
events increase or decrease the target sites. To address these
challenges, we developed a mathematical model that estimates
the statistical significance of the APA effect on miRNA target
sites, probabilistic inference of microRNA target site modifica-
tion through APA (PRIMATA-APA). Using PRIMATA-APA on the
cancer genome atlas (TCGA) breast cancer data [12], we found
that the global APA events collectively increase or decrease the
target sites of the miRNAs that are known to regulate can-
cer etiology and treatments. Our results were replicated in a
reanalysis of NUDT21 knockdown (KD) data. NUDT21 KD was
shown to induce global 3′US events and promote tumorigenesis
in vivo and in vitro [13] by removing miRNA target sites to repress
tumor suppressor genes [7]. Further, we showed that although
the NUDT21 KD in HeLa and the TCGA breast cancer carry
a distinct set of 3′US genes, they change the target sites of
the common miRNAs (tamoMiRNA), suggesting that the APA-
initiated tumorigenesis is attributable to the miRNA target site
changes, not the APA events themselves. We further showed
that this feature distinguished tumor samples that are subject
to high proliferation or high infiltration with immune cells,
suggesting this feature as a potential predictive biomarker for
immunotherapy with biological implication.

Results
Collective impact of APA events for the trans effect in
TCGA breast cancer

To identify genes with APA events (APA genes) based on RNA-seq
data, several computational tools have been developed [5, 14–
17]. One of the widely used tools, DaPars, identified widespread

APA events in diverse cancer data including seven types of TCGA
cancer data [5]. The APA events have been further extended
and successfully reproduced by others some with experimental
validations (e.g. [7, 13, 18], see Methods). DaPars estimates the
Percentage of Distal polyA site Usage Index (PDUI) for each gene
in tumor versus normal samples and call APA events if PDUI
values are different with (1) statistical significance (adjusted P-
value <0.05) and (2) absolute difference (�PDUI <−0.2 for 3′US
or >0.2 for 3′UL). The second criterion was employed to select
strong cis targets from the widespread APA events.

However, to study the trans effect of the APA events that
we recently identified [7], all statistically significant APA genes,
regardless of the absolute difference, need to be considered.
Previously, we identified that 3′US events remove miRNA tar-
get sites to repress trans genes enriched in tumor suppressor
genes, thereby contributing to tumorigenesis [7]. In removing
miRNA target sites for the trans effect, all significant 3′US genes
contribute especially when they are highly expressed. For even
more comprehensive understanding, we found that 3′UL genes
also need to be considered, since they can add miRNA target
sites back to the miRNA target landscape. In this work, we used
DaPars on the TCGA breast cancer data (n = 106, see Methods)
to find that there are many significant APA genes (adjusted P-
value <0.05), either 3′US or 3′UL, without the absolute PDUI dif-
ference (−0.2 < �PDUI < 0.2) among expressing genes. For exam-
ple, tumor sample labeled as TCGA-BH-A1FJ carries the most
number (3015) of significant APA genes among the TCGA breast
cancer data, and the significant APA genes without the absolute
PDUI difference account for almost half (49.5%, 1492) of them
(Figure 1A). This trend holds true in most of the breast can-
cer sample pairs (59.8% on average, Figure 1B). Previous studies
reported smaller numbers of 3′UL genes than 3′US in TCGA
data [5] or cancer cell lines [6]. This was partly because they
focused only on those with absolute difference. Considering all
significant APA genes in our TCGA breast cancer analysis, we
found that 3′UL is as widespread as 3′US. For example, in the
tumor sample labeled as TCGA-AC-A2FB, which has the smallest
ratio of the APA genes with absolute difference to all significant
APA genes, 90.1% of the significant APA genes are 3′UL genes
(Supplementary Figure 1A). In 106 TCGA breast tumor-normal
sample pairs, average 56.4% of significant APA genes are 3′UL
genes (Supplementary Figure 1B), totaling 7265 significant 3′UL
genes. Based on the results, we will consider all significant APA
genes to study the trans effect.

Probabilistic inference of miRNA target site
modification through APA

To systematically analyze the trans APA effect, focusing on
the 3′UL and 3′US genes is challenging for two reasons. First,
although 3′US genes remove miRNA target sites in the cell,
3′UL genes add some of the target sites back, complicating
the analysis of the collective effect in the presence of global
APA events. Second, each 3′US and 3′UL gene will affect the
target sites of different sets of miRNAs, further complicating
the analysis. To address this challenge, we quantified their
collective effect on each miRNA by developing a mathematical
model, PRIMATA-APA. Previously, we successfully predicted gene
expression changes (R2 = 0.47 for 1548 differentially expressed
genes in the TCGA breast tumor samples) by estimating
the number of miRNA target sites in the presence of 3′US
(MiRs_PDUIt(x, miRj), Eq. 2) [7]. In this work, we extend this
formula to estimate the total number of target sites for
each miRNA with and without consideration of APA events

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa191#supplementary-data
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Figure 1. Collective impact of strong and significant APA events. A. Statistical significance of APA genes in a breast tumor-normal sample pair (TCGA-BH-A1FJ) with

their �PDUI (percentage of PDUI) values (tumor-normal). Since PDUI represents the ratio of isoforms with dUTR, negative �PDUI value represent 3′US target genes

and positive �PDUI value 3′UL genes. Strong APA target genes are in red, significant but not strong ones in pink and not significant ones in gray. B. For 106 breast

tumor-normal sample pairs sorted by the number of significant APA target sites, upper panel shows the total number of significant APA genes and the lower panel

shows the ratio of the APA genes by whether it is significant but not strong (orange) or strong (red). Black dotted line represents the average ratio of strong APA genes.

(Eqs 3 and 4, PRIMATA-APA). Based on this estimation, PRIMATA-
APA estimates how significantly the APA events increase or
decrease the target sites for each miRNA (see Methods). In each
of the 70 breast tumor-matched normal sample pairs out of
106, for which miRNA expression information was available,
we ran PRIMATA-APA for each of 588 moderately expressed
miRNAs (1 < average fragments per million mapped fragments
(FPM) < 100, Figure 2A). Summarizing the result by sample pair,
PRIMATA-APA identifies significant target site changes (false
discovery rate (FDR) < 0.01) (tumor versus normal) for more
than 100 miRNAs in 39 (55.7%) of the 70 breast tumor samples,
(Figure 2B), showing the global impact of APA events on the
miRNA targeting landscape. Summarizing the result by miRNA,
the number of miRNA target sites increased and decreased
shows a significant negative correlation across the sample
pairs (P = 0.006, Figure 2C) despite the small sample size (n = 70).
This result suggests that the global APA events modify the
miRNA target sites in a nonrandom fashion, either increasing
or decreasing altogether in each tumor sample.

APA changes the number of target sites of miRNAs
associated with cancer

To identify miRNAs of which APA events significantly change
the number of target sites, we examined the number of
tumor samples in which the target sites are significantly
increased or decreased (Figure 3A). The result shows that the
APA events focus on changing the target sites of particular
miRNAs (P-value = 1.12e−28). We selected top half (289) of
the miRNAs by the number of samples in which APA events
significantly changed the target site numbers [target sites
modified miRNA (tamoMiRNA), Supplementary Table 1]. Further,
we found that tamoMiRNAs are significantly more enriched in
the miRNAs known for biological roles in cancer development
and treatment than the other miRNAs (P = 5.8e−5, Figure 3B and
Supplementary Table 1). Specifically, tamoMiRNAs are enriched
in the miRNAs that are dysregulated in breast cancer with
clinical and biological implications [19], regulating diverse mech-
anisms for breast cancer [20, 21], regulatory elements in either

adaptive or innate immune system [22] or potential prognostic
and predictive biomarkers identified for breast cancer [21]. For
example, APA events significantly change the target sites for
miR-221/222 in 61 TCGA breast tumor samples (increased in 36
samples and decreased in 25 samples), ranked top fourth among
all tamoMiRNAs. miR-221/222 has been reported to be a crucial
oncoMiRNA by targeting the cyclin-dependent kinase inhibitor
p27Kip1 and accelerating cell proliferation [23–26]. Further, miR-
221/222 inhibits estrogen receptor α and is associated with
tamoxifen and fulvestrant resistance of breast cancer cells [27–
29]. Among 43 tamoMiRNAs found in the categories, 31 (72.1%)
occur only in one of the categories (Supplementary Figure 2),
confirming that the high enrichment of tamoMiRNAs to the
multiple categories reflects their important roles in tumor, not
redundancy in data collection. Also, we estimated conservation
score (PhyloP [30], 46 way Placental) of 202 tamoMiRNAs and
191 other miRNAs for which miRbase [31] uniquely curated the
genomic locations. TamoMiRNAs have significantly (P = 7.19e−5)
larger conservation scores than the other miRNAs (Figure 3C),
implicating their functional significance. Altogether, these
results indicate that the global APA events in breast cancer are
associated with the miRNAs that are evolutionary conserved
and functionally important for cancer etiology and treatments.

APA changes the number of miRNA target sites to
effectively regulate biological processes

To further understand the role of the miRNA target site changes,
we analyzed how efficiently the miRNAs would regulate
important biological processes. First, we identified GO terms
enriched for tamoMiRNAs using MiEAA [32]. Probably due to
the many-to-many relationships between miRNAs and the
target genes [33–35], inputting all tamoMiRNAs to the MiEAA
web server returns mostly under-represented terms. So, we
ran MiEAA on 102 tamoMiRNAs (with the greatest number
of samples in which changed) and 104 other miRNAs (with
the least number of samples in which changed). A total of
125 biological terms are significantly (FDR < 0.01) enriched for
tamoMiRNAs, whereas only one biological term is significantly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa191#supplementary-data
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Figure 2. Tumor-specific APA-derived miRNA target site changes. A. The heatmap shows tumor-normal samples (row) where the total number of target sites for

each miRNA (column) is increased (blue) or decreased (red) due to APA. Not significant changes or no changes are not colored. Samples are sorted by the number of

increased miRNA target site modification. B. The total number of miRNA target site changes, either increased (blue) or decreased (red) due to APA, in breast tumor-

normal samples pair sorted by the target site number changes per sample pair. C. Number of miRNAs of which target sites are increased (y-axis) or decreased (x-axis)

in each tumor-normal sample. The red dotted line represents linear least-squares regression.

enriched for the other miRNAs (Supplementary Table 2). The
significant bias of the number of enriched biological terms to
tamoMiRNAs (P-value = 5.0 × 10−5) suggests that APA changes
the miRNA target site numbers for effective regulation of
biological functions. Additionally, compared to the other
miRNAs, tamoMiRNAs are exclusively enriched for pathways
with keyword ‘growth factor (GF)’, ‘signaling’ and ‘circadian’
(Figure 4A and Supplementary Table 2), which are essential for
tumor initiation and progression [36].

Then, we compared the tamoMiRNA target genes with those
of the other miRNAs. Among 3318 expressed genes in the breast
tumor data that are likely controlled by miRNAs (>5 miRNA tar-
get sites), 3177 genes (95.7%) have more target sites for tamoMiR-
NAs (Figure 4B). Further, 911 of 3177 (27.4%) genes have target
sites only for tamoMiRNAs in their 3′-UTRs. Although the expres-
sion fold change (tumor versus normal) does not differ between
tamoMiRNAs and the other miRNAs (P = 0.1, Supplementary Fig-
ure 3), 911 genes targeted only by tamoMiRNAs are significantly
more down-regulated in tumor (P = 3.9e−23) than the same num-
ber of genes affected by the other miRNAs (Figure 4C). Collec-
tively, the results suggest that APA focuses on changing the
target sites of the miRNAs that effectively regulate the genes in
the pathways implicated for tumorigenesis.

NUDT21 knockdown induces a different set of APA
genes that modifies target sites of the common miRNAs

Previously, knocking down NUDT21 in HeLa cells demonstrated
the causal role of 3′US for tumorigenesis in a miRNA-dependent
fashion [13]. In a follow-up study, we found that the tumori-
genic effect involves miRNA target site changes for particular

genes including tumor suppressors, such as PTEN and PHF6
[7]. We reanalyzed this experiment data to test if the miRNA
target site change can be considered as an independent feature
associated with tumorigenesis without association to partic-
ular genes. First, in two replicate data of NUDT21 KD versus
wild type (WT) HeLa cells, we identified global significant APA
genes (FDR < 0.05) without absolute difference (615 3′UL and 2847
3′US, 0.2 > �PDUI > −0.2, Figure 5A). To check the consistency in
the miRNA target site number changes between the replicates,
we ran PRIMATA-APA on 383 moderately expressed miRNAs
(1 < average FPM < 100) in two random pairs of NUDT21 KD ver-
sus WT. Between the pairs, we found that the increase/decrease
call for each miRNA agree using Cohen’s κ (97.4% of agreement,
P < 10e−16 using R package ‘irr’). With the high consistence of
PRIMATA-APA calls between the pairs, we ran PRIMATA-APA
on the averaged expression of two WTs and two NUDT21 KD
(Supplementary Table 3). Then, we ranked the miRNAs based on
the χ2 value that indicates the degree of APA-derived target site
number change (see Methods). Then, we call the top half of the
miRNAs (191) tamoMiRNAs as before. It is interesting that miR-
3187-3p, which was extensively validated to promote tumorige-
nesis in the NUDT21 KD [7] experiment, is a tamoMiRNA [7] for
NUDT21 KD.

Since NUDT21 KD and the TCGA breast cancer data represent
different 3′US-mediated tumorigenic model, it makes sense that
they are identified with different sets of 3′US genes (14-fold less
in common than unique to NUDT21 KD, Figure 5B). However, they
share a significant number of tamoMiRNAs (more in common
than unique to either NUDT21 KD or TCGA, P = 1.16 × 10−11,
Figure 5C). It follows that the tamoMiRs for NUDT21 KD data also
replicates the high enrichment of the miRNAs for cancer etiology

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa191#supplementary-data
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Figure 3. APA modifies miRNA target sites associated with cancer. A. The number of tumor-normal samples between which target sites for each miRNA are increased

(x-axis) or decreased (y-axis). For further analyses, we dichotomize miRNAs by the amount of target site changes into tamo- (red) and the other (gray) miRNAs

(Supplementary Table 1). B. Number of cancer-related miRNAs in tamo- (red) and the other (gray) miRNAs. C. The distribution of phyloP conservation score for 202

tamo- and 191 the other miRNAs.

and treatments (P = 0.00014, Figure 5D) with high evolutional
conservation (P = 0.04, Figure 5E). The results suggest that APA-
mediated miRNA target site number changes, not the APA events
themselves, is common to two distinct tumorigenic models,
NUDT21 KD and TCGA breast cancer.

The miRNA target landscape distinguishes tumor
samples of different immune evasion activity

To understand biological implication of miRNA target site modi-
fication with a potential clinical use, we tested the association
of the APA-mediated miRNA target site changes with tumor
samples’ immune evasion activity. Immune evasion is an impor-
tant cancer hallmark and has long been recognized as a fun-
damental process in tumor formation and progression [37, 38].
Although the mechanisms controlling immune infiltration are

not well-understood [39], several research groups have identified
molecular indicators for immune evasion activities. For example,
expression of cell proliferation markers (proliferation signature)
and of cytotoxic infiltrating immune cells (immune signature)
were identified and shown associated with immune evasion
and reduced response to immunotherapy [40]. Here, we showed
that the miRNAs shown for tumor proliferation and immune
evasion are associated with proliferation and immune signa-
ture through the target site changes. From 11 miRNAs that are
shown in literature [20] to regulate breast cancer (Figure 3B), we
further selected 6 miRNAs that were shown to directly promote
cancer (oncogenic miRNAs) and ranked the 70 TCGA breast
tumor samples by the PRIMATA-APA increase/decrease call for
the miRNAs. We found that the tumor samples with increase
calls (blue points in Figure 6A, P-value = 0.03) carry significantly
lower proliferation scores. Similarly, the samples with decrease
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Figure 4. TamoMiRNAs effectively regulate biological processes. A. Cancer-associated pathways enriched for 99 tamoMiRNAs with their enrichment P-values (red

for ‘signaling’, blue for ‘GF’ and green for ‘circadian’). B. Number of target sites for tamoMiRs and the other miRNAs in the genes with more than five target sites.

C. Expression fold change (log2 tumor versus normal) of 911 genes that are targets of tamoMiRs and other miRNAs.

Figure 5. KD of NUDT21, an upstream regulator of global 3′US leading to tumorigenesis, induces a different set of APA genes that changes target sites of the common

miRNAs. A. Statistical significance of APA genes in NUDT21 KD experiment data with their �PDUI values (tumor-normal). Overlap of B. 3′US genes and C. tamoMiRNAs

between TCGA breast cancer data and NUDT21 KD data based on PRIMATA-APA. D. Number of cancer-related miRNAs in 191 tamo- (red) and the other (gray) 192

miRNAs. E. The distribution of phyloP conservation score for 139 tamo- and the other 134 miRNAs.

calls for the miRNAs shown to regulate the immune system
[22] (immune miRNAs) significantly (P-value = 0.01) select tumor
samples with high immune score (Figure 6D). On the other hand,
the expression information of such miRNAs does not distinguish
tumor samples with different proliferation score (P-value = 0.7,
Figure 6B), although it performs as well as the miRNA target
site information for immune signature (P-value = 0.01, Figure 6E).
Moreover, the number of APA genes that change the target site
numbers of the oncogenic and immune miRNAs cannot dis-
tinguish the patients (P-value = 0.9, Figure 6C and P-value = 0.8,

Figure 6F). Altogether, the results show that the significant sep-
aration of tumor samples in immune and proliferation signature
score (Figure 6A and B) involves such miRNAs under the trans
APA effect.

Discussion
Since the discovery of miRNAs in the earlier 1990s, much
progress has been made in understanding how miRNAs
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Figure 6. The miRNA target landscape distinguishes tumor samples of different immune activity. A total of 70 TCGA breast tumors ranked by the followings. A. The

changes in the decrease (red) or increase (blue) of oncogenic miRNAs. B. The average of normalized miRNA expression of oncogenic miRNAs. C. The total number of APA

genes removing/adding target sites of oncogenic miRNAs (bottom panel). The distribution of proliferation signature score of the 25 tumor samples in the left/right-most

of the rank (top panel). D. The changes in the decrease (red) or increase (blue) of immune miRNAs. E. The average of normalized miRNA expression of immune miRNAs.

F. The total number of APA genes removing/adding target sites of immune miRNAs (bottom panel). The distribution of immune signature score of the 25 tumor samples

in the left/right-most of the rank (top panel). Test statistics and the P-values are based on t-test for two independent samples.

are produced within cells and how they are involved in
various physiological and pathological contexts. To understand
miRNA binding efficiency, previous works have used miRNA’s
expression information almost as the sole molecular feature.
For example, miRNAs up-regulated in tumor were considered to
be oncogenic miRNAs and those down-regulated were tumor-
suppressive [41, 42]. However, as miRNAs play roles majorly by
binding their target genes [43], a comprehensive understanding
of miRNAs’ function should be based not only on their expres-
sion levels but also on the targeting landscape. Considering the
targeting landscape becomes especially important in studying
cancer where the widespread APA globally changes miRNA
target sites. In this work, we characterized the amount of miRNA
target sites as a novel molecular feature that reflects the effect
of widespread APA events on the miRNA targeting landscape. To
systematically understand the role of this molecular feature
in TCGA breast cancer, we develop a mathematical model,
PRIMATA-APA. Running PRIMATA-APA on TCGA breast cancer
data and NUDT21 KD data, we found that considering miRNA
target site change brings a novel understanding into the
tumorigenic mechanism of the widespread APA events in
association with miRNA binding efficiency.

Based on the understanding, our work sheds novel insights
into the development of therapeutic miRNAs. TamoMiRNAs are
highly enriched for miRNAs that are known to regulate impor-
tant biological processes in cancer (Figure 3B and 4A). This result
suggests that, when APA events are shown to affect tumorigene-
sis [7] and associated with prognosis [5] and treatment outcomes
[18], the APA events are expected to play such roles by increas-
ing/decreasing the miRNA target sites. Further, we found that the
trans APA effect of the validated miRNA biomarkers identifies
tumor samples of different tumor cell proliferation and immune
evasion activity (Figure 6A, D). This result provides a clinical
implication of therapeutic miRNA agents, miRNA mimics or anti-
miRNAs. For example, the target site increase for the oncogenic
miRNAs is associated with lower tumor cell proliferation in
cancer patients (Figure 6A). Since the target site increase will
make the targeting less efficient, anti-miRNAs for the miRNAs

are expected to lower tumor cell proliferation status. In the same
sense, since the target site decrease for the immune miRNAs is
associated with higher immune infiltration (Figure 6D), miRNA
mimics of the immune miRNAs is expected to reproduce the
effect and induce immune infiltration. Altogether, we showed
that widespread APA events globally change miRNA target sites
and considering the target site change helps better understand
the functional role of miRNAs in cancer biology.

Methods
TCGA breast tumor RNA-seq and miRNA-seq data

Quantified gene expression files (RNASeqV1) for primary breast
tumors and their matching solid normal samples were down-
loaded from TCGA data portal [44]. We used 106 breast tumor
samples that have matched normal tissues. A number of 10 868
expressed RefSeq genes (fragments per kilobase million (FPKM)
≥ 1 in >80% of all samples) were selected for downstream
analyses. To better quantify gene expression in the presence of
3′US, we only used coding regions (CDS). Exon and CDS annota-
tion for TCGA data and miRNA expressions (syn1445790) were
downloaded from Sage Bionetworks’ Synapse database.

Linking miRNAs and the targets in stoichiometry

Predicted miRNA target sites were obtained from TargetScanHu-
man version 6.2 [45]. Only those with a preferentially conserved
targeting score more than 0 were used [5]. Experimentally val-
idated miRNA-target sites were obtained from TarBase version
5.0 [46], miRecords version 4 [47] and miRTarBase version 4.5
[48]. The target sites found in indirect studies such as microarray
experiments and high-throughput proteomics measurements
were filtered out [49]. Another source is the miRNA target atlas
composed of public AGO-CLIP data [50] with significant target
sites (q-value <0.05). The predicted and validated target site
information was then combined to use in this study. Further, to
model the potential targeting of miRNAs on mRNA, we will take
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into account only those that were considered for that purpose
[7, 51, 52] (expressed miRNAs (>1 and <100 FPM on average) and
the expressed genes (avg. FPKM > 1)).

Detection of miRNA target sites removed/added
by APA events

PRIMATA-APA uses DaPars to identify APA events [5]. We chose
DaPars method because its performance has been validated not
only within the DaPars paper but also in an independent recent
study. Within the DaPars paper, multiple lines of evidence were
presented to demonstrate that DaPars indeed identified APA
events in the TCGA data. First, 51% of the DaPars predictions are
within 50 bp of the annotated APAs in the gene models com-
piled from NCBI Reference Sequence database (RefSeq), Ensembl
genome database (Ensembl), UCSC genome browser and polyA
database (polyA_DB [53]). Second, in the upstream (−50 nt) of
the predicted APA sites, MEME motif enrichment analysis [54]
successfully identified canonical polyA signal AATAAA.

An independent recent study [55] assessed the performance
of many APA detection tools, such as PHMM [56], GETUTR [57],
ChangePoint [17], EBChangePoint [58], IsoSCM [59], DaPars [5],
QAPA [14], APATrap [60] and TAPAS [61] using diverse simulated
and biological data. The study concluded that DaPars is among
the top performers with TAPAS and APAtrap according to the
prediction precision or they are under the receiver operating
characteristics (ROC) curves.

To identify the miRNA target sites removed or added by APA
events, we map the poly (A) site (PAS) most proximal to the stop
codon predicted by DaPars to the assignment of miRNA target
sites collected above. With the PDUI values returned from DaPars
running, further analyses were performed.

Probabilistic inference of miRNA target site
modification through APA

To estimate the total number of target sites for each miRNA, we
consider all genes with the target sites (based on TargetScan pre-
diction) and the expression information of the genes (estimated
in the data). Suppose transcript x has a constitutive proximal
3′-UTR (pUTR) and a distal 3′-UTR (dUTR). Previously [7], we
defined the amount of target sites for miRNA miRj in all copies
of transcript x based on the gene model predictions annotated
in TargetScan.

MiRs_PDUIt
(
x, miRj

) = (
pUTR

(
x, miRj

) + dUTR
(
x, miRj

)

×PDUIt(x)
) × CDSt(x), (1)

where pUTR (x, miRj) and dUTR (x, miRj) are the numbers of miRj

target sites in pUTR and dUTR of x. PDUIt (x) is the Percentage of
dUTR Usage Index [5] of x and CDSt (x) is the expression level
of x in a tumor sample. Note that MiRs_PDUIn(x, miRj) can be
calculated for a normal sample with PDUIn (x) and CDSn (x). If
APA-derived miRNA target site modification is not considered,
the amount of target sites for miRj in all copies of transcript x
would be calculated as follows:

MiRst
(
x, miRj

) = (
pUTR

(
x, miRj

) + dUTR
(
x, miRj

)) × FPKMt(x) (2)

In this manuscript, PRIMATA-APA defines the total number of
miRNA target sites with and without consideration of APA events

as below.

MiRs_PDUIt
(
miRj

) =
∑

x

MiRs_PDUIt
(
x, miRj

)
(3)

MiRst
(
miRj

) =
∑

x

MiRst
(
x, miRj

)
(4)

With MiRs_PDUIt(miRj), MiRst(miRj), MiRs_PDUIn(miRj) and
MiRsn(miRj) in the contingency table, PRIMATA-APA estimates
significance of target site modifications for miRj by testing non-
random association in tumor and normal states (using χ2 test),
followed by FDR control using FowardStop [62] (FDR < 0.01). Note
that we have run this model on the transcript level (isoforms).
Then, the transcript level estimates were combined on the gene
level for interpretation. While this model explicitly takes miRNA
target site and gene expression information into account, miRNA
expression information is implicitly considered as we ran this
model only for expressed miRNAs defined above.

Collection of miRNAs known for biological roles

MiRNAs dysregulated in breast cancer with clinical and bio-
logical implications are taken from the section MECHANISMS
OF MIRNA DYSREGULATION IN CANCER AND SIGNIFICANCE OF
THE ALTERED MIRNA EXPRESSION IN TUMORS in [19]. MiRNAs
regulating diverse mechanisms for breast cancer are taken from
Table 2 The miRNAs associated with tumor development in
breast cancer from [9] and Table 1 List of major oncogenic miR-
NAs in breast cancer and Table 2 List of major tumor-suppressive
miRNAs in breast cancer from [21]. Regulatory miRNAs in either
adaptive or innate immune system are taken from Figure 4 miR-
NAs that regulate innate immune cell development and function
from and Figure 5 miRNAs that regulate adaptive immune cell
development and function from [21]. Potential prognostic and
predictive miRNA biomarkers identified for breast cancer are
taken from Table 4 List of major diagnostic miRNA signatures for
the early diagnosis of breast cancer, Table 7 Predictive miRNAs–
miRNAs involved in response (sensitivity/resistance) to conven-
tional breast cancer therapeutic strategies, Table 8 List of positive
prognostic miRNA signatures in breast cancer, Table 9 List of
negative prognostic miRNA signatures in breast cancer from [21].

Selection of tamoMiRNAs and the other miRNAs

To select 102 tamoMiRNAs and 104 other miRNAs, we used the
consistent criteria described as follows. We sorted the miRNAs
by the number of samples in which the number of the target
sites are significantly modified (increased or decreased) by APA
events. When there are multiple miRNAs with the same number
of such samples, they are taken together. For example, 93th to
102th miRNAs in the ranked list were modified in the same
number (24) of such samples (Supplementary Table 1) that they
need to be considered together. In that way, 102 tamoMiRNAs
were the minimum number of miRNAs that produced meaning-
ful results in the MiEAA analysis. Further, 104 other miRNAs were
the minimum number of miRNAs on the other side of the ranked
list that are closest to 102.

Author Contributions
H.J.P and S.K. conceived the project, designed the experiments
and performed the data analysis. Y.B. and Z.F. performed the
subtype analysis. H.J.P and S.K. wrote the manuscript with input
from B.D. and G.C.T.



The microRNA target site landscape 9

Availability of data and materials
The open source PRIMATA-APA program (version 0.9.2) is freely
available at https://github.com/thejustpark/PRIMATA-APA/ with
necessary example data for this analysis.

Key Points
• APA is widespread in diverse types of cancer, including

breast cancer. Although it has been shown associated
with prognosis and drug sensitivity in cancer, it is not
widely known how it plays roles.

• Although our recent finding that APA plays roles in
trans is limited to tumor suppressor genes, we develop
a mathematical model to elucidate the systematic
roles on miRNA target site landscape.

• Using the model on breast cancer data, we identified
that particular miRNAs’ target sites are extensively
modified by APA events and that some of the miRNAs
have been shown important in tumor biology and
treatment.

• With the results, our computational analyses provide
a proof-of-concept demonstration that the miRNA tar-
get site information indicates the effect of global APA
events with a potential as predictive biomarker.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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