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Abstract

Publishing repeatable and reproducible computational models is a crucial aspect of the scientific method in computational
biology and one that is often forgotten in the rush to publish. The pressures of academic life and the lack of any reward
system at institutions, granting agencies and journals means that publishing reproducible science is often either
non-existent or, at best, presented in the form of an incomplete description. In the article, we will focus on repeatability and
reproducibility in the systems biology field where a great many published models cannot be reproduced and in many cases
even repeated. This review describes the current landscape of software tooling, model repositories, model standards and
best practices for publishing repeatable and reproducible kinetic models. The review also discusses possible future remedies
including working more closely with journals to help reviewers and editors ensure that published kinetic models are at
minimum, repeatable.
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Introduction
The use of simulation and theory in cellular and molecular
biology has a long, if uneven, tradition spanning almost
90 years [115]. In the past 2 decades, however, there has been
a significant increase in the use of mathematical approaches to
help understand and predict cellular behavior. The total number
of published biochemical models is not known, but we suspect
it is on the order of 5 000, perhaps more. Unfortunately, the
vast majority of these models are either not accessible or are
very difficult to obtain. When publishing an experimental paper,
there is often an extensive methods section that gives a detailed
account of the methodology used to conduct the experiments
to ensure that the reported results can be reproduced by a third
party. Unfortunately, method sections for computational studies
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that explain how a model was built, simulated and analyzed
are often absent or incomplete. In recent years, there have
been substantial efforts to change this culture through the
development of model exchange formats and, most importantly,
model repositories. In this article, we will describe the current
state of reproducibility in computational models with a focus
on cellular pathway kinetic models. The article will not cover
constraint-based metabolic modeling to any significant degree,
as this topic is reviewed elsewhere [35, 44].

Recent efforts have been perusing the need that data should
be more accessible. The acronym, FAIR (findable, accessible,
interoperable and re-usable), is a rallying cry for a European
initiative, (https://fair-dom.org/), to improve data management
in the life sciences with a particular emphasis on accessibility
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and reuse of scientific data [109]. The National Institutes of
Health (NIH) in the USA has also recently voiced approval of FAIR
and its use in NIH funded efforts (https://datascience.nih.gov/da
ta-ecosystem).

Repeatability and reproducibility

Perhaps one of the most important elements of science is the
requirement that observations should be independently repro-
ducible. That is, another researcher, unconnected with the origi-
nal study, should be able to carry out the same experiments and
obtain the same results within some statistical tolerance. Con-
fidence in the likely truth of a hypothesis is determined by the
number of observations carried out by independent researchers
that are consistent with the hypothesis. Science may not be
able to reach the exact truth, but it can approach the truth
through repeated observations and refinement of the hypoth-
esis. In experimental science, this methodology has been in
use intermittently for at least 2000 years (Philon of Byzantium,
Pneumatica, 2nd century, BC) but has been implemented sys-
tematically in the last 1000 years starting with work by Ibn al-
Haytham on optics in 1021 and, most famously, by Galileo Galilei
on motion around 1590.

Science, since its beginnings, has also relied on quantitative
measurement to buttress its conclusions. In more recent times,
especially with the advent of electronic computers, quantitative
measurement has taken on a much more significant role.
Numerical calculations that support a hypothesis can now
be very complex. Just as in experimental science where
assumptions must be explicitly stated and procedures carefully
described, the same care and attention should be applied to
computational experiments; otherwise, it is not possible to
reproduce the reported results. Two independent studies by
the BioModels group at European Bioinformatics Institute (EBI)
(https://www.ebi.ac.uk/biomodels-main/) and the Physiome
Repository curators (https://models.physiomeproject.org/welco
me) in Auckland, where over 1200 models were tested, concluded
(personal communication) that 97% to 100% of all the tested
computational models in systems biology and physiology were
not reproducible.

Before proceeding, we should define what we mean by repro-
ducibility (Figure 1). There is a surprising amount of disagree-
ment in the scientific literature on the meaning of specific terms
such a reproducible, repeatable and replicable [10, 90]. Here we
will take a simpler approach and define two terms ‘repeatability’
and ‘reproducibility’ [34]. These terms have been used by the
experimental biological communities [17], and their definitions
closely match those used by the Association for Computing
Machinery [6].

Repeatability

Repeatability is the ability of a researcher, using the same data
and computational hardware and software, to repeat a study.
That is, a third party researcher should have access to exactly the
same source code and data that was used in the original study.
In principle, the same operating system (Linux or Windows) and
computer hardware (Intel or ARM-based computers) should also
be used. Often the underlying hardware and operating system
are relatively benign, but this is not always the case, as demon-
strated by a recent and well-publicized instance in which the
underlying operating system had a marked effect on calculating
Nuclear Magnetic Resonance chemical shifts [16].

Figure 1. Repeatability and reproducibility. In this text, we classify repeatability

as when the author of computational experiment provides all the necessary code

to execute the computation. This can even take the form of a Docker image, for

example. By reproducibility, we refer to the case when a third party recreates de

novo some or all of the analysis described by a researcher.

Repeatability is the most basic test on the reliability of a
computational experiment. In principle, it should be very easy
for a researcher to pass their source code and data to a third
party to repeat the calculations. However, it is surprising that
even this simple and most basic requirement is often not met
in published articles. One of the authors reviewed six papers in
2019 that included computational models and not a single model
could be repeated as published. An interesting example of this
problem can be found in the supercooled water community [7].

Reproducibility

Repeating a computation is not a strong statement about our
confidence in or quality of the model but should be the mini-
mum requirement when publishing a computational paper. The
weakness in repeating a computational experiment is that one
is also repeating any errors in the source code, input data or
assumptions made by the original authors. To reproduce a com-
putational experiment means that a researcher reconstitutes de
novo one or more aspects of the study; the more aspects that
are reconstituted, the better. At one extreme, a third party may
re-implement from scratch the entire software workflow used
by the study, using a completely different computer language,
with the model and its assumptions revisited. They may also
collect their own data or use alternative but, in principle, equiv-
alent algorithms. It should be evident that there can be many
degrees of reproducibility, perhaps only part of the software is
rewritten, the same exact algorithms are used, etc. Reproducing
a computational experiment and obtaining the same result is a
much stronger statement than simply repeating an experiment.
This is especially the case when the computational workflow
is complex and relies on statistical analysis that include Monte
Carlo sampling, where sample sizes, repeated runs and even the
random number generator can influence the final results. For
example, in kinetic modeling, it is now common to use Monte
Carlo sampling of parameter values to generate ensembles of
models [61, 108]. Reproducing such computational experiments
is not always easy and depends heavily on the details provided
by the original authors, such as the size of the ensemble or the
assumed distribution for the sampled parameters.

What measures can be taken to improve the publication
of repeatable and reproducible models, and why are so many
models not reproducible? This is not a problem confined to the
systems biology community but is endemic throughout science
[9, 58].

https://datascience.nih.gov/data-ecosystem
https://datascience.nih.gov/data-ecosystem
https://www.ebi.ac.uk/biomodels-main/
https://models.physiomeproject.org/welcome
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Table 1. Simple definitions of terms versioning, validation and verification

Versioning When a document, software, model, etc., goes through a number of drafts, such drafts are called versions, and the act
of storing and keeping track of the versions together with a record of changes between drafts is called versioning.

Verification In terms of a simulation model, verification is the process by which we determine that the model and numerical
methods have been implemented correctly. For example, one might check that the differential equation solver has
been implemented correctly or that the model equations were entered precisely. Verification does not check whether
the scientific assumptions used to build the model are correct or whether predictions made by the simulation match
experimental data.

Validation Validation of a simulation model is where we check that the predictions made by the model match data gathered
from the real system.

The reasons for failure to reproduce or even repeat a study are
surprisingly mundane. They include missing values for parame-
ters or initial conditions, errors in the model equations or units
and errors in describing parameters (an author may refer to a
radius when they intended to specify a diameter, for example).
For repeatability, problems arise due to a failure to provide all the
source code or even any of the source code. Other issues include
the original simulation environment is unavailable, or the wrong
model may be supplied with the paper.

This state of affairs most likely arises because the reward
system for publishing reproducible or even repeatable compu-
tational experiments is absent. A recent report on reproducibil-
ity by the National Academy of Sciences [79] refers to these
pressures as ‘misaligned incentives’.

Given the many pressures on researchers and the way
research is rewarded, work that does not contribute to future
grant success or job promotion tends to receive less attention.
Of course, some non-reproducible or repeatable studies can still
have value [40]. However, there are more serious issues with the
question of reproducibility. For one, there is a huge and therefore
costly effort by thousands of researchers to get models working
again in order to build on previous work. As models become
more complex and begin to be used in medical or industrial
domains, the quality of a model starts to become much more
important. For example, if a model were to be used in a clinic
to direct drug intervention, it is likely that extensive testing and
validation would be demanded by government authorities to
ensure that the predictions provided by the model can be safely
used to treat patients. If models are more easily reproduced and
especially if they use reproducibility standards to be described
below, models will be more easily reused in other projects, more
understandable if annotated and, most importantly, a testing,
verification and validation frameworks could be used to ensure
the model performs as expected (Figure 2). The terms versioning,
verification and validation are often used in the literature but
are rarely defined in simple terms. We have therefore provided
simple definitions of these terms in Table 1.

In the following sections, we will describe efforts to make
modeling more systematic and reproducible. We consider
two key aspects: (i) standards to ensure consistency and
transparency and (ii) a cultural shift in the way we report
dynamic kinetic models of biochemical pathways.

Describing models
Published kinetic models are distributed in a variety of ways.
These range from a description of the model in the appendix or
supplement, simple text files, Excel spreadsheets, Matlab scripts,
etc. Sometimes models are stored on the authors’ web site or
hidden behind a password-protected site. In these cases, the

Figure 2. Importance of reproducible models. Reproducibility is important not

only because it strengthens confidence in a particular result, but also it offers

avenues to increase the understandability of a model, the reuse of a model and a

host of additional opportunities that include automated testing, validation and

verification of models.

model will often disappear at a later date when the web site is
updated or disbanded.

These formats are not interchangeable and are often not
documented well. The reuse of such models can be very difficult,
if not impossible, at times. The use of Matlab or other scripts
to distribute kinetic models is particularly problematic because
all the network information is lost or, at least, very difficult to
recover. Another issue with ad hoc distribution methods is the
lack of consistency in naming biochemical species or reactions
in a model. This can make it very difficult to identify the com-
ponents in the model. The solution to all these problems is
to devise a standard format that is accepted by the modeling
community.
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The systems biology markup language

Over the past 2 decades, a variety of standards have been devel-
oped to assist with the exchange and formal representation of
kinetic models. The most well known of these is the systems
biology markup language (SBML) [56].

SBML was originally developed to meet an immediate need to
allow researchers to exchange models between different model-
ing tools, in particular Gepasi [77], SCAMP [97] and Jarnac [95].
SBML represents models as a list of chemical transformations
and employs specific elements to represent spatial compart-
ments, molecular species, chemical transformations and param-
eters. In addition to these, SBML provides rules that can be
used to represent constraints, derived values and general math,
which, for one reason or another, cannot be transformed into
a chemical scheme. SBML is an eXtensible Markup Language
based format and, therefore, not very human readable. Instead,
users typically use one of a number of SBML editors and viewers
to interpret the model [2, 28, 66]. A readable form of SBML is
the Antimony script language [103], which allows modelers to
express models in an easily recognized reaction scheme format
using a simple text editor. It supports the bulk of the SBML
specification, including the ability to easily annotate models.
Modeling tools such as Tellurium [25, 75] fully support the use
of Antimony.

SBML is widely used by the pathway modeling community;
most journals recommend that authors supply their models
in SBML format. Given its structure, SBML is very well suited
for representing pathway models and combined with Antimony,
provides a very easy-to-use mechanism for building such models
[91].

As the SBML community grew, there was a need to support
additional information for particular modeling efforts. This was
achieved by allowing SBML to be extended using packages [57].
For example, there is an extension specifically tailored towards
metabolic constraint models (flux balance analysis) [35, 86]. Until
the development of FBC, constraint-based models were often
stored in Excel spreadsheets using notation that varied from
one model to the next. This hindered the reproducibility of
constraint-based models [35].

Other useful packages for the modeling community include
the network layout and render package [15, 41], which allows a
biological pathway model encoded in SBML to be visualized in a
reproducible way. Hoksza et al. [54] offer a comprehensive review
of this particular topic.

Annotation

Annotation of a model refers to adding metadata to a model
description that will unambiguously identify components of a
model. For example, a user might use the symbol ‘X’ to represent
adenosine triphosphate in a model. Once published, it may be
difficult to identify what molecule ‘X’ actually represented. Infor-
mation that is included to indicate the identity of components
or processes is called semantic annotation. Thus, alongside ‘X’
there would be a reference to an unambiguous term representing
ATP. Such information [42] can be useful [106] for a number
of reasons that include re-purposing models, deconstructing
models in their identifiable component parts, composing larger
models from smaller models and giving improved meaning to
the parts of the model to indicate how the model was built, why,
by whom and what assumptions and data sources were used in
its construction. Finally, once models are annotated, they can be
much more easily searched.

Annotations can be encoded in a variety of ways, but a
common approach is to use Resource Description Framework
(RDF). Online resources exist, such as the BioGateway [4] or
BioPortal [93] that can be used to query information and resolve
references. The use of model annotation is still in its infancy,
but there is growing interest in using such resources, especially
when constructing large models or libraries of submodels [29].
For genome-scale models, this is a particularly important prob-
lem given the many thousands of components in such models.
Without a way to identify such components, comparing and
curating such models becomes very difficult. Later we will dis-
cuss the COMBINE archive, which has specific support for RDF
metadata storage.

Annotations can be added to SBML using a variety of tools.
These include Antimony [103], which is distributed with Tel-
lurium [25, 75], the graphical user interface (GUI) tool SemGen
[80], a web-based annotation tool such as semanticsbml [72] and
modeling tools such as COPASI [55] and JWS Online [85, 88].
Models could also be described using a simple pseudo-code, such
an example can be found in simpleSBML [20] or SBML-shorthand
[45]. For describing execution algorithms, a simplified version of
Python could be used.

Modeling experiments
SBML is very useful for describing biochemical reaction models,
with species, compartments, reactions and rate laws. However,
it cannot be used to describe what computational experiments
should be performed on the model. For reproducibility, this is of
critical importance. For example, a paper may contain six figures
describing different simulations or analyses performed on a
single model. Even if the model itself is available, reproducing
the published results can be difficult. As a result, there has been
an effort to create standard ways in which computational exper-
iments can be described. We will describe two such approaches,
workflows and the simulation experiment description markup
language (SED-ML) [14].

Workflows have become a popular means by which to
describe a computational process and are widely used in
bioinformatics studies [8, 68].

Workflow systems are suitable when computations are done
using distributed resources, data sets and devices. This can
occur in large scientific experiments such as those found in
high-energy physics or genomic studies. Workflows are useful
when tasks must be repeated often, tasks requiring distributed
processing, possibly via remote resources and access to data
distributed across the network. Often a workflow will call a
variety of third-party software applications to accomplish the
various stages of the computational experiment. There exist
specialist tools such as Taverna [111], Galaxy [48] and Pegasus
[30] that deal exclusively with managing workflows.

In the simplest case, a workflow can be expressed in a script-
ing language such as Python or MATLAB where all processing is
done in-house and the scripts do not call external third-party
applications. At the next level, scripts can call external third-
party applications to accomplish some or all of its tasks. Finally, a
researcher can use a dedicated workflow engine such as Galaxy.
We thus see a range of approaches to implementing workflows,
each with its advantages and disadvantages. One disadvantage
is that workflow languages tend to be more coarse-grained
in their descriptions of computational experiments. Thus, the
detailed description of how to do a complex simulation study
is not always possible. Such detail is often relegated to external
applications using other description languages.
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A particular concern is whether workflows can be repro-
duced long after the workflow was released. For example, myEx-
periment [47] is a hosting site for a large number of workflows.
However, a casual inspection shows that a number of workflows
hosted there can no longer be executed, either because the par-
ticular workflow engine is no longer supported, or the resources
the workflow were dependent on are no longer available. This
is a known issue called ‘workflow decay’ [52, 92], where, over
time, the environment within which the workflow was designed
to execute has changed, making it difficult or impossible to
reproduce the original workflow. Such changes include revisions
to the data sources, changes to the software applications the
workflow uses, changes to the underlying operating system or
changes to the workflow engine itself. All these can render
a workflow unable to reproduce the original results. In some
respects, workflow systems are less reliable than if authors
simply distributed MATLAB or Python scripts. There are mech-
anisms to prevent workflow decay. For example, the user can
containerize the entire workflow system together with data
and any third-party tools using tools such as Docker [23]. We
recommend distributing containerized workflows and providing
good documentation to guide users through installation and
usage.

An alternative to using a workflow is to use a dedicated
domain language such as SED-ML. SED-ML [107] uses a declar-
ative language expressed using XML. However, computational
experiments are generally procedural in nature, and as a result,
it can difficult for SED-ML to express the full richness of
many simulation experiments. SED-ML supports the following
operations: time course simulation, steady-state computation,
iteration, numerical algorithm specification, a limited set of
post-processing operations and outputs to specify how the
results of a simulation should be presented. Because SED-ML
has only limited capabilities and the generation of SED-ML is
non-trivial for novices, the proposal has not achieved as much
traction as it could have. There have been efforts to make it
easier to use, for example, Bergmann [12] proposed a simple
Python syntax for generating SED-ML scripts, a human-readable
form of SED-ML was developed by Smith and Choi et al., called
phraSED-ML [26] and a GUI tool by Adams for generating SED-
ML workflows [1] is available. There have also been alternative
proposals such as simulation experiment specification via a
Scala layer [39].

Workflow systems and domain-specific languages such as
SBML and SED-ML can be combined for the best of both worlds.
Docker images can be built for a modeling workflow, such that
the operating system and all software libraries, applications and
other dependencies are prepared for distribution. To build the
Docker image, a Dockerfile must be prepared that specifies any
parent image it is derived from, sets a working directory, installs
dependencies, copies relevant files into the image and runs a
modeling application or workflow from executable programs.
In the case of biochemical modeling workflows, relevant files
would include all data used by the model, model descriptions
(e.g. SBML file) and all simulation experiments (e.g. SED-ML files)
described in published work. The simulator used to run the
simulation experiments would be packaged as a software depen-
dency (e.g. by including the command: pip install tellurium). An
example Dockerfile is shown in Figure 3. Then, the command
line in the Dockerfile will specify the programming language
to use (e.g. Python) to run the given executable (e.g. a Python
script that loads the SBML and SED-ML files, calls the simulator
and generates simulation results). After the build is complete,
all software associated with the workflow is fully contained

within the image and is robust to changes or versioning of
the dependencies. This Docker image can be pushed to Docker
Hub for distribution, which then enables interested users to
execute a single command line pull request for installation. This
provides a simple installation method for end users, complete
with the ability to request specific versions of the image. Once
installed, running a Docker container from the image can be
readily performed from the command line.

To see a containerized modeling workflow that incorpo-
rates standardized modeling formats, we encourage readers to
explore the executable simulation model (EXSIMO) [67]. This is
an exemplary study that describes how to create a reproducible
model of the liver and it can serve as a practical guide for
implementing Docker containers to distribute the model and its
simulation studies. The EXSIMO platform has implemented an
executable simulation model of the liver using the SBML model
description format, and simulation experiments are described to
be compatible with SED-ML.

Alternatively, Docker can be used to distribute simulations
or applications enabling the model and its simulation studies
to be manipulated and executed, through a web browser using
a Linux-based Docker image. In this case, the Docker image
used to render the application, including the model, simulations
and graphical output of the results, is typically hidden from
the end user. While the developer will need to have expertise
in generating the web application, this method ensures that
end users may readily interact with a familiar GUI from the
browser rather than execute commands from the command
line. This approach is accessible to modelers with a range of
computational backgrounds and expertise, widening the pool of
potential end users who wish to repeat published simulations.

Instead of promoting workflow systems, the systems biology
modeling community has focused on specifying standards and
developing tools to support them, knowing that user tools have
a short shelf life. This means that even though one tool might
cease to be maintained and even operate correctly, other tools
will emerge to replace it. So long as tools adhere to the agreed
upon community standards, users are not dependent on any
one tool, meaning reproducibility is more likely to be assured
over the long term. The downside to this approach is that it
requires considerable engagement with the community in order
for standards to gain acceptance.

For small-scale reproducible experiments, particularly the
kind found on BioModels and other model repositories, it might
be more robust and convenient to write computational exper-
iments in an open scripting language such as Python or to
encode the experiment using platform-independent standards
such as SED-ML. Another recommendation is to transcribe all
the equations, parameters values, etc. into an appendix of the
paper. One has to be very careful to ensure that the transcribed
model is properly curated before publication. For large models,
it is very easy to introduce errors at this stage. One option is to
create an automated system that converts the machine readable
model into a more readable format so that there is no instance
where a human could introduce errors. Tellurium, for example,
provides a means to convert SBML into a set of human readable
equations.

Packaging modeling studies
Given that a single model may encompass many different kinds
of data and specifications, such as SBML for the model, SED-ML
for the simulation description, data for input to the model, etc.,
an archival format was proposed called the COMBINE archive (or
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Figure 3. Example of generating a Dockerfile to distribute containerized models and simulation experiments composed of standardized formats (SBML and SED-ML).

OMEX file format) that would package all the necessary compo-
nent files into one comprehensive file [13]. Much like a modern
Microsoft Office Word file, a COMBINE archive is a zip archive
that contains an XML-based manifest file. A ZIP file allows files
to be stored hierarchically using folders, but in a compressed
format, thus making it easy to transport. In addition to the
modeling files, a COMBINE archive also contains an XML-based
manifest file and an optional metadata file in RDF format [81].
The manifest can be used by software to determine the contents
of the archive, and the metadata file can be used to identify
unambiguously components found in the various modeling files.
For example, a species named ‘X’ in an SBML model may be
identified as glucose by the metadata file. A growing number
of tools support the COMBINE archive, and in the future, model
repositories are likely to allow users to download a complete
description of a modeling study in the form of a single COMBINE
archive.

Finally, the EXSIMO study mentioned previously demon-
strates efficient packaging of a complete modeling exercise [67].
The approach packages the data, model and code necessary
to repeat the studies (https://github.com/matthiaskoenig/exsi
mo). The workflow uses python to orchestrate all analyses
using the EXSIMO python package. The model and associated
data and simulation workflow can be stored on a GitHub
repository. This allows model variants and simulations to be
generated using GitHub’s version control system. The approach

at present requires some technical expertise but illustrates how
a packaging systems might be implemented going forward. The
example provided also illustrates how one might incorporate a
set of tests into the workflow, akin to unit testing in software.

Software tooling
The systems biology has developed a rich suite of tooling to help
with simulation, annotation and packaging. In this section, we
will focus on software libraries that can be used to develop other
software or which can be used from scripting languages such as
Python.

Libsbml [18] is a software library provided by the SBML team
that can be used to read and write SBML. The library is based
around a C/C++ core, with wrappers provided for many pro-
gramming languages. Furthermore, the library is available for
Windows and POSIX operating systems and thus can be used
virtually anywhere. With an abundance of documentation and
available examples, software developers can readily use libs-
bml for their SBML support. By using libsbml, a developer can
focus on how to interpret computational models rather than
concern themselves with the mechanics of reading and writing
models. Libsbml is a very well-developed library that sets a
high standard for the development of other software libraries
in the systems biology community. For web-based applications,
a Javascript/Web Assembly version of libsbml is also available

https://github.com/matthiaskoenig/exsimo
https://github.com/matthiaskoenig/exsimo
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[76]; a demonstration application that uses the web version
of libsbml can be found at: https://libsbmljsdemo.github.io. For
Java developers, a Java version of libsbml, called JSBML, is also
available [33].

Along with libsbml, there are also additional libraries such
as libsedml, libcombine and libantimony that can be used to
read and write SED-ML files (https://github.com/fbergmann/li
bSEDML, see below), combine archives ([13], see below) and
Antimony scripts ([103], see above).

LibRoadrunner [104] is a library that provides simulation
support for SBML models. It offers both C++, C and Python
application programming interfaces. It uses just-in-time com-
pilation to achieve very fast simulation times. It is an order of
magnitude faster and any other simulation package that uses
SBML [74] and is equivalent in speed to a model encoded in
raw C. For this reason, libRoadRunner is an ideal simulation
library for doing high performance distributed parameter fitting
where runtimes can be significantly reduced as a result [19, 78].
LibRoadrunner also links to other tools such as AUTO2000 [87] to
provide bifurcation analysis of SBML models. For Java developers,
the systems biology simulation core library is available [64] and
can be used to build Java-based applications compatible with
SBML.

Modeling software
Simulating a kinetic model involves integrating the equations
whichthat describe the model to generate predictions of the
dynamic behavior that the system will achieve under a given
parameter regime and initial conditions. As models incorporate
more equations, species and parameters, the computational
costs associated with simulation increase. As a result, we focus
on simulators that can perform rapid computation and pro-
vide additional analyses such as metabolic control analysis [63,
98] other than simple solutions to differential equations. More
extensive reviews of software used in systems biology modeling
can be found in [49, 96].

One area of software provision that we do not cover, but
which is likely to have a major impact in the future, is static
and dynamic testing of models. Probably the most well known
of these is Memote [73]. Memote does static tests of an SBML
model with a focus on genome-scale constraint-based models.
However, one could imagine dynamic tests of models to verify
that the software and check that the model is not violating
physical laws. Metamorphic testing [101] is a method of testing
that has found some application in bioinformatics [24] and could
be used in systems biology modeling.

Tellurium

Tellurium [25] is a programming environment that provides
a range of utilities to support kinetic modeling by combining
languages for human-readable and human-writeable modeling
(Antimony [103]) and simulation experiment descriptions
(PhraSED-ML [27]) with a powerful underlying simulator
(libRoadRunner [104]), while retaining flexibility by integrating
any Python libraries desired for numerical or systems analysis.
LibRoadRunner provides a simulator for SBML and is the
highest performing SBML simulator by a wide margin [75] due
to the use of a custom just-in-time compiler for SBML [104].
Performance also scales well for large models compared to
alternative SBML simulators, as demonstrated in Maggioli et

al. [75]. LibRoadRunner can handle deterministic and Gillespie-
based stochastic time course simulations of kinetic models and
supports steady-state analysis, stability and structural analysis
of the stoichiometry matrix and metabolic control analysis [104].
The deterministic integrators are based on the CVODE integrator
from the Sundials suite [53] and the fourth-order Runge–Kutta
method, while the steady-state solver implements the NLEQ
[83] Newton-based method. Tellurium supports SBML, SED-
ML and COMBINE archives, improving exchangeability across
simulation platforms [25]. Tellurium notebooks via Jupyter can
also be used to support model reproducibility and reuse by
providing an integrated environment in which SBML models,
Python code and text-based descriptions of the model, code and
simulation experiments can be displayed together for ease of
comprehension and use [75].

Complex pathway simulator

The complex pathway simulator (COPASI) was developed to
provide a complete suite of tools for simulation and analysis of
biochemical reaction networks [55]. COPASI can be used as a GUI
or through a command-line version if only numerical calcula-
tions are necessary [55]. The GUI version provides utilities for
model editing and plotting simulation and analysis results [55].
The COPASI simulator supports numerical operations, including
deterministic and stochastic numerical integration, steady-state
calculation, stoichiometric and metabolic control analyses and
computation of Lyapunov exponents. The LSODA integrator [89]
is used for deterministic simulations, while the Gibson–Bruck
Gillespie method [43], Gillespie’s direct method [46], tau-Leap
or adaptive SSA/tau-leap [21] is used for stochastic simulations
[55]. A hybrid method is also available [55]. For steady-state
computations, a damped Newton method with forward or back-
ward integration is performed using LSODA [55]. While Tellurium
interfaces with Python to provide flexibility for iterative pro-
grammatic tasks, the COPASI GUI also provides support for itera-
tive tasks like parameter scanning and estimation and optimiza-
tion [55]. COPASI also provides SBML support and import-export
capabilities [55].

JWS online

JWS online and its simulation database were created to link
simulation studies, specifically those described in SED-ML files
or the COMBINE archive, with their associated results, models,
model metadata and provenance information while enabling
simulation experiments to be performed directly on the platform
[85, 88]. Figures can be reproduced in a single click by import-
ing the SED-ML file, which contains the simulation experiment
to be run, the model that should be used in the simulation
and plotting specifications [88]. Numerical integration for the
simulation is performed using a Mathematica backend after
the relevant experiment has been specified with a JavaScript
Object Notation document [88]. Simulation experiments can be
changed, analyzed and stored in the user workspace.

Model repositories
There are a number of model repositories now available to the
biological modeling community. We will focus here on those
repositories that are of specific interest to kinetic modeling. The
reader is referred to the review by Dräger and Palsson [32] for
additional information.

https://libsbmljsdemo.github.io
https://github.com/fbergmann/libSEDML
https://github.com/fbergmann/libSEDML
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BioModels

With the development of SBML, it immediately became apparent
that it would be possible to develop model repositories. The most
well known of these is the BioModels database located [70] at the
EBI near Cambridge, UK. BioModels is a service that aims to pro-
vide a central location where published models can be searched
and downloaded. Of particular importance is that BioModels
also employs a curation team so that users of the database can
be sure that curated models work as described in the original
publication. They also make sure that models are consistent
with respect to MIRIAM guidelines [62]. Users can upload new
models in SBML format, but the site offers users the ability to
convert SBML into other formats such as MATLAB or XPP [38].
At the time of writing (2019), BioModels contains 653 curated
models and 1023 uncurated models. Models include metabolic,
signaling, gene and neurophysiological models. More recently,
BioModels began storing whole-genome models. The NIH Center
for Reproducible Biomedical Modeling has also started a service
to curate models and is working closely with the BioModels team
to harmonize curation standards. For dynamic kinetic models,
BioModels is the primary resource, as well as additional models
stored at JWS online.

BiGG

The BiGG database [65, 82] is a more recent repository that
is geared towards storing structured genome-scale metabolic
network reconstructions [99]. Whole genome-scale models are
static biochemical network models that attempt to include every
known reaction of an organism. Models are manually curated
as with the BioModels database to ensure that the models are
of high quality. An example of a heavily curated model is the
yeast GEM, a model for Saccharomyces cerevisiae that has been
under continuous development [94]. Models can be downloaded
in standard SBML and used with constraint-based modeling
tools such as COBRA [50, 59] or COBRApy [11, 36].

SEED

The SEED repository [31, 51] is managed by the US Department
of Energy (DOE) as a database of genome-scale models relevant
to the DOE mission. SEED is also part of the DOE Systems Biology
Knowledgebase initiative [5]. The scope of the database is there-
fore much smaller. Recently, support has also come from the
National Science Foundation to support the inclusion of plant-
based genome-scale models [100]. As with the other repositories,
SEED allows users to download their models in standard SBML.
Note that SEED and BiGG only store constraint-based static
models. For dynamic models of metabolism, users should use
BioModels.

Although both BiGG and SEED only offer static models, such
models are a necessary starting point for building dynamic
models.

SABIO-RK

SABIO-RK [110] is a web-based database of kinetic rate laws.
The kinetic laws held on the database have been extracted from
the literature, which is a time-consuming manual process. The
database is reaction orientated, and for each reaction entry,
the database stores the rate equation, parameter values and
environmental conditions under which the kinetics were mea-
sured. The database can also be accessed by a programmatic
REpresentational State Transfer interface.

Data repositories

There are a range of more generic repositories that are not
specific to systems biology but will cater to a wide variety of data
types and disciplines although some are more widely used by
specific communities than others.

SEEK

SEEK provides an integrated platform that supports storage of
large and small data sets and mathematical model descriptions
and preserves links between data and models that can explicitly
identify and separate data used for model construction or model
validation using an ‘Investigation, Study, Assay’ hierarchy [112,
113]. The SEEK platform also provides infrastructure to facilitate
annotation of data and models using the appropriate mini-
mum information standards and domain-specific ontological
terms. Most data deposited on a SEEK platform is stored in
Excel spreadsheets, which may already be used for data storage,
and metadata can be extracted from these spreadsheets and
stored in RDF to support searching data sets for key terms that
describe the data. Additionally, the SEEK platform has templates
for data and model uploads that provide functions to select the
appropriate ontology term to describe the data or minimum
information model, which are built on RightField [114], to embed
lists of relevant terms into the spreadsheet for selection. The JWS
simulator [88] is associated with the SEEK suite of tools, which
enables online simulation of models, also supports annotation
following the MIRIAM guidelines through the semantic SBML
web services [69]. Additionally, annotated models can be readily
viewed in the Systems Biology Graphical Notation [71] on JWS
online [85].

Figshare

Figshare provides generic storage support for linking data
sets to figures, graphics and pre-prints associated with
research projects. Resources uploaded to Figshare may later
be published in journal articles or might never be included
in manuscripts submitted for publication [102]. Uploading all
figures, especially those that do not support the narrative of
published manuscripts ensures transparency and can prevent
unnecessary investigations into dead-end research. Figshare
provides a persistent identifier that supports long-term access
to the uploaded resource [102]. Author names, categories and
tags will be associated with the uploaded content and will
allow other users to search for resource using relevant terms
[102]. Academic uptake of Figshare for sharing and viewing
data suggests that it is an effective generic platform for storing
research content [105]. Recently, Figshare partnered with the
NIH (see https://nih.figshare.com/) to provide data storage to
NIH-partnered scientists working on research that is outside the
scope of traditional repositories [60].

STRIDES

STRIDES (https://datascience.nih.gov/strides) is a new NIH ini-
tiative that allows NIH grant holders to access cloud space
to store data and other artifacts. The initiative is very new
and some questions remain, for example, what happens to any
stored data once grant funding stops? STRIDES aims to follow
the FAIR doctrine.

Zenodo

Zenodo is supported by CERN and was originally used by the
high-energy physics community but has since become much

https://nih.figshare.com/
https://datascience.nih.gov/strides


Publishing reproducible dynamic kinetic models 9

more broadly used by the scientific community. Researchers can
deposit all manner of information, including data sets, software,
report, etc. The site is well designed and is easy to search. In
recent years, Zenodo has become a popular location for deposit-
ing documents and software related to the systems biology mod-
eling community. One of its advantages is that all deposits are
assigned a digital object identifier (DOI) that allows researchers
to cite their work.

Dryad

Dryad is similar to Zenodo and, in fact, since 2019 has a partner-
ship with Zenodo to work together. As with Zenodo, Dryad can
store a wide variety of informational types and can issue DOIs
for all deposits. Both Dryad and Zenodo offer a level of curation
to prevent misuse of the repositories.

In summary, resources such as Dryad, Zenodo or FigShare
offer researchers persistent locations on the internet where data
and other information can be stored and linked to a published
paper. There is no reason today that researchers need to store
any research information on personal web sites that tend to
have limited life spans. In this section, we have not mentioned
GitHub and related sites as a possible place to keep research
data. Generally speaking, sites such as GitHub are source code
repositories and although they are used to store other data, it is
not recommended. In addition, persistence is not guaranteed. If
user accounts are closed, all the data is lost. We therefore do not
recommend using sites such as GitHub to store models or data.

Conclusion
Providing the kinds of standards, resources and software
described in the previous sections can go a long way to address
the problems we face in repeatability and reproducibility of
kinetic modeling experiments. A second and more difficult issue
to address is a cultural one. As mentioned at the beginning of this
article, there is no incentive to publish repeatable or reproducible
models. Given the considerable pressures that are placed on
researchers today, some aspects of our professionalism will
inevitably be constrained by other priorities. Neither grant-
awarding bodies, universities nor other research institutes give
any credit to publishing reproducible science. A recent report
on reproducibility by the National Academy of Sciences [79]
refers to these pressures as ‘misaligned incentives’. To quote
from the report: ‘Academic incentives—such as tenure, grant
money and status—may influence scientists to compromise on
good research practices. Faculty hiring, promotion and tenure
decisions are often based in large part on the “productivity”
of a researcher, such as the number of publications, number
of citations and amount of grant money received’ [37]. Thus,
there is enormous institutional inertia to overcome. One
approach that is being adopted by the Center for Reproducible
Biomedical Modeling is to form partnerships with journals.
The journals are the gatekeepers for much of our research,
employing external reviews and providing editorial oversight.
By partnering with journals, the the Center for Reproducible
Biomedical Modeling acts as a ‘fourth’ reviewer of submitted
manuscripts. The role of the center is to judge the quality
of the computational experiments from the point of view of
repeatability or reproducibility. Editors will receive a report and
act upon it accordingly. Interestingly, the American Journal of
Political Science (AJPS) has taken the lead by using a similar
approach over the past 5 years. They state on their web
site that: ‘The corresponding author of a manuscript that is

accepted for publication in the American Journal of Political
Science must provide materials that are sufficient to enable
interested researchers to verify all of the analytic results that
are reported in the text and supporting materials’. When AJPS
receives a manuscript to review, if the manuscript is accepted
for publication, it is passed to a third party for what they term
‘verification’. The manuscript is not released to the public until
verification is satisfied. The journal provides very detailed
instructions on how to prepare data and analyses that will
pass the verification stage. For any journal, one might predict
that imposing additional restrictions on publication would
result in fewer manuscripts being received, which could be
disadvantageous for the journal. In the case of AJPS, this appears
not to be the case. If anything, the credibility of the journal has
risen as a result, with the 2-year impact factor rising by a factor
of two over the past 5 years [3]. Biostatistics is another journal
that has taken the lead in publishing reproducible results. This
journal places kite marks on the top-right corner of the first
page of the published paper. Three levels can be indicated:
D—if the data are freely available, C—if the authors’ code is
freely available and R—if both data and code are available. A
reproducibility associate editor reviews papers and assigns the
appropriate badge. A more detailed look at the role of badges
can be found at [84]. With more journals and organizations such
as the Center for Reproducible Biomedical Modeling getting
involved with ensuring that published work is repeatable or
reproducible, the hope is that these gentle nudges will slowly
alter the publishing landscape. This is especially important for
the large models that are now being generated by the kinetic
modeling community.

In the absence of pressure by journals to induce researchers
to provide reproducible research, individual researchers may
improve their fields by insisting on reproducibility from the jour-
nal articles and faculty candidates they review and from their
own work. Such a ‘bottom-up’ approach (advocated by Carey et al.
[22]) not only can improve the science directly reviewed but also
can provide more examples of higher-quality scientific results,
which itself can provide pressure on journals and academic
institutions to begin to change their policies and embrace new
metrics of reproducibility.

Key Points
• The reproducibility of dynamic kinetic models is cur-

rently poor but is key to the further developments of
the field.

• The current reward system within our institutions
does not consider reproducibility an important output
of a research project.

• A variety of standard formats, best practices and tool-
ing is available to help researchers publish repro-
ducible work.

• Working with journals to help authors publish repro-
ducible work may be the way forward to improve the
publication of reproducible research.
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