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Abstract

The NanoString RNA counting assay for formalin-fixed paraffin embedded samples is unique in its sensitivity, technical
reproducibility and robustness for analysis of clinical and archival samples. While commercial normalization methods are
provided by NanoString, they are not optimal for all settings, particularly when samples exhibit strong technical or
biological variation or where housekeeping genes have variable performance across the cohort. Here, we develop and
evaluate a more comprehensive normalization procedure for NanoString data with steps for quality control, selection of
housekeeping targets, normalization and iterative data visualization and biological validation. The approach was evaluated
using a large cohort (N = 1649) from the Carolina Breast Cancer Study, two cohorts of moderate sample size (N = 359
and130) and a small published dataset (N = 12). The iterative process developed here eliminates technical variation (e.g.
from different study phases or sites) more reliably than the three other methods, including NanoString’s commercial
package, without diminishing biological variation, especially in long-term longitudinal multiphase or multisite cohorts. We
also find that probe sets validated for nCounter, such as the PAM50 gene signature, are impervious to batch issues. This
work emphasizes that systematic quality control, normalization and visualization of NanoString nCounter data are an
imperative component of study design that influences results in downstream analyses.
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Introduction
The NanoString nCounter platform offers a targeted strategy for
gene expression quantification using a panel of up to 800 genes
without requiring cDNA synthesis or amplification steps [1].
The technology offers advantages in sensitivity, technical repro-
ducibility and strong robustness for profiling formalin-fixed,
paraffin-embedded (FFPE) samples [2]. Given these advantages,
nCounter is increasingly used for longitudinal studies involving
FFPE samples carried out over several years [3] and diagnostic
assays in clinical settings [4, 5].

Proper normalization and quality control (QC) of gene expres-
sion is necessary prior to statistical analysis to reduce unwanted
variation that may be associated with technical batches or RNA
degradation from sample fixation [6, 7]. While some sources of
variation can be enumerated a priori (e.g. different research cen-
ters, batches over time or RNA preservation methods), not all can
be captured. In all cases, it is advisable to define a QC and nor-
malization pipeline to detect and account for technical variation
in downstream statistical modeling. All normalization methods
deal with a trade-off between bias that needs correction and bias
or variance that may be introduced in normalization [8].

Many approaches have been developed to normalize
nCounter data. NanoString provides two forms of normalization
in its commonly used nSolver Analysis Software [9]: (i) a
graphical user interface with optional background correction
and positive-control and housekeeping gene normalization and
(ii) the Advanced Analysis tool, which draws on the NormqPCR R
package [10, 11] to select co-expressed housekeeping genes prior
to normalization. The NanoStringNorm package implements the
nSolver algorithms in R [12]. The R packages NanoStringDiff and
RCRnorm use hierarchical modeling methods that incorporate
information from the positive, negative and housekeeping
controls for normalization [13, 14]. The NACHO R package
proposes a simple QC and visualization pipeline that precedes
normalization using either NanoStringNorm or NanostringDiff
[15], though, without postnormalization visualization to assess
normalization quality. When technical replicates are available,
a method from Molania et al., Remove Unwanted Variation-III
(RUV-III), can be used along with an iterative normalization
process where several parameters (i.e. number of housekeeping
genes, number of detected outliers and number of dimensions
of technical noise) are tuned with relevant visual and biological
checks [7]. RUV-III normalization frequently outperformed
nSolver normalization by more efficiently removing technical
sources of variation while preserving biological variation [7].
Since many cohorts do not have technical replicates, we extend
Molania et al.’s iterative framework using RUVSeq [6–8], a
precursor of RUV-III.

Here, we provide a framework for the QC and normalization
of mRNA expression count data from the NanoString nCounter
platform, using a large dataset (N = 1649) of breast tumor
expression from the Carolina Breast Cancer Study (CBCS) and
three other cohorts of differing sample size (N= 12, 130and359).
We illustrate some of the pitfalls in the nSolver method of back-
ground correction and positive control normalization, provide
an alternative approach that uses RUVSeq [6, 8] and bench-
mark our framework against other normalization methods [9,
13, 14]. We find that, especially in longitudinal, multiphase or
multisite cohorts, RUVSeq outperforms nSolver in removing dif-
ferences across technical sources of variation. Lastly, we pro-
vide quality checks for normalization and outline the impact
of proper normalization on inference for biological associations
and expression-based disease subtyping.

Materials and methods
Data collection

We used four cohorts with nCounter gene expression data to
evaluate differences between normalization procedures. Cohort
details and the normalization parameters for each cohort are
given below and summarized in Supplementary Table S1 avail-
able online at https://academic.oup.com/bib.

CBCS gene expression data

The CBCS is a multiphase cohort of women with breast cancer
in North Carolina. Samples were collected during three study
phases: Phase 1 (1993–1996), Phase 2 (1996–2001) and Phase 3
(2008–2013). Paraffin-embedded tumor blocks were reviewed and
assayed for gene expression using the NanoString nCounter
system as discussed previously [3, 16, 17]. Study phase gives
the relative age of the tumor block. In total, 1649 samples from
patients with invasive breast cancer from CBCS, across all three
study phases, were analyzed on a custom panel of 417 genes.
All assays were performed in the Translational Genomics Lab-
oratory (TGL) at the University of North Carolina at Chapel Hill
(UNC). After QC and normalization, 1264 samples remained in
the nSolver-normalized data, and 1219 samples remained in the
RUVSeq-normalized data. This dataset was used to benchmark
against NanoStringDiff [13] and RCRnorm [14], using the same
1264 samples in the nSolver-normalized set.

Bladder tumor gene expression data

FFPE Biospecimens from 42 samples of nonmuscle invasive blad-
der cancer from UNC (Chapel Hill, NC) and 88 samples from a
study conducted by the Memorial Sloan Kettering Cancer Center
(New York, NY) with nonmuscle invasive bladder cancer were
analyzed. RNA was isolated using the RNeasy FFPE Kit (Qiagen)
at UNC, and NanoString assays were performed at the TGL at
UNC using a custom codeset consisting of 440 endogenous and
6 housekeeping genes. After QC and normalization, 86 sam-
ples remained in both the nSolver-normalized and RUVSeq-
normalized datasets.

Kidney tumor gene expression data

This study includes 359 samples from patients with clear cell
renal cell carcinoma with fresh-frozen tissue collected as part of
a large case-control study of kidney cancer conducted in central
and eastern Europe [18]. Slides for each case were reviewed
by a pathologist to assess tumor stage and grade [19]. Man-
ual microdissection was performed to remove nontumor tissue.
Frozen sections were placed directly in Trizol reagent (Invitro-
gen, Carlsbad, CA) and homogenized for 2 minutes on ice, and
RNA was isolated using the manufacturer’s protocol. NanoString
assays were performed at UNC TGL using a custom codeset
consisting of 62 endogenous and 6 housekeeping genes com-
monly studied in kidney cancer. After QC and normalization, 331
samples remained in both the nSolver- and RUVSeq-normalized
data.

Sabry et al. gene expression data

We downloaded raw RCC files from Sabry et al. [20] from
the NCBI Gene Expression Omnibus (GEO) with accession
number GSE130286 and imported them using functions in
NanoStringQCPro [21]. This dataset comprised 12 samples, all of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib


An approach for normalization and quality control for NanoString RNA expression data 3

Figure 1. Graphical summary of RUVSeq normalization pipeline. The QC and normalization process starts with familiarization with the data (Step 1) and technical QC to

flag samples with potentially poor quality (Step 2). After a set of housekeeping genes are selected (Step 3), important unwanted technical variables are also investigated

through visualization techniques (Step 4). Problematic samples (e.g. those that are flagged multiple times in technical QC checks) are excluded. Next, the data are

normalized using upper quartile normalization and RUVSeq (Step 5), and the normalized data are visualized to assess the removal of unwanted technical variation and

retention of important biological variation (Step 6). Steps 3—6 are iterated until technical variation is satisfactorily removed, changing the set of housekeeping genes

or the number of dimensions of unwanted technical variation (k) estimated using RUVSeq. These data can then be used for downstream analysis (Step 7).

which remained after normalization with both procedures. The
dataset measured 706 endogenous genes with 40 housekeeping
genes from the NanoString nCounter Human Myeloid Innate
Immunity Panel [20].

QC and normalization

The full QC and normalization process using nSolver and
RUVSeq is summarized in Figure 1, starting with familiarization
of the raw data (Figure 1(1)), technical QC (Figure 1(2)), prenor-
malization assessment of housekeeping genes (Figure 1(3)) and
data visualization to detect problematic samples and assess
whether flagged samples should be removed (Figure 1(4)).
Normalization is performed with either nSolver or RUVSeq
(Figure 1(5)), and the processed expression data are assessed
for validity through relevant visualization and biological
checks (Figure 1(6)). If validation is unsatisfactory and technical
variation is still present, this process is iterated.

Technical QC flags

nSolver provides QC flags to assess the quality of the data for
imaging, binding density, linearity of the positive controls and
limit of detection (LOD). The definition and implementation of
this QC are summarized in nSolver [9] and NanoStringNorm
[12] documentation. We mark any sample that is flagged in at
least one of these four QC assessments as technical QC. We
use these QC flags in both nSolver normalization and RUVSeq
normalization.

Below LOD QC

We use high proportions of both endogenous and housekeeping
genes below the LOD as a QC flag to assess reduced assay or
sample quality. The per-sample LOD is defined as the mean
of the counts of negative control probes for a given sample.
We assessed the percent of counts below the LOD in the
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housekeeping genes per sample to flag both poor quality
samples and housekeeping genes with problems in their
measurement. We used samples with all housekeeping genes
above the LOD as a reference group to determine the regular
distribution of genes below the LOD. Samples were flagged if (i)
they had more than one housekeeping gene below the LOD and
(ii) the percent of endogenous genes below the LOD was greater
than the top quartile of the distribution of percent below LOD in
the reference group.

Housekeeping gene assessment

Housekeeping genes serve two purposes: (i) for QC purposes to
remove samples with overall poor quality and (ii) for assessing
the amount of technical variation present in the normaliza-
tion procedure. NanoString documentation suggests that ideal
housekeeping genes are highly expressed, have similar coeffi-
cients of variation and have expression values that correlate
well with other housekeeping genes across all samples [9, 12].
Because of these definitions, these targets will ideally vary only
due to the level of technical variation present. RUVSeq relies on
housekeeping genes, i.e. genes not influenced by the condition
of interest (e.g. cancer subtype), with no assumptions on co-
expression of all housekeeping genes. To assess the potential
for housekeeping correction to introduce bias, housekeeping
genes were assessed for differential expression across a primary
biological covariate of interest (estrogen receptor status in CBCS,
tumor stage in the kidney and bladder cancer data and treatment
groups in Sabry et al. [20]) using negative binomial regression on
the raw counts from the MASS package [22].

nSolver normalization

Background correction

NanoString guidelines suggest background correction [9, 12] by
either subtraction or thresholding for an estimated background
noise level for experiments in which low expressing targets
are common, or when the presence of a transcript has an
important research implication [7, 12]. Data from all four
cohorts considered do not necessarily fall under this criterion,
and accordingly, we did not background correct by either
method. To demonstrate the effect of background correction, we
tested nSolver-normalized gene expression with and without
background thresholding in CBCS using relative log expression
(RLE) plots.

Positive control and housekeeping gene-based normalization

The arithmetic mean of the geometric means of the positive
controls for each lane was computed and then divided by the
geometric mean of each lane to generate a lane-specific positive
control normalization factor [9, 12]. The counts for every gene
were multiplied by their lane-specific normalization factor. To
account for any noise introduced into the nCounter assay by pos-
itive normalization, the housekeeping genes were used similarly
as the positive control genes to compute housekeeping normal-
ization factors to scale the expression values [9, 12]. NanoString
flagged samples with large housekeeping gene scaling factors
(we call this a housekeeping QC flag) and large positive control
scaling factors (positive QC flag), but note that samples with
these flags simply indicate that a sample is divergent from other
samples in the dataset and do not necessarily require removal.
Prenormalization visualization (Figure 1(4)) is important for con-
firming the inclusion or removal of these samples.

RUVSeq normalization pipeline

Normalization

The RUVSeq-based normalization process (Figure 1(5)), an alter-
native approach to nSolver normalization, proceeds following
QC and housekeeping assessment. Distributional differences
were scaled between lanes using upper-quartile normalization
[23]. Unwanted technical factors were estimated in the resulting
gene expression data with the RUVg function from RUVSeq [8].
Unwanted variation was estimated using the final set of endoge-
nous housekeeping genes on the NanoString gene expression
panel [24, 25]. In general, the number of dimensions of unwanted
variation to remove was chosen by iteratively normalizing the
data for a given number of dimensions and checking for the
removal of known technical factors already identified in the raw
expression data (e.g. study phase) and the presence of key bio-
logical variation (e.g. bimodality of ESR1 expression in the CBCS
breast cancer data where estrogen receptor (ER) status is a
known predominant feature). Further details about choosing
this dimension are given by Gagnon-Bartsch et al. and Risso
et al. [6, 8]. DESeq2 was used to compute a variance stabilizing
transformation of the original count data [25], and estimated
unwanted variation was removed using the removeBatchEffects
function from limma [26]. Ultimately, we removed 1, 1, 3 and 1
dimensions of unwanted variation from CBCS, kidney cancer,
bladder cancer and the Sabry et al. datasets, respectively. RLE
plots, principal component analysis and heatmaps were used to
detect any potential outliers before and after normalization.

Alternative normalization methods for benchmarking

Using CBCS data, we compared the normalized datasets
from nSolver, RUVSeq, NanoStringDiff [13] and RCRnorm [14]
with the raw data through visualization methods outlined
above (Figure 1(1)–(4), RLE plots and scatter plots of principal
components over important technical and biological sources
of variation). Details about these methods are provided in
Supplementary Table S2 available online at https://academic.
oup.com/bib.

Downstream analyses

We used several data visualization or benchmarking methods for
each cohort.

Silhouette width analysis in CBCS

Silhouette width, a measure used to assess how similar a sample
is to its own group (i.e. study phase) as compared to other groups,
was used to determine the impact of the two normalization pro-
cedures on technical and biological variation [27]. Many samples
with large silhouettes can be interpreted as indicating that the
different study phases are distinct and that a batch effect is still
present in the data.

eQTL analysis in CBCS

We assessed the additive relationship between the gene expres-
sion values and germline genotypes with linear regression anal-
ysis using MatrixEQTL [28], applying the same linear model as
detailed in previous work [29]. Briefly, for each gene and SNP in
our data, we constructed a simple linear regression, where the
dependent variable is the scaled expression of the gene with zero
mean and unit variance, the predictor of interest is the dosage of
the alternative allele of the SNP and the adjusting covariates are

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
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the top five principal components of the genotype matrix. We
considered both cis- (SNP is less than 0.5 Mb from the gene) and
trans-eQTLs in our analysis. We adjusted for multiple testing via
the Benjamini-Hochberg procedure [30].

PAM50 subtyping in CBCS

We classified each subject into PAM50 subtypes using the proce-
dure summarized by Parker et al. [31, 32]. Briefly, for each sample,
we computed the Euclidean distance of the log-scale expression
values for the 50 PAM50 genes to the PAM50 centroids for each
of the molecular subtypes. Each sample was classified to the
subtype with the minimal distance [31]. The PAM50 genes were
clustered hierarchically for both samples and genes and visual-
ized in heatmaps. Subtype concordance was assessed between
normalization methods excluding normal-like cases.

RNA-seq normalization and distance correlation analysis in CBCS

We obtained a separate set of samples (not included in the analy-
sis described above) from CBCS with both RNA-seq and nCounter
expression (on a different codeset of 166 genes). We followed a
standard RNA-seq normalization process with DESeq2 [25], using
the median of ratios method to estimate scaling factors [24]. We
calculated the distance correlation and conducted a multivariate
permutation test of independence between the RNA-seq data
set (subset to the overlapping genes on the NanoString codeset)
with each of the nSolver-normalized and RUVSeq-normalized
nCounter data using the energy package [33]. The distance cor-
relation and associated permutation test allow for detection
of nonindependence across multivariate datasets of different
distribution.

Differential expression analysis with Sabry et al. dataset [20]

We conducted differential expression analysis to compare
both normalization methods in the Sabry et al. dataset [20]
using DESeq2 [25] and adjusting for multiple testing with the
Benjamini-Hochberg [30] procedure. We compared differential
expression across IL-2–primed NK cells versus NK cells alone
and CTV-1-primed NK cells for 6 hours versus NK cells alone.

Results
We evaluated the ability of normalization methods to remove
technical variation while retaining biologically meaningful vari-
ation across four cohorts of differing sample size and varying
sources of technical bias (see Supplementary Table S1 avail-
able online at https://academic.oup.com/bib). Known sources of
technical variation included age of sample (study phase) and
different study sites. The cohorts varied in preservation meth-
ods; two cohorts used fresh-frozen specimens, while two used
archival FFPE specimens. The number of genes measured for
both endogenous genes and housekeeping genes also varied by
study. In addition, some studies used validated and optimized
code sets for specific gene signatures versus a more general code
set.

In cohorts with large technical biases, RUVSeq provided supe-
rior normalization with more robust removal of technical varia-
tion and provided stronger biological associations compared to
other normalization methods. In two of the datasets, we found
that downstream analyses performed on data normalized with
nSolver and RUVSeq detected substantially different biological
associations. However, when few strong technical biases were

present or if a validated and optimized code set (e.g. PAM50
genes) was used, nSolver and RUVSeq performed comparably.

Case study: CBCS

Evaluation of background correction

Background thresholding led to increased per-sample variance,
while per-sample medians remained relatively similar (see Sup-
plementary Figure S1A available online at https://academic.ou
p.com/bib). The distributions of per-sample median expression
values were more right-skewed (greater mean than median)
when using background thresholding prior to normalization
compared to not using background thresholding (see Supple-
mentary Figure S1B available online at https://academic.oup.
com/bib). Based on this analysis, we did not perform background
correction prior to normalization for all cohorts analyzed.

Quality assessment of expression levels using LOD of housekeeping
genes

We used the housekeeping genes to assess if the lack of expres-
sion of endogenous genes was due to biology or due to technical
failures. We compared the level of missing endogenous genes
in samples with all housekeeping genes present to those with
increasing number of housekeeping genes below LOD. There
was a strong positive correlation for increasing proportions of
genes below the LOD in both the endogenous and housekeeping
genes (Figure 2A, see Supplementary Figure S2 available online
at https://academic.oup.com/bib). Samples with higher numbers
of genes below the LOD were from earlier phases of CBCS (i.e.
Phase 1 from 1993 to 1996 and Phase 2 from 1996 to 2001)
and thus associated with sample age (see Figure 2A, Supple-
mentary Figure S3 available online at https://academic.oup.com/
bib). Samples with a higher proportion of endogenous genes
below the LOD had increased numbers of QC flags as well (see
Supplementary Figure S2 available online at https://academic.
oup.com/bib).

Evaluation of normalization methods

We benchmarked RUVSeq and nSolver with two other normal-
ization methods, NanoStringDiff [13] and RCRnorm [14]. We
observed differences across the four normalization strategies
(described in Supplemental Table S2 available online at https://
academic.oup.com/bib), namely greater remaining technical
variation using nSolver and NanoStringDiff than RCRnorm
and RUVSeq (Figure 2B–D). A large portion of the variation
in the raw expression could be attributed to study phase
(see Supplementary Figure S4A available online at https://
academic.oup.com/bib). While all methods reduced study phase
associated variation compared to the raw data, there were
considerable differences in the deviations from the median
log-expressions in the nSolver- and NanoStringDiff-normalized
expression that are not present in the RUVSeq- and RCRnorm-
normalized data (Figure 2B). The nSolver and NanoStringDiff
methods retained technical variation, either not fully corrected
or re-introduced during the nSolver normalization process.

We examined the ability of each normalization method to
retain biological variation. ER status is one of the most important
clinical and biological features in breast cancer and is used for
determining course of treatment [34, 35]. ER status drives many
of the molecular classifications [36–38] and even drives separate
classification of breast tumors in TCGA’s pan-cancer analysis of
10 000 tumors [39]. In the raw expression, variation due to ER
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Figure 2. QC and normalization validation in CBCS. (A) Boxplot of percent of endogenous genes below the LOD (Y-axis) over varying numbers of the 11 housekeeping

genes below LOD (X-axis), colored by CBCS study phase. Note that the X-axis scale is decreasing. (B) Kernel density plots of deviations from median per-sample log2-

expression from the raw, nSolver-, RUVSeq-, NanoStringDiff- and RCRnorm-normalized expression matrices, colored by CBCS study phase. (C) Plots of the first principal

component (X-axis) versus second principal component (Y-axis) colored by ER subtype of the raw, nSolver-, RUVSeq-, NanoStringDiff- and RCRnorm-normalized

expression data. (D) Violin plots of the distribution of per-sample silhouette values, as calculated to study phase, using raw, nSolver-, RUVSeq-, NanoStringDiff- and

RCRnorm-normalized expression. The boxplot shows the 25% quartile, median and 75% quartile of the distribution, and the plotted triangle shows the mean of the

distribution.

status was captured in PC2 rather than PC1 (study age); however,
after RUVSeq-normalization, ER status was reflected predomi-
nantly in PC1 (Figure 2C). In the nSolver-, NanoStringDiff- and
RCRnorm-normalized data, ER status was shared between PC1
and PC2, suggesting that unresolved technical variation was still
present. RUVSeq demonstrated effective removal of technical
variation and boosting of the true biological signal. The PAM50
molecular subtypes [31], which are also linked with ER status,
were also clearly separated by PC1 for RUVSeq-normalized data,
but this was not thess case for nSolver-, NanoStringDiff-, or
RCRnorm-normalization (see Supplementary Figure S4B avail-
able online at https://academic.oup.com/bib). These results sug-
gest that RUVSeq-normalization best balances the removal of
technical variation with the retention of important axes of bio-
logical variation, with RCRnorm showing better performance
than nSolver and NanoStringDiff, but not superior to RUVSeq. A
significant disadvantage of RCRnorm is its computational cost:
RCRnorm was unable to run on the CBCS dataset (N = 1278 after
QC) on a 64-bit operating system with 8 GB of installed RAM,
requiring RCRnorm-normalization to be performed on a high-
performance cluster. We summarize the maximum memory
used by the method in CBCS in Supplemental Table S2 available
online at https://academic.oup.com/bib.

We used silhouette width to assess extent of unwanted tech-
nical variation from study phase remaining by the normalization
methods. Larger positive silhouette values indicate within-group
similarity (i.e. samples clustering by study phase). Per-sample
silhouettes across the alternatively normalized datasets showed
that RUVSeq best addressed the largest source of technical varia-
tion identified in the raw data (Figure 2D, see Supplementary Fig-
ure S5A available online at https://academic.oup.com/bib) while
also not removing a significant portion of biological variation
(see Supplementary Figure S5B available online at https://acade
mic.oup.com/bib). NanoStringDiff also demonstrated less sim-
ilarity of samples across study phase similar to RUVSeq but
removed biologically relevant similarity of samples grouped by
ER status. Due to the performance of NanoStringDiff and com-
putational limitations of RCRnorm, for subsequent analyses and
datasets, we only illustrate differences between nSolver- and
RUVSeq-normalized data.

Genomic analyses and expression profiles across normalization
methods

We evaluated the impact of normalization choice on down-
stream analyses including eQTLs, PAM50 molecular subtyping,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
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known expression patterns and similarity to RNA-seq data. In a
full cis-trans eQTL analysis accounting for race and genetic-
based ancestry, we found considerably more eQTLs using
nSolver as opposed to RUVSeq, thresholding at nominal P < 10−3

(2050 versus 1143). We identified strong cis-eQTL signals in both
normalized datasets; however, stronger FDR values were identi-
fied with RUVSeq (Figure 3A, densely populated around the 45◦

line). We observed considerably more trans-eQTLs using nSolver,
including a higher proportion of trans-eQTLs across various
FDR-adjusted significance levels (Figure 3B, see Supplementary
Figures S6 and S7 available online at https://academic.oup.
com/bib). We suspected that spurious trans-eQTLs may have
resulted from residual technical variation in expression data,
which was confounded with study phase, subsequently being
identified as a QTL due to ancestry differences across study
phase. In cross-chromosomal trans-eQTL analysis, distributions
of absolute differences in minor allele frequency (MAF) for trans-
eSNPs across women of African and European ancestry were
wide for both methods (see Supplementary Figure S7 available
online at https://academic.oup.com/bib). However, we observed
substantially more trans-eSNPs with moderate absolute MAF
differences across study phase with nSolver, compared to
RUVSeq. This provides some evidence for the presence of
residual confounding technical variation in the nSolver-
normalized expression data leading to spurious trans-eQTL
results (with a directed acyclic graph for this hypothesis in Sup-
plementary Figure S8 available online at https://academic.oup.
com/bib), though we cannot confirm this with eQTL analysis
alone.

We compared each normalization method for the ability to
classify breast cancer samples into PAM50 intrinsic molecular
subtype using the classification scheme outlined by Parker et al.
[31]. Our PAM50 subtyping calls were robust across normaliza-
tion methods with 91% agreement and a Kappa of 0.87 [95%
CI (0.85, 0.90)] (see Supplemental Table S3 available online at
https://academic.oup.com/bib). Among discordant calls, approx-
imately half had low confidence values from the subtyping
algorithm, and half had differences in correlations to centroids
less than 0.1 between the discordant calls (data not shown). Most
of these discordant calls were among HER2-enriched, luminal B
and luminal A subtypes, which are molecularly similar [40].

We observed noticeable differences between the RUVSeq-
and nSolver-normalized gene expression when visualized after
hierarchical clustering via heatmaps, similar to the principal
component analysis. Using this method, we identified 14
additional samples with strong technical errors in the nSolver-
normalized data not previously marked by QC flags (see Sup-
plementary Figure S9 available online at https://academic.oup.
com/bib), emphasizing the need for postnormalization data
visualization. In early breast cancer clustering papers, the first
major division was by ER status separating basal-like and HER2-
enriched molecular subtypes (predominantly ER-negative) from
luminal A and B molecular subtypes (predominantly ER-positive)
[31]. This pattern was observed in RUVSeq-data but only partially
preserved with nSolver normalization (see Supplementary
Figure S9 available online at https://academic.oup.com/bib).
Rather, nSolver data clustering was driven by a combination
of ER status and study phase. Study phase dominated two of
the groups and were formed by Phase 1 and Phase 3 samples,
respectively—samples with a 10+ year difference in age.

Lastly, we compared normalization choices for NanoString
data to RNA-seq data performed on the same samples. CBCS
collected RNA-seq measurements for 70 samples that have data
on a different nCounter codeset (162 genes instead of 417) and

RNA-seq normalized using standard procedures. A permutation-
based test of independence using the distance correlation [33,
41] revealed that the distance correlation between the RNA-
seq and nSolver data was small and near 0 (distance correla-
tion = 0.051, P = 0.24) while the distance correlation between
the RNA-seq and RUVSeq- data was larger (distance correla-
tion = 0.36, P = 0.02). The permutation-based test rejected the
null hypothesis of independence (distance correlation of zero
for unrelated datasets) between RUVSeq-normalized nCounter
data and RNA-seq data but fails to reject the null hypothe-
sis for nSolver-normalization nCounter and RNA-seq data. We
conclude that RUVSeq produced normalized data with closer
relation to the RNA-seq, in terms of distance correlation and test
of independence, compared to nSolver.

Case study: differential expression analysis in natural
killer cells

We looked at the impact of the two normalization methods in a
small cohort (N = 12) on DE analysis across natural killer (NK)
cells primed for tumor-specific cells and cytokines from Sabry
et al. [20]. RLE plots before and after normalization showed minor
differences between the two normalization methods (see Sup-
plementary Figure S10 available online at https://academic.oup.
com/bib).

Using DESeq2 [25], we identified genes differentially
expressed in NK cells primed by CTV-1 or IL-2 cytokines
compared to unprimed NK cells at FDR-adjusted P < 0.05.
The two normalization methods led to a different number
of differentially expressed genes with a limited overlap of
significant genes by both methods (Figure 4A). The raw P-value
histograms from differential expression analysis using nSolver-
normalized expression exhibited a slope toward 0 for P-values
under 0.3, which can indicate issues with unaccounted-for
correlations among samples [42], such as residual technical
variation. The distributions of P-values using the RUVSeq-
normalized data were closer to uniform throughout the range
[0,1] for most genes (Figure 4B). While the log2-fold changes
were correlated between the two normalization procedures,
the genes found to be differentially expressed only with
nSolver-normalized data tended to have large standard errors
with RUVSeq-normalized data and therefore not statistically
significant using RUVSeq (Figure 4C). These differences in
DE results emphasize the importance of properly validating
normalization prior to downstream genomic analyses.

Case study: bladder cancer gene expression

RUVSeq reduced technical variation (study site) while maintain-
ing the biological variation (tumor grade). RUVSeq data showed
the most homogeneity in per-sample median deviation of log-
expressions compared to raw and nSolver data (Figure 5A). The
first principal component of nSolver data had significant dif-
ferences by study sites, which was not present in RUVSeq data
(Figure 5B). In addition, there was a stronger biological asso-
ciation with tumor grade in the first principal component of
expression using RUVSeq data (Figure 5C).

Case study: kidney cancer gene expression

We only found subtle differences in the deviations from the
median expression between the normalization procedures
for the kidney cancer dataset (Figure 6A). This cohort did not
have the same known technical variables observed in the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib


8 Bhattacharya et al.

Figure 3. eQTL analysis in CBCS. (A) Cis-trans plots of eQTL results from nSolver-normalized (left) and RUVSeq-normalized data with chromosomal position of eSNP on

the X-axis and the transcription start site of associated gene in the eQTL (eGene) on the Y-axis. Points for eQTLs are colored by FDR-adjusted P-value of the association.

The dotted line provides a 45◦ reference line for cis-eQTLs. (B) Number of cis- (left) and trans-eQTLs (right) across various FDR-adjusted significance levels. The number

of eQTLs identified in nSolver-normalized data is shown in red and the number of eQTLs identified in RUVSeq-normalized data is shown in blue.

other cohorts such as study site or sample age, and the RNA
came from fresh-frozen material (see Supplementary Table S1
available online at https://academic.oup.com/bib). We evaluated
normalization methods on a source of technical variation,
DV300, the proportion of RNA fragments detected at greater
than 300 base pairs as a source of technical variation and
tumor stage as a biological variable of interest. The first two
principal components colored by level of DV300 (Figure 6B)
and tumor stage (Figure 6C) showed little difference across
the two normalization methods. When there were limited
sources of technical variation and a robust, high quality dataset,
we found both normalization methods performed equally
well.

Discussion
Proper normalization is imperative in performing correct
statistical inference from complex gene expression data.

Here, we outline a sequential framework for NanoString
nCounter RNA expression data, which provides both QC
checks, considerations for choosing housekeeping genes and
iterative normalization with biological validation using both
NanoString’s nSolver software [9, 12] and RUVSeq [6, 8]. We
show that RUVSeq provided a superior normalization to nSolver
on three out of four datasets by more efficiently removing
sources of technical variation, while retaining robust biological
associations. We also benchmark RUVSeq-normalization with
two other normalization methods implemented in R and show
that RUVSeq outperformed all methods in reducing technical
variation.

We observed that normalization methods were sensitive to
the quality and the set of housekeeping genes. Several genes
thought to behave exclusively in a ‘housekeeping’ fashion in
fact associate with biological variables under certain condi-
tions [43] or across different tissue types [44]. A careful valida-
tion of housekeeping gene stability on a case-by-case basis and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
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Figure 4. Differential expression analysis from Sabry et al. [20]. (A) Venn diagram of the number of differentially expressed genes using nSolver-normalized (blue) and

RUVSeq-normalized data (red) across comparisons for IL-2-primed (top) and CTV-1-primed NK cells (bottom). (B) Raw P-value histograms for differential expression

analysis using nSolver-normalized (blue) and RUVSeq-normalized (red) data across the two comparisons. (C) Scatterplots of log2-fold changes from differential

expression analysis using RUVSeq-normalized data (X-axis) and nSolver-normalized data (Y-axis) for any gene identified as differentially expressed in either one

of the two datasets. Points are colored by the datasets in which that given gene was classified as differentially expressed. The size of point reflects the standard error

of the effect size as estimated in the RUVSeq-normalized data. X = 0, Y = 0 and the 45◦ lines are provided for reference.

separately for new studies, considering both technical and bio-
logical sources of variation in each dataset, is therefore impera-
tive for an optimized normalization procedure.

We developed a quality metric to assess sample quality:
samples with high proportions of genes detected below the LOD
in both endogenous genes and housekeepers were indicative of
either low-quality samples or reduced assay efficiency. Sample
age was correlated with higher proportions of genes below the
LOD in both endogenous and housekeeping genes, which was
likely due to RNA degradation over time. We stress that missing
counts in endogenous genes alone does not suggest poor sample
quality in the absence of additional QC flags but could represent
genes not expressed and therefore not detected under certain

biological conditions or cell types. An example includes using
an immuno-oncology gene panel in a tumor sample with little
to no immune cell infiltration. Conversely, many samples with
counts below the LOD in both endogenous genes and house-
keepers had additional QC flags including those derived from
nSolver’s assessment of data quality. We excluded these samples
for analysis in both the nSolver- and RUVSeq-based procedures.

nSolver-normalized data was prone to residual unwanted
technical variation when there were known technical biases,
such as in CBCS and the bladder example. We checked for known
biological associations that are intrinsic to the sample, as in
eQTL analysis, to judge the performance of the normalization
process [45, 46]. A full cis-trans eQTL analysis using nSolver-
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Figure 5. Normalization differences in bladder cancer dataset. (A) RLE plot from bladder cancer dataset, ordered temporally from oldest to newest sample. (B) Boxplot

of first principal component of expression by tumor collection site (location) across nSolver- (left) and RUVSeq-normalized (right) data. (C) Boxplot of first principal

component of expression by tumor grade across nSolver- (left) and RUVSeq-normalized (right) data.

and RUVSeq-normalized data showed a strong cis-eQTL sig-
nal in data from both normalization methods. We found sig-
nificantly more trans-eQTLs with the nSolver-normalized data
(Figure 3). However, many of the trans-eSNPs for the loci found
with nSolver-normalized data tended to have moderate MAF
differences across phase, leading us to suspect they were spu-
rious associations driven by residual technical variation in gene
expression (see Supplementary Figure S8 available online at
https://academic.oup.com/bib). Such spurious associations from
population stratification have been described in many previous
studies of eQTL analysis [47–50].

The choice of normalization procedure is less of a concern
in cohorts with minimal sources of technical variation or in
nCounter targeted gene panels that have been optimized for
robust measurement across preservation methods. In the CBCS
breast cancer cohort, we identified significant differences in
gene expression between normalization methods across the
entire gene set (417 total genes). However, PAM50 subtyping
was robust across the two normalization procedures. The genes
in the PAM50 classifier were selected due to their consistent

measurement in both FFPE and fresh frozen breast tissues [31],
suggesting that robustly measured genes may be less affected by
different normalization procedures. Furthermore, we see min-
imal differences in residual technical variation in the kidney
cancer dataset and the Sabry et al. dataset, both of which were
measured on either robustly validated genes or nCounter panels.
The kidney cancer example had newer, fresh-frozen specimens
that were profiled using a small and well-validated set of genes
important in that cancer type. This dataset gives an opportunity
to stress the importance of the general principles of normal-
ization: as Gagnon-Bartsch et al. and Molania et al. recommend
[6, 7], normalization should be a part of scientific process and
should be approached iteratively with visual inspection and
biological validation to tune the process. One normalization
procedure is not necessarily applicable to all datasets and must
be re-evaluated on each dataset.

In conclusion, we outline a systematic and iterative frame-
work for the normalization of NanoString nCounter expres-
sion data. Even without background correction, a technique
which has been shown to impair normalization of microarray

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib
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Figure 6. Equal performance of normalization procedures in kidney cancer dataset. (A) RLE plot of per-sample deviations from the median for raw, nSolver- and

RUVSeq-normalized data. (B) Scatter plot of the first and second principal component of nSolver- (left) and RUVSeq-normalized (right) expression, colored by high and

low DV300. (C) Scatter plot of the first and second principal component of nSolver- (left) and RUVSeq-normalized (right) expression, colored by tumor stage.

expression data [51, 52], we believe that relying solely on positive
control and housekeeping gene-based normalization may result
in residual technical variation after normalization. Here, we
show the merits of a comprehensive procedure that includes
sample QC checks including the addition of new checks, assess-
ments of housekeeping genes, normalization with RUVSeq [6,
8] and data analysis with popular count-based R/Bioconductor
packages, as well as iterative data visualization and biological
validation to assess normalization. Researchers must pay close
attention to the normalization process and systematically assess
pipelines that best suit each dataset.

Availability

Relevant R code for these analyses is freely bundled into an
R package on Github: https://github.com/bhattacharya-a-bt/Na
noNormIter. R code to recreate the Sabry et al. analysis and
a tutorial for the iterative framework is also provided: https://
github.com/bhattacharya-a-bt/CBCS_normalization/ [53]. Sum-
mary statistics for eQTL analysis are available at https://githu
b.com/bhattacharya-a-bt/CBCS_TWAS_Paper [54], as a part of
Bhattacharya et al. [29].

CBCS genotype datasets analyzed in this study are not pub-
licly available as many CBCS patients are still being followed
and accordingly CBCS data are considered sensitive; the data
are available from M.A.T upon reasonable request. Raw and
normalized expression data from CBCS Raw and normalized
expression data from CBCS is available from the NCBI Gene
Expression Omnibus with accession number GSE148426. Data

from the bladder and kidney cancer datasets may be provided
by the authors upon reasonable request.

Accession Numbers

Raw RCC files for nCounter expression from Sabry et al. [20] are
available on NCBI GEO with the accession numbers GSE130286.
Raw and normalized expression data from CBCS will be available
on GEO upon publication. For replication prior to publication,
these data can be requested from the authors.

Key Points
• The NanoString nCounter RNA counting assay, an

attractive option in archived samples, has suboptimal
QC and normalization pipelines.

• We provide an iterative framework for nCounter data
with steps for QC, normalization and visualization/-
validation using RUVSeq.

• Using four real datasets, we show that our framework
eliminates technical variation more reliably than
other methods, including NanoString’s provided
software nSolver, without diminishing biological
variation.

• We stress that QC and normalization must be empha-
sized in study design and evaluated using proper
visualization and other checks, or else results in down-
stream analyses may be biased.

https://github.com/bhattacharya-a-bt/NanoNormIter
https://github.com/bhattacharya-a-bt/NanoNormIter
https://github.com/bhattacharya-a-bt/CBCS_normalization/
https://github.com/bhattacharya-a-bt/CBCS_normalization/
https://github.com/bhattacharya-a-bt/CBCS_TWAS_Paper
https://github.com/bhattacharya-a-bt/CBCS_TWAS_Paper
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Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.

Acknowledgement

We thank the CBCS participants and volunteers. We thank
Halei Benefield, Xiaohua Gao, Erin Kirk, Linnea Olsson and
Jessica Tse for their invaluable support during the research
process.

Funding

Susan G. Komen® provided financial support for CBCS study
infrastructure. Funding was provided by the National Insti-
tutes of Health, National Cancer Institute (P01-CA151135,
P50-CA05822, U01-CA179715 to M.A.T.). M.I.L. is supported
by P01-CA142538 and P30-ES010126. K.A.H. is supported by a
Komen Career Catalyst (CCR16376756). A.M.H. is supported
by 1T32GM12274 (National Institute of General Medical Sci-
ences). The TGL is supported in part by grants from the
National Cancer Institute (3P30CA016086) and the University
of North Carolina at Chapel Hill University Cancer Research
Fund. The kidney cancer study and gene expression analy-
sis were supported by the Intramural Research Program of
the National Institutes of Health and the National Cancer
Institute.

The funders had no role in the design of the study, col-
lection, analysis or interpretation of the data, the writing of
the manuscript or the decision to submit the manuscript for
publication.

References
1. Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed

measurement of gene expression with color-coded probe
pairs. Nat Biotechnol 2008;26:317–25.

2. Veldman-Jones MH, Brant R, Rooney C, et al. Evaluating
robustness and sensitivity of the NanoString technologies
nCounter platform to enable multiplexed gene expression
analysis of clinical samples. Cancer Res 2015;75:2587–93.

3. Troester MA, Sun X, Allott EH, et al. Racial differences in
PAM50 subtypes in the Carolina Breast Cancer Study. J Natl
Cancer Inst 2018;110:176–82.

4. Wallden B, Storhoff J, Nielsen T, et al. Development and
verification of the PAM50-based Prosigna breast cancer gene
signature assay. BMC Med Genomics 2015;8:54.

5. Vieira AF, Schmitt F. An update on breast cancer multigene
prognostic tests-emergent clinical biomarkers. Front Med
2018;5:248.

6. Gagnon-Bartsch JA, Speed TP. Using control genes to cor-
rect for unwanted variation in microarray data. Biostatistics
2012;13:539–52.

7. Molania R, Gagnon-Bartsch JA, Dobrovic A, et al. A new nor-
malization for Nanostring nCounter gene expression data.
Nucleic Acids Res 2019;47:6073–83.

8. Risso D, Ngai J, Speed TP, et al. Normalization of RNA-seq
data using factor analysis of control genes or samples. Nat
Biotechnol 2014;32:896–902.

9. NanoString Technologies. nSolverTM 4.0 Analysis Software.
2018;5–98.

10. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normal-
ization of real-time quantitative RT-PCR data by geometric
averaging of multiple internal control genes. Genome Biol
2002;3:1–12; research0034.1.

11. Perkins JR, Dawes JM, McMahon SB, et al. ReadqPCR and
NormqPCR: R packages for the reading, quality checking
and normalisation of RT-qPCR quantification cycle (Cq) data.
BMC Genomics 2012;13:296.

12. Waggott D, Chu K, Yin S, et al. Gene expression NanoString-
Norm: an extensible R package for the pre-processing of
NanoString mRNA and miRNA data. Bioinforma Appl Note
2012;28:1546–8.

13. Wang H, Horbinski C, Wu H, et al. NanoStringDiff: a novel sta-
tistical method for differential expression analysis based on
NanoString nCounter data. Nucleic Acids Res 2016;44:gkw677.

14. Jia G, Wang X, Li Q, et al. Rcrnorm: an integrated sys-
tem of random-coefficient hierarchical regression models
for normalizing nanostring ncounter data. Ann Appl Stat
2019;13:1617–47.

15. Canouil ML, Bouland GA, Lie Bonnefond A, et al. NACHO: an
R package for quality control of NanoString nCounter data.
Bioinformatics 2020;36:970–1.

16. D’Arcy M, Fleming J, Robinson WR, et al. Race-associated
biological differences among luminal A breast tumors. Breast
Cancer Res Treat 2015;152:437–48.

17. Hall IJ, Moorman PG, Millikan RC, et al. Comparative anal-
ysis of breast cancer risk factors among African-American
women and white women. Am J Epidemiol 2005;161:
40–51.

18. Brennan P, Van Der Hel O, Moore LE, et al. Tobacco smoking,
body mass index, hypertension, and kidney cancer risk in
central and eastern Europe. Br J Cancer 2008;99:1912–5.

19. Moore LE, Nickerson ML, Brennan P, et al. Von Hippel-Lindau
(VHL) inactivation in sporadic clear cell renal cancer: associ-
ations with germline VHL polymorphisms and etiologic risk
factors. PLoS Genet 2011;7:1–13.

20. Sabry M, Zubiak A, Hood SP, et al. Tumor- and cytokine-
primed human natural killer cells exhibit distinct
phenotypic and transcriptional signatures. PLoS One
2019;14:e0218674.

21. Nickles D, Sandmann T, Ziman R, et al. (2015) NanoS-
tringQCPro: Quality metrics and data processing methods
for NanoString mRNA gene expression data. R package
version 1.20.0.

22. Venables WN, Ripley BD. Modern Applied Statistics with S
Springer, 2002.

23. Bullard JH, Purdom E, Hansen KD, et al. Evaluation of sta-
tistical methods for normalization and differential expres-
sion in mRNA-Seq experiments. BMC Bioinformatics 2010;11:
94.

24. Anders S, Huber W. Differential expression analysis for
sequence count data. Genome Biol 2010;11:R106.

25. Love MI, Huber W, Anders S. Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol 2014;15:550.

26. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential
expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res 2015;43:e47–7.

27. Rousseeuw PJ. Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. J Comput Appl Math
1987;20:53–65.

28. Shabalin AA. Gene expression matrix eQTL: ultra fast
eQTL analysis via large matrix operations. Bioinformatics
2012;28:1353–8.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa163#supplementary-data
https://academic.oup.com/bib


An approach for normalization and quality control for NanoString RNA expression data 13

29. Bhattacharya A, García-Closas M, Olshan AF, et al. A
framework for transcriptome-wide association studies in
breast cancer in diverse study populations. Genome Biol
2020;57:21(1):42.

30. Benjamini Y, Hochberg Y. Controlling the false discovery
rate: a practical and powerful approach to multiple. Source
J R Stat Soc Ser B 1995;57:289–300.

31. Parker JS, Mullins M, Cheang MCU, et al. Supervised risk
predictor of breast cancer based on intrinsic subtypes. J Clin
Oncol 2009;27:1160–7.

32. Gendoo DM, Ratanasirigulchai N, Schröder MS, et al. (2020)
genefu: Computation of Gene Expression-Based Signatures in
Breast Cancer. R package version 2.20.0, http://www.pmgenomi
cs.ca/bhklab/software/genefu.

33. Székely GJ, Rizzo ML. The energy of data. Annu Rev Stat Its
Appl 2017;4:447–79.

34. Dai X, Xiang L, Li T, et al. Cancer hallmarks, biomarkers and
breast cancer molecular subtypes. J Cancer 2016;7:1281–94.

35. Elizabeth M, Hammond H, Hayes DF, et al. American Society
of Clinical Oncology/College of American Pathologists guide-
line recommendations for immunohistochemical testing of
estrogen and progesterone receptors in breast cancer. J Clin
Oncol 2010;28:2784–95.

36. Curtis C, Shah SP, Chin SF, et al. The genomic and tran-
scriptomic architecture of 2000 breast tumours reveals novel
subgroups. Nature 2012;486:346–52.

37. Perou CM, Sørile T, Eisen MB, et al. Molecular portraits of
human breast tumours. Nature 2000;406:747–52.

38. Sørlie T, Tibshirani R, Parker J, et al. Repeated observation of
breast tumor subtypes in independent gene expression data
sets. Proc Natl Acad Sci USA 2003;100:8418–23.

39. Hoadley KA, Yau C, Hinoue T, et al. Cell-of-origin patterns
dominate the molecular classification of 10,000 tumors from
33 types of cancer. Cell 2018;173:291–304 e6.

40. Picornell AC, Echavarria I, Alvarez E, et al. Breast can-
cer PAM50 signature: correlation and concordance between
RNA-Seq and digital multiplexed gene expression technolo-
gies in a triple negative breast cancer series. BMC Genomics
2019;20:452:1–11.

41. Mantel N. The detection of disease clustering and a general-
ized regression approach. Cancer Res 1967;27:209–20.

42. Breheny P, Stromberg A, Lambert J. P-value histograms:
inference and diagnostics. High-Throughput 2018;7:1–13.

43. Sikand K, Singh J, Ebron JS, et al. Housekeeping gene selec-
tion advisory: glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and β-actin are targets of miR-644a. PLoS One
2012;7:e47510.

44. Barber RD, Harmer DW, Coleman RA, et al. GAPDH as a
housekeeping gene: analysis of GAPDH mRNA expression in
a panel of 72 human tissues. Physiol Genomics 2005;21:389–95.

45. Raulerson CK, Ko A, Kidd JC, et al. Adipose Tissue
Gene Expression Associations Reveal Hundreds of Can-
didate Genes for Cardiometabolic Traits Am J Hum Genet
2019;7(4):773–87.

46. Aguet F, Brown AA, Castel SE, et al. Genetic effects on
gene expression across human tissues. Nature 2017;550:
204–13.

47. Lee C. Genome-wide expression quantitative trait loci anal-
ysis using mixed models. Front Genet 2018;9:1–9.

48. Jiang N, Wang M, Jia T, et al. A robust statistical method for
association-based eQTL analysis. PLoS One 2011;6:1–11.

49. Hyun MK, Ye C, Eskin E. Accurate discovery of expression
quantitative trait loci under confounding from spurious and
genuine regulatory hotspots. Genetics 2008;180:1909–25.

50. Mao W, Hausler R, Chikina M. DataRemix: A Universal Data
Transformation for Optimal Inference from Gene Expression
Datasets. bioRxiv 2019;1–8.

51. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normaliza-
tion, and summaries of high density oligonucleotide array
probe level data. Biostatistics 2003;4:249–64.

52. Freytag S, Gagnon-Bartsch J, Speed TP, et al. Systematic noise
degrades gene co-expression signals but can be corrected.
BMC Bioinformatics 2015;16:309:1–17.

53. Bhattacharya A (2020, April 9). bhattacharya-a-
bt/CBCS_normalization: Code and summary results for
“An approach for normalization and quality control for
NanoString RNA expression data” (Version v1.0). Zenodo.
http://doi.org/10.5281/zenodo.3746885

54. Bhattacharya A (2019) bhattacharya-a-
bt/CBCS_TWAS_Paper: Code, models, and results
for CBCS TWAS Paper (Version v1.0). Zenodo.
http://doi.org/10.5281/zenodo.3407384.

http://www.pmgenomics.ca/bhklab/software/genefu
http://www.pmgenomics.ca/bhklab/software/genefu
https://doi.org/http://doi.org/10.5281/zenodo.3746885
https://doi.org/http://doi.org/10.5281/zenodo.3407384

	An approach for normalization and quality control for NanoString RNA expression data
	Introduction
	Materials and methods
	Data collection
	CBCS gene expression data
	Bladder tumor gene expression data
	Kidney tumor gene expression data
	Sabry et al. gene expression data
	QC and normalization
	Technical QC flags
	Below LOD QC
	Housekeeping gene assessment
	nSolver normalization

	RUVSeq normalization pipeline
	Alternative normalization methods for benchmarking
	Downstream analyses
	Results
	Case study: CBCS
	Case study: differential expression analysis in natural killer cells
	Case study: bladder cancer gene expression
	Case study: kidney cancer gene expression

	Discussion
	Availability
	Accession Numbers
	Key Points

	Supplementary data
	Funding


