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Urban wastewater bacterial communities
assemble into seasonal steady states
Emily Lou LaMartina1, Aurash A. Mohaimani1,2 and Ryan J. Newton1*

Abstract

Background: Microorganisms in urban sanitary sewers exhibit community properties that suggest sewers are a
novel ecosystem. Sewer microorganisms present both an opportunity as a control point for wastewater treatment
and a risk to human health. If treatment processes are to be improved and health risks quantified, then it is
necessary to understand microbial distributions and dynamics within this community. Here, we use 16S rRNA gene
sequencing to characterize raw influent wastewater bacterial communities in a 5-year time series from two
wastewater treatment plants in Milwaukee, WI; influent wastewater from 77 treatment plants across the USA; and
wastewater in 12 Milwaukee residential sewers.

Results: In Milwaukee, we find that in transit from residences to treatment plants, the human bacterial component
of wastewater decreases in proportion and exhibits stochastic temporal variation. In contrast, the resident sewer
community increases in abundance during transit and cycles seasonally according to changes in wastewater
temperature. The result is a bacterial community that assembles into two distinct community states each year
according to the extremes in wastewater temperature. Wastewater bacterial communities from other northern US
cities follow temporal trends that mirror those in Milwaukee, but southern US cities have distinct community
compositions and differ in their seasonal patterns.

Conclusions: Our findings provide evidence that environmental conditions associated with seasonal change and
climatic differences related to geography predictably structure the bacterial communities residing in below-ground
sewer pipes.
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Background
Urban sewers collect wastewater from a variety of
sources, including stormwater, industrial waste, and resi-
dential sewage. Sewer pipes transport wastewater to
wastewater treatment plants (WWTPs), where nutrients
and microorganisms are removed and select microor-
ganisms are cultivated to aid treatment processes [1].
Imbalanced WWTP microbial communities can disrupt
treatment and create challenging and costly problems.
For instance, WWTPs typically settle activated sludge to

separate it from treated wastewater, but overgrowth of
filamentous bacteria causes poor settling, which deterio-
rates effluent quality and may require significant process
alterations to remedy [2]. The goal of wastewater treat-
ment is to foster beneficial microbial communities and
remove problematic ones, and WWTP influent can be a
source of each [3–5].
Sewers serve as more than conveyance for wastewater.

The consistency in sanitary sewer microbial community
composition suggests that sewers represent a recently
formed ecosystem [6]. Some resident sewer microbes in-
duce pipe corrosion [7, 8], display pathogenic lifestyles [9],
or propagate antibiotic resistance genes [10, 11], including
those that survive treatment and persist in receiving
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waters [12–15]. Aging and inadequate infrastructure also
introduces sewer bacteria to the environment by leaching
wastewater through corroded pipes [16–18] or through
deliberate release during sewer overflows [19, 20]. Sewage
discharge regularly impairs recreational waters, causes
coastal beach closures, and poses a significant risk to hu-
man health [21]. Despite the potential importance of
resident sewer bacteria, there is not a thorough under-
standing of whether the majority of these microorganisms
exhibit predictable abundance patterns through time or
among sewer systems, partition to various substrates in
wastewater, or survive for prolonged periods in natural
aquatic systems after discharge.
Many aquatic ecosystems undergo seasonal changes

that drive biological change, which in turn creates re-
peating and predictable microbial community structures
and ecosystem services [22–25]. As sewers are a primar-
ily aquatic environment, it is possible the resident micro-
bial communities also exhibit temporal community
assembly patterns. Initial studies suggest this may be the
case. Guo et al. [26] revealed diurnal trends in WWTP
influent microbial communities that were driven by
change in flow rate between day and night, where low
flow resulted in less sloughing of pipe bacteria and thus
a change in composition. Although this study provided
evidence of repeatable microbial dynamics, these dynam-
ics were driven by short-term physical factors. To the
best of our knowledge, no study has analyzed whether
pre-treatment wastewater microbial communities are
also impacted by longer-term changes (months or years)
to their environment. Uncovering patterns of assembly
by sewer microbial communities will aid in designing
models to predict wastewater composition, enable tar-
geted treatments for microorganisms of interest, and
identify whether temporal community variation relates
to altered human and/or environmental health risks
from untreated discharge.
To address this knowledge gap, we used 16S rRNA gene

sequencing to analyze bacterial communities in three waste-
water datasets: (1) a 5-year time series of WWTP influent
sampled once per month from two facilities in Milwaukee,
WI, USA; (2) WWTP influent from 77 facilities in the USA
sampled during three seasons in a single year; and (3) waste-
water from 12 sewers in four distinct residential Milwaukee
neighborhoods. To assess the mixing of microbiomes, or the
“community within a community,” we identified the human-
associated bacterial assemblage in wastewater and analyzed it
independently from the rest of the bacterial community. We
hypothesize that (1) the majority of sewer pipe bacteria are
not from human waste and persist year-round; (2) wastewa-
ter resident bacterial communities follow predictable, sea-
sonal patterns in assembly; and (3) temporal community
assembly trends in Milwaukee will be similar to wastewater
from other northern US cities.

Methods
Sample collection
Milwaukee time series
We collected 24-h flow-proportional composite samples
of WWTP influent once a month for 5 years from Jones
Island (JI) and South Shore (SS) water reclamation facil-
ities in Milwaukee, WI, USA. At JI, 100 mL aliquots
from continuous water sampling at three sample points
were combined into a final composite sample. Each sam-
pling point has variable sampling frequencies depending
on flow at that location. Under low flow (range = 10 mil-
lion gallons per day (MGD) to 120 MGD depending on
sample point), the volumes that trigger an aliquot collec-
tion are (1) 0.2 MG, (2) 0.5 MG, and (3) 0.6 MG,
respectively, while under high flow (range = > 60 MGD
to > 120 MGD) the volumes that trigger an aliquot col-
lection are (1) 0.8 MG, (2) 1.0 MG, and (3) 1.4 MG. At
SS, a single composite sample was collected. Under low
flow conditions (< 100 MGD) a 100-mL aliquot is col-
lected at 0.7–1.9 MG, while under high flow conditions
(≥ 100 MGD) an aliquot is collected at 1.9–4.0 MG. JI
influent samples spanned each month from January
2013 to February 2018, except 2 months (November
2014 and March 2015; n = 60). SS influent samples
spanned October 2014 to December 2017, except 5
months (November 2014, March 2015, May 2015, No-
vember 2015, and June 2017; n = 34). After collection,
we filtered 10-mL onto 0.22-μm mixed cellulose ester
filters (47-mm diameter, Millipore Sigma) and stored at
– 80 °C for up to 5 years before extracting DNA. The
Milwaukee Metropolitan Sewerage District measured en-
vironmental parameters in each sample (File S1).

Across USA
As described previously in Newton et al. 2015 [27], sew-
age influent samples (n = 204) were collected from 77
wastewater treatment plants (WWTPs) in 72 US cities
around August 2012, January 2013, and May 2013 (Fig-
ure S1 and Table S1). Wastewater samples included a
variety of collection setups, ranging from single time-
point grab samples to 24-h flow weighted composites.
All samples were collected, stored in a refrigerator on
site for < 24 h and shipped overnight to our lab for im-
mediate filtering onto 0.22-μm mixed cellulose ester fil-
ters. For specific sample collection details, see Newton
et al. 2015 [27].

Milwaukee neighborhood sewer samples
We collected 5-h time-paced composite (0400–0900 h,
with 50 mL aliquots taken every 15 min) samples from
three sewers in each of four neighborhoods, Elm Grove,
South Milwaukee, North Milwaukee, and New Berlin in
the Milwaukee sewerage district on the 15th and 17th of
December 2015 (n = 24; Figure and Table S2). Each
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residential sewer sample represented a 200–600 house-
hold drainage area. From these samples, we filtered 25-
ml onto 0.22-μm mixed cellulose ester filters (Sigma
Millipore) and stored them at − 80 °C for up to 3
months before extracting DNA.

DNA extraction
We crushed frozen filters in their storage tubes using a
sterile metal spatula, added a bead-beating matrix and
buffers from the FastDNA Spin Kit for Soil (MP Bio-
medicals), and bead beat for 1 min. We then extracted
DNA following the FastDNA Spin Kit for Soil protocol.

PCR and amplicon sequencing
Milwaukee time series
We amplified the V4–V5 region of bacterial 16S rRNA
genes in wastewater samples using primers 518F and
926R [28]. The following setup was used: 12.5-μl 2×
KAPA HiFi HotStart ReadyMix PCR (Roche), 1.5-μl of
each 5-μM forward and reverse primer working solu-
tions, 7.5-μl sterile water, and 2-μl 100×-diluted DNA
template. PCR was run on a vapo-protect Mastercycler
pro S (Eppendorf) under the following conditions: 95 °C
for 5 min; 22 cycles of 98 °C for 20 s, 55 °C for 15 s, 72
°C for 1 min; 72 °C for 1 min; 4 °C hold. We included
one negative control and one mock community (#HM-
782D, BEI Resources). Triplicate PCRs were pooled and
cleaned with Agencourt AMPure XP beads (Beckman
Coulter), following the manufacturer’s protocol. Sample
libraries were prepared according to the Illumina MiSeq
protocol in the Nextera XT Index kit (Illumina). Indexed
PCR amplicons were cleaned with AMPure beads and
normalized with the SequalPrep Kit (ThermoFisher Sci-
entific). Sequencing was carried out on an Illumina
MiSeq with 2 × 250 chemistry at the Great Lakes Gen-
omics Center (greatlakesgenomics.uwm.edu).

Across USA and Milwaukee residential sewers
All procedures were the same as described above, except
that sample library preparation and sequencing was car-
ried out at the Marine Biological Laboratory (MBL).

Sequence processing
Forward and reverse reads were quality-filtered using
FastQC [29] and primers were trimmed with Cutadapt
[30]. We processed the three wastewater datasets simul-
taneously with the R package DADA2 [31], following the
protocol at http://benjjneb.github.io/dada2/tutorial.html,
with the following exceptions: during filtering, reads
were truncated at 230 bp, and reads with quality scores
lower than 10 were removed; after merging, sequences
were removed that did not have lengths within 5% (355
to 393) of the median sequence length (374 bp). Tax-
onomy was assigned to resulting amplicon sequence

variations (ASVs) using Silva v. 132 [32]. ASVs that were
not classified as bacteria or were classified as mitochon-
dria or chloroplasts were removed. Contaminant ASVs
from the mock community and negative control were
identified with the R package Decontam [33] and subse-
quently removed.

Primer design, ddPCR, and qPCR
We designed primers to target unique 16S rRNA V4-V5
gene regions belonging to one Cloacibacterium and one
Flavobacterium ASV (Table S3). Non-target ASVs of the
same genus were included as negative controls for pri-
mer design and PCR amplification. Gene blocks of V4-
V5 sequences (Integrated DNA Technologies) were used
as positive controls (Table S4). MEGA7 [34] was used to
align target and non-target sequences and identify the
most variable regions for primer design. We used Pri-
mer3 [35] to design primer sequences and calculate an-
nealing conditions. Target specificity was checked
against RDP Probe Match [36]. Target ASVs were quan-
tified in all 60 samples of the JI time series using droplet
digital PCR (ddPCR). Reactions were set up as follows:
11-μl EvaGreen Supermix (Bio-Rad), 1.3-μl 5-μM for-
ward and reverse primers, 6.4-μl sterile water, and 2-μl
100×-diluted DNA template. PCR was run on a vapo-
protect Mastercycler pro S under the following condi-
tions: 95 °C for 5 min; 40 cycles of 95 °C for 30 s, 58–60
°C for 1 min; 4 °C for 5 min; 90 °C for 5 min; 4 °C hold.
The human Bacteroides (HB) marker, a human fecal
marker in the genus Bacteroides [37], was quantified in
the first 48 samples of the JI time series using qPCR, fol-
lowing methods described previously [38].

Partitioning human-associated reads
We pulled Human Microbiome Project (HMP) sequence
IDs and HTTP(S)/FTP links originating from studies
16S-PP1 and 16S-PP2 from the HMP resource page
(https://hmpdacc.org/hmp/). HMP sequence IDs were
uniquely de-replicated by their URL address. Batch-
pulling of these sequence records resulted in a
concatenated FASTA. A tool was created and applied to
normalize metadata attributes across this dataset,
followed by its subsequent reduction to unique se-
quences that occurred at least 10 times, with at least 1
subject and sample ID available for each uniquely fil-
tered sequence. A parallelized, exact-identity sequence
aligner was implemented and employed to align the sew-
age ASVs against the reduced HMP reference database,
resulting in the parsing of human-associated sequences
from the sewage dataset. We identified 491 human-
associated ASVs within 35,332 total wastewater ASVs.
For this study, the remaining ASVs were considered to
be sequences from resident sewer microorganisms.
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Human-associated ASVs were binned by source body
site (Table S5).
Due to sequencing errors and potential microorganism

transfer among source environments, we established a
threshold to identify and partition low-abundance, un-
common human-associated reads that were common in
sewer samples (Figure S3). Among ASVs that were
shared between WWTP influent and the HMP, if the
minimum relative abundance across samples (5th-per-
centile) of a wastewater ASV exceeded the maximum
relative abundance across samples (95th-percentile) of
that ASV in the human microbiome, it was reclassified
as a sewer-associated sequence. If the minimum abun-
dance (5th-percentile) of a wastewater ASV was less
than the maximum abundance (95th-percentile) of that
ASV in the human microbiome, it was considered a
human-associated sequence. After the filtering proced-
ure, we moved 33 ASVs from a human-associated to a
sewer-associated classification. In the final dataset, 458
ASVs in the wastewater samples were classified as
human-associated.

Statistics and graphics
We organized ASV and sample information with the R
package phyloseq [39] (Table S6). The Shannon diversity
index, a measure of alpha diversity, Bray-Curtis dissimi-
larity, a measure of beta diversity, and ordinations were
calculated using the R package vegan [40]. We also used
Mann-Whitney U tests, hierarchical clustering, autocor-
relation function, linear regression, Shapiro-Wilk tests,
and ANOVA to examine statistical relationships in the
data, and these were performed using the R stats [41]
package. We identified indicator ASVs with the R pack-
age indicspecies [42]. To reduce dataset complexity and
examine the predominant bacteria, only ASVs with a
maximum relative abundance of 1% or greater were con-
sidered in the indicator analyses. Principal coordinate
analyses (PCoA) were conducted with the R package ape
[43]. All figures were made in R with ggplot2 [44].
More specifically, we performed the following analyses

to visualize and/or test statistically for differences in the
community composition and abundance (qPCR/ddPCR)
datasets: (1) a non-paired Mann-Whitney U test to com-
pare Shannon diversity values between the US city and
Milwaukee WWTP influent time-series datasets and the
Milwaukee neighborhood and WWTP influent time-
series datasets, 2) a non-paired Mann-Whitney U test to
compare Bray-Curtis dissimilarity values between the US
city and Milwaukee WWTP influent time-series datasets
and the Milwaukee neighborhood and WWTP influent
time-series datasets, (3) a Principle Coordinate Analysis
(PCoA) of the Milwaukee time-series dataset to examine
temporal patterns in community composition, (4) an in-
dicator analysis (indicspecies [42]) to identify ASV

relative abundance patterns that are indicative of groups
of months, here set at exactly three consecutive month
groupings in the Milwaukee time-series dataset, (5) a
PERMANOVA test to identify if the month-based sea-
sonal groupings of community composition are different
statistically in the Milwaukee time-series dataset, (6) a
correlation of environmental and sample metadata to
the Bray-Curtis dissimilarity of bacterial community
composition (envfit in R package vegan [40]) in the Mil-
waukee time-series dataset, (7) an examination of sea-
sonality in abundance patterns of individual ASVs using
hierarchical clustering of z-score normalized ASV rela-
tive abundances, where each ASV was relativized to its
relative abundance values across the Milwaukee time-
series samples, (8) the autocorrelation function (ACF)
with 60 1-month time lags to test for data self-similarity
with a defined time-lag; i.e., a test of significant seasonal
patterns in the relative-abundance of particular ASVs,
(9) Spearman rank correlations to test for relationships
between ASV relative abundance data and the quantita-
tive PCR data for select ASVs, and (10) a Mann-
Whitney U test for seasonal differences in the US city
community composition data (e.g., cold period northern
city vs. warm period southern city). For more detailed
information on the specific functions used, see Table S6
and our GitHub repository, https://github.com/
NewtonLabUWM/Sewage_TimeSeries.

Results
Wastewater bacterial community diversity scales with
time and space
The Shannon diversity index was similar between sam-
ples collected in the Milwaukee time series and US city
WWTP influent datasets (Mann-Whitney U, p = 0.33;
Fig. 1a), which indicates there is a relatively consistent
number/evenness of bacterial taxa that co-inhabit these
municipal sewer systems. In contrast, Shannon diversity
was greater in the Milwaukee neighborhood wastewater
samples than in the Milwaukee WWTP influent samples
(Mann-Whitney U, p = 4.9 × 10−11; Fig. 1a).
Contrasting the alpha diversity measure, the bacterial

community composition was not similar across the
WWTP influent datasets. Bray-Curtis dissimilarity in-
creased as the sample set included more WWTPs or
time points covering a greater proportion of a year in a
single treatment plant (Fig. 1b). The range of Bray-
Curtis dissimilarity values was similar between residen-
tial wastewater samples and the Milwaukee WWTP
influent samples (Mann-Whitney U, p = 0.12) but was
greater in the US city dataset (Mann-Whitney U, p < 2.2
× 10−16). This result indicates that differences in envir-
onmental conditions among sewers have a larger influ-
ence on community composition than localized, within-
system environmental differences.
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Resident sewer bacterial communities are distinct from
the human microbiome
Bacteria associated with human stool became a lesser
part of the overall community as wastewater traveled
from neighborhood sewers to the WWTP (Fig. 2a).
For example, Bacteroides was on average the most
abundant genus in human stool (53% of community).
It decreased to 11% in Milwaukee residential sewer
communities and 3.4% in Milwaukee WWTP influent.
Acinetobacter was the most abundant genus in
WWTP influent communities in Milwaukee (11% of
community) and across the US (8.8%). Acinetobacter
was not as dominant in residential wastewater (5.3%)
and was virtually absent (4.5 × 10−3%) in human
stool. Other abundant stool-associated genera, includ-
ing Alistipes, Faecalibacterium, and Parabacteroides,
also decreased in their contribution to the overall
community as they moved from the human host, into
the sanitary sewer system, and to the WWTP. Their
dominance was replaced by genera not common to
the human microbiome, such as Arcobacter, Tricho-
coccus, and Flavobacterium (Fig. 2b).

The majority of wastewater bacteria were not associ-
ated with the human microbiome (Fig. 2c). In residential
sewer communities, 35.9 ± 7.5% of reads belonged to
ASVs attributed to the human microbiome, but in the 5-
year time series of two Milwaukee WWTPs, the propor-
tion dropped to 11.0 ± 2.8%. Similarly, across the USA,
only 12.4 ± 5.7% of reads were human-associated. Of the
human microbiome sources, stool was the greatest con-
tributor of ASVs to WWTP influent (9.0 ± 4.7%; Fig.
2d). Overall, we find that the majority of reads in waste-
water were assigned to ASVs that were not associated
with the human microbiome (88.0 ± 5.0%), and we con-
sidered them to be sewer-associated for subsequent
analyses.

Wastewater bacterial communities assemble into seasonal
steady states
Milwaukee WWTP influent bacterial communities re-
peatedly assembled into two community states each
year (Fig. 3a), and the pattern was consistent for both
of Milwaukee’s WWTP facilities (Fig. 3b). In a PCoA,
all samples from January through May had Axis 1

Fig. 1 a Alpha diversity (measured with Shannon diversity), and b beta diversity (measured with Bray-Curtis dissimilarity) in raw wastewater bacterial
communities. Diversity was measured in wastewater treatment plant influent in the 5-year time series of JI, in Milwaukee, WI; in JI and SS in Milwaukee,
WI; from 77 WWTPs across the USA; and in wastewater collected from residential Milwaukee neighborhood sewers. Boxes depict the median and first
and third quartiles. Whisker lines extend to interquartile ranges × 1.5 and points are outlier values
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scores less than 0, while samples from August
through November had Axis 1 scores greater than 0.
Samples from June, July, and December had both
positive and negative Axis 1 scores. Typically, samples
from April to May and September to October
harbored the most distinct community compositions
(Fig. 3a).
We conducted an indicator analysis to identify ASVs

that had relative abundance patterns that were indicative

of chronologic 3-month groups. Only ASVs with a max-
imum relative abundance ≥ 1% were considered. With
this analysis we identified 14 indicator ASVs (Table S7).
The indicator results also supported the monthly group-
ings of the PCoA, as we only found indicators of month
groups including February through June and August
through December (Table S7). No indicator ASVs were
found for 3-month groups containing July or January,
suggesting these are periods of transition between
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community types. For this reason, we described waste-
water from February through June as the spring steady
state and wastewater from August to December as the
fall steady state, with the primary differentiating months
being February–May and August–November. We also
assessed the statistical strength of these month-based
community groupings with a PERMANOVA test on the
Bray-Curtis distance matrix for the following groups: (1)
spring = February to June, (2) fall = August to Decem-
ber, and (3) mix = January and July. The PERMANOVA
test also supported the idea of these months having dis-
tinct bacterial communities (R2 = 0.212, p = 0.0099).
Wastewater temperature was very tightly coupled to

the change in community composition at both Milwau-
kee WWTPs (environmental fit, JI R2 = 0.96, SS R2 =
0.97; Fig. 3b) and appears to be the primary driver of the
observed seasonal change in community composition.
For the other measured environmental parameters, we
saw differences between the WWTPs in their relation-
ship to bacterial community composition. At SS, which
receives only wastewater from a separated sewer system,
all variables tested (flow rate, ammonia, total suspended
solids, air temperature, phosphorus, biological oxygen
demand, precipitation, and year) were significant predi-
cators (environmental fit R2 range = 0.35–0.85) of influ-
ent bacterial communities (Table S8), but were less
strongly related to community change than temperature.
At JI, which receives combined sewer wastewater, the

environmental parameters measured were much less in-
dicative of the community composition (environmental
fit, R2 range R2 range = 0.0035–0.28; Table S8).

Sewer bacteria drive temporal trends in WWTP influent
Seasonal bacterial community variation was driven more
by abundance changes of common sewer-associated
ASVs than by human-associated ASVs. Dendrogram
clustering of normalized sewer-associated ASV abun-
dances (Milwaukee time-series) illustrated that many
common wastewater bacteria (e.g., Acinetobacter, Arco-
bacter, Cloacibacterium, Flavobacterium, Lactococcus)
exhibited repeating temporal patterns of high/low or
low/high abundance in the spring and fall states (Fig. 4).
In contrast to the seasonal abundance pattern clustering
of sewer-associated ASVs in the influent samples, com-
mon human ASVs exhibited less dramatic temporal fluc-
tuations, and these changes were not predictable
temporally or with the wastewater environmental data.
Instead, human ASV relative abundance patterns often
clustered by taxonomic affiliation (Fig. 4).
We identified two sewer-associated ASVs that exhib-

ited significant seasonal abundance variation and one
ASV matching a human fecal indicator that did not. The
two sewer organisms were (1) ASV8, an indicator of
September–October–November (fall–warm period) clas-
sified to the genus Cloacibacterium; and (2) ASV42, an
indicator of February–March–April (spring–cold period)
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Fig. 4 Dendrograms and heatmaps of abundant (maximum relative abundance > 1%) sewer-associated (left) and human-associated (right) ASVs
in a 5-year time series of JI influent. Heatmap colors denote within-ASV Z-scored normalized relative abundances
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classified as Flavobacterium. The human fecal indicator
was classified as a Bacteroides (ASV44). This ASV has
100% sequence identity to the “Human Bacteroides
marker”, a well-established marker for tracking human
fecal pollution in the environment [37]. We ran autocor-
relation function (ACF) with 60 1-month time lags to
verify the observed seasonal relative abundance patterns
of the Cloacibacterium and Flavobacterium ASVs. The
autocorrelation function confirmed the repeated sea-
sonal cycle for these two ASVs across the 5-year time
series (Fig. 5a). The human specific Bacteroides did not
show significant autocorrelations (p value = 0.05) at any
time lag (Fig. 5a).
ASV-specific gene quantifications demonstrated rela-

tive abundance patterns observed in the sequence-based
datasets translated to actual abundance change. The
Cloacibacterium ASV had the highest relative and abso-
lute abundance ranking in WWTP influent (1.1 ± 0.69%,
1.5 × 106 ± 1.1 × 106 copies/ml), followed by the Flavo-
bacterium (0.41 ± 0.25%) and Bacteroides (0.21 ± 0.07%)
ASVs (Fig. 5c). Absolute abundance quantification
matched relative abundance patterns for Cloacibacter-
ium (Spearman rank correlation, rho = 0.85; Fig. 5b),

Flavobacterium (rho = 0.83) and Bacteroides (rho =
0.49). These measurements also support the observation
that water temperature drives fluctuations in the resi-
dent sewer bacterial community, in that Cloacibacterium
and Flavobacterium concentrations were correlated to
wastewater temperature (Spearman rank correlation, rho
= 0.90 and − 0.89, respectively; p = 2.8×10−9 and 6.4 ×
10−9, respectively), while Bacteroides concentrations
were not (rho = − 0.22, p = 0.30).

Milwaukee wastewater seasonality is supported spatially
across the USA
Northern and southern US cities had distinct bacterial
WWTP influent communities (Fig. 6). Seasonal change
altered the magnitude of this regional community com-
position difference. For example, communities in north-
ern cities (a cold region) during August (a high
temperature period) were more similar to communities
from southern US cities (a warm region) than they were
to other northern communities when it was cold
(Mann-Whitney U, p < 2.2 × 10−16; Figure S4). This
similarity was greatest when southern cities experienced
their coldest temperatures. Also, southern US cities,

Fig. 5 a Time-dependent autocorrelations of relative abundance change for select ASVs performed with 60 1-month time lags from the JI
wastewater influent dataset. Bar height indicates autocorrelation score at each time lag, and grey dashed lines indicate autocorrelation
significance level (± 0.26 at p = 0.05). b Line graph of quantitative PCR measurements targeting these ASVs in JI influent. Vertical lines extend to
standard deviations. (C) Quantitative PCR measurements in Milwaukee neighborhood sewers and JI influent. Horizontal lines indicate mean gene
concentration. Taxonomic affiliation of the ASVs includes (left) a human-specific Bacteroides; (middle) a fall-associated, sewer-specific
Cloacibacterium; and (right) a spring-associated, sewer-specific Flavobacterium
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which experience less dramatic seasonal temperature
change, had WWTP influent communities that were less
variable than the northern cities (Figure S5).

Discussion
Wastewater conveyance represents a unique ecosystem in
urban environments. Sewers maintain a “resident” com-
munity of microorganisms, while transient organisms con-
tinuously wash in from urban waste, runoff, and the
human microbiome. In a study of a single WWTP, human
gut microorganisms represented a relatively small fraction
of the influent community (~ 7%) [26]. Our work across
dozens of facilities supports this observation; we observe
roughly 10–15% of the community is human-derived. The
wastewater community also changes in relation to its loca-
tion in the system. Human-derived microorganisms repre-
sent a larger fraction (~ 36%) of the community “up-the-
pipe” (i.e., neighborhood sewers), but as wastewater flows
through the system, resident bacteria become dominant,
reaching > 85% of the assemblage. We believe this shift

results from a significant increase in resident sewer bac-
teria, rather than a decay in human-associated microor-
ganisms during transit. In our relatively limited testing, we
found resident sewer organisms increased 2.7- to 19-fold
from neighborhood sewers to the treatment plant, while
human-associated bacteria stayed relatively constant (1.3-
fold change).
We note that we did not attempt to partition what we

term the “resident community” into organisms washing
in from urban waste versus those that are truly sewer
residents. Others have suggested soil bacteria may make
up a significant fraction (> 20%) of sewer microbes [26].
We agree that this is likely, but it is not clear if these or-
ganisms are sewer residents having originating from soil
or represent transient flux into the system. Truly transi-
ent sewer organisms should have highly variable distri-
butions in time, and nearly all of the abundant
organisms in our defined resident fraction were present
consistently. More work is needed to further identify the
true permanent sewer residents and the possible origins

Fig. 6 Top: map of select wastewater treatment plants sampled previously [27]. Bottom: principal coordinate analysis of influent bacterial communities. Yellow
points indicate samples from the 5-year Milwaukee WWTP time series, blue points the 11 coldest US cities in the dataset, and red points the 11 warmest US
cities in the dataset. Point shapes indicate the sampling period during which wastewater was collected. Points with labels are samples from either southern US
cities in January or northern US cities in August
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for these residents. Understanding these details would
contribute to both the development of markers for sew-
age pollution tracking [45, 46] and further the under-
standing of which organisms are universally present and
thus likely metabolically active inside these pipes.
There are numerous places in conveyance systems that

can accumulate high concentrations of actively growing
sewer microbes. Biofilms attached to interior pipe sur-
faces represent one potentially large reservoir of resident
organisms, and several studies have examined these
communities (reviewed by Li et al. 2019 [47]). Commu-
nity compositions of sewer pipe biofilm and WWTP in-
fluent suggest there is considerable interactions between
the two environments, but additional sewer habitats,
such as sediments, may be contributing even larger mi-
crobial loads to the wastewater [6]. An already signifi-
cant effort has been put forth to understand the
products of sewer biofilm activity [47], as concrete cor-
rosion from these activities costs more than $1 billion
globally each year [48]. More work is needed in a single
system to eliminate cross-system variability so that
unique habitats can be identified and described.
Predominant sewer microorganisms were consistent

across all the systems we examined, and also seem to
be common in systems globally [6, 26]. Although the
same genera are present, there are stark differences in
the actual bacterial composition among sewer sys-
tems, and clear diversity patterns similar to those
found in other aquatic ecosystems systems like lakes
or the ocean. We found that alpha diversity in
WWTP influent samples remains relatively constant,
but up-the-pipe, the diversity was often greater. Be-
cause human microbiome contributions were greater
up-the-pipe, individual variations in these samples
and household waste streams presumably increases
this diversity, but this remains to be tested. Mean-
while, we believe the large, integrated water network
of conveyance systems homogenizes community in-
puts, obscuring rarer members prior to sampling of
WWTP influent. We also found that beta diversity of
influent increases as more sites or more times of the
year are included, but not as more years are included.
This pattern is very similar to the seasonal river, lake,
or oceanic basin microbial community patterns where
communities predictably cycle each year, but each
system has its own unique community structure and
timing of community change [22, 49–51].
Our time series revealed sewer resident communities

exhibit significant and repeatable temporal community
change, which manifested as a seasonal cycle. This was
surprising to us, as surface-water seasonal cycles such as
those in temperate lakes are driven by changes in a com-
bination of temperature and light availability, which in-
fluence primary production and ultimately start a

cascade of change through the food web [52]. Sewers are
below-ground and thus are buffered to large
temperature changes (e.g., in Milwaukee ~ 8 °C differ-
ence across a year), no light is available, and there is
constant exogenous nutrient inputs, so it appears much
of the seasonal regime is tied to wastewater temperature
change. Indeed, in Milwaukee, the seasonality of the in-
fluent wastewater bacterial community composition at
both treatment plants (JI and SS) was clearly driven by
wastewater temperature. Some of the other measured
physical-chemical parameters also correlated to the
community change (48-h precipitation, flow, ammonia,
BOD, total phosphorus, TSS; Table S8), but the majority
of these relationships were significant at only one of the
two treatment plants (the SS plant, a separated sewer
system), and the correlations were weaker than that
found for water temperature. To us, it is clear that
temperature is a primary driver of bacterial community
change in at least some wastewater conveyance systems.
In Milwaukee, sewer wastewater temperature change

lags behind the change in air temperature, resulting in a
roughly 3-month delay between the lowest/highest aver-
age air temperatures and the lowest/highest tempera-
tures in the wastewater. This results in the bacterial
community composition being most distinct at the
wastewater temperature extremes, which occur in April
(cold, ~ 10 °C) and October (warm, ~ 18 °C). Although
we do not have long-term time series data from other
cities, it appears water temperature plays a primary role
in structuring and geographically partitioning sewer bac-
terial communities across vast geographical distances.
Communities from northern (cold) and southern (warm)
US cities were strikingly distinct, but they became more
similar in comparisons of warm periods in the north to
cold periods in the south. The regional warm periods in
the north and cold periods in the south occur asyn-
chronously, so there is no apparent period of community
convergence across these distinct temperature regions.
Also, we do not have seasonal wastewater temperatures
for any southern cities, so it is unknown if the pace and
timing of community change in these systems matches
the two-season (warm-fall to cold-spring) setup observed
in the Milwaukee dataset. It also appears that southern
US cities, which have smaller air temperature ranges
than most northern cities, have correspondingly less
variable bacterial communities. We presume these two
conditions are related, but the question of how the mag-
nitude of wastewater temperature change impacts com-
munity composition remains to be tested.

Conclusions
Temperature dependence is clearly driving large-scale
changes to the bacterial community composition in mu-
nicipal wastewater conveyance systems. The temperature
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change results in a bacterial community that exhibits
striking seasonality, but this seasonal cycle occurs in a
below-ground and built/engineered system. Seasonality
is more typically described for surface communities,
which experience both light and temperature changes
over a year. This community pattern indicates the mi-
crobial communities in built infrastructure have emer-
gent properties comparable to the rest of the aquatic
microbial biosphere; and therefore, further examination
of how these microbial communities adapt to built water
infrastructure is warranted. Going forward, it also needs
to be determined whether temperature-driven cycles in
wastewater impact engineering processes at treatment
plants or alter sewer pipe corrosion rates. Wastewater
treatment plant performance can vary seasonally, but it
is still unclear how much of this is driven by changes in
the entering community. Additionally, seasonal change
in wastewater communities may represent a change in
the levels of human or environmental health risk during
untreated sewage release. Although the human fecal bac-
teria remain fairly constant temporally, the seasonal
abundance shifts for common sewer organisms could be
used to develop more sensitive seasonal or regional spe-
cific indicators for sewage pollution tracking. Overall, we
advocate for applying microbial ecological theory devel-
oped from natural ecosystems to sewer systems. Much
like in the relatively new discipline of urban ecology,
there are likely theories that apply across natural and
built system boundaries, but also unique paradigms that
exist only in the built systems. Sewers allow for some
operational control and thus could prove useful in test-
ing theories across boundaries, but also for understand-
ing how urban environments alter microbial community
assembly, activity, and adaptation.
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