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Abstract

Differential network analysis has become an important approach in identifying driver genes in 

development and disease. However, most studies capture only local features of the underlying 

gene-regulatory network topology. These approaches are vulnerable to noise and other changes 

which mask driver-gene activity. Therefore, methods are urgently needed which can separate the 

impact of true regulatory elements from stochastic changes and downstream effects. We propose 

the differential network flow (DNF) method to identify key regulators of progression in 

development or disease. Given the network representation of consecutive biological states, DNF 

quantifies the essentiality of each node by differences in the distribution of network flow, which 

are capable of capturing comprehensive topological differences from local to global feature 

domains. DNF achieves more accurate driver-gene identification than other state-of-the-art 

methods when applied to four human datasets from The Cancer Genome Atlas and three single-

cell RNA-seq datasets of murine neural and hematopoietic differentiation. Furthermore, we predict 

key regulators of crosstalk between separate networks underlying both neuronal differentiation and 

the progression of neurodegenerative disease, among which APP is predicted as a driver gene of 

neural stem cell differentiation. Our method is a new approach for quantifying the essentiality of 

genes across networks of different biological states.
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1 Introduction

Identifying significantly changed genes in development and progression of diseases is of 

great benefit to uncover new biomarkers and prognostic signatures [1]. Differential 

expression analysis is capable of narrowing the whole genome down to a short list of 

candidate driver genes [2]. However, the quantification of significance among identified 

genes remains an open and challenging question [3]. Furthermore, the reductive 

identification of differentially expressed genes by multiple-hypothesis testing fails to 

highlight the complex interactions occurring in real biological systems.

To explicitly address this multiscale structure, state-dependent molecular interactions can be 

abstracted as a network whose nodes represent molecules and whose edges represent the 

existence and strength of their respective interactions [4, 5]. Because networks have both 

global and local properties, this approach epitomizes the ‘Systems Biology’ perspective. 

Differential network analysis aims to identify the differences between networks under 

different conditions [6]. Therefore, differential network analysis becomes an essential 

approach to assess the importance of biological entities (such as genes) in biological systems 

which undergo change, or which utilize feedback to maintain homeostasis [7–9].

In the past ten years, many differential network analysis methods have been proposed to 

assess the essentiality of genes between two biological conditions. The existing differential 

network analysis methods mainly fall into two categories. The first category is focused on 

capturing linear or nonlinear correlation differences in gene expression between two gene 

regulatory networks (GRNs). For instance, DDN [10] is the first algorithm to detect 

topological differences by lasso regression in network inference. DISCERN [11] computes a 

novel perturbation score to capture how likely a given gene has a distinct set of regulators 

between different conditions, which is shown to be robust to errors in network structure 

estimation. pDNA [12] incorporates prior information into differential network analysis 

using non-paranormal graphical models, which relaxes the assumption of normality of omics 

data to find more cancer-related genes.

The second category is focused on topological differences between constructed GRNs. For 

instance, DEC captures the global differential eigenvector connectivity to prioritize nodes in 

networks [7]. DiffRank [13] computes the linear combination of differential connectivity and 

differential betweenness centrality to order genes. DCloc [14] computes the average 

proportion of changes of each node’s neighborhood as a significance score by iteratively 

removing edges with different thresholds. DiffNet [15] evaluates topological differences 

between two networks based on generalized hamming distance and its statistical 

significance. KDS [8] measures the importance of genes by calculating the graphlet vector 

distance.

Two issues remain which the above methods fail to address. First, all the above methods 

utilize networks which assume the existence of edges based on co-expression. While global 

network features (such as eigenvector connectivity) may be taken into account during 

differential network analysis, co-expression is an unreliable starting point based on long-

standing biological results. In particular, measured gene expression is inherently noisy due 
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to intrinsic (transcriptional) and extrinsic (measurement) sources of variation [16], 

contributing to a high false positive rate in network construction. Therefore, the existence of 

edges in a reconstructed network must reflect the uncertainty of these observations [17].

The second issue is more subtle. While techniques such as spectral analysis provide a global 

perspective on connectivity, these approaches fail to encapsulate the flow of information 

inherent in all biological networks. Network flow has been investigated extensively in 

connection with commerce and telecommunication [18]. The notion of optimality with 

regard to information flow, originally designed around these manufactured networks, takes 

into account the nonlinear contribution of all nodes, and thus is not reductive in the sense of 

spectral analysis, whose rank-based metrics reflect only linear contributions. Despite wide 

adoption of these methods in their original context, characterization of biological networks 

(including gene-regulatory networks) by optimal flow has not been widely explored. 

Although the statistical properties of dynamic networks have recently been studied in the 

context of epidemiology and biochemistry [19], methods that can overcome the uncertainty 

of networks and capture comprehensive topological differences are urgently needed to 

quantify the essentiality of genes from a systems view.

In this paper, we propose the differential network flow (DNF) method to identify key 

regulators between two networks under different biological conditions. This algorithm is 

built upon the idea of network flow and information theory. Rewiring of a GRN can be 

characterized as a dynamic pattern of network flow [19], such a flow-based model captures 

multiple (from local to global) features of network structure. Information theory is able to 

quantify the uncertainty in networks, making networks built upon information-theoretic 

measurements a more acceptable representation of biological systems at the molecular scale 

[20]. Therefore, DNF is capable of capturing comprehensive topological differences by 

quantifying the flow in a network. Its identification accuracy is compared with several state-

of-the-art methods, first to simulated datasets and second to clinical and experimental 

datasets. In addition, DNF is applied to predict driver genes of neural stem cell 

differentiation in single-cell RNA-seq datasets.

2 Materials and methods

2.1 Gene regulatory network construction by using both transcriptomics and proteomics 
datasets

Network analysis requires a robust network skeleton, and the choice of network skeleton is 

important, allowing network-based approaches to achieve higher precision [21]. 

Constructing network skeletons that integrate single-cell transcriptomics data and other 

omics data provides attractive opportunities to mechanistically understand this heterogeneity 

under different cell states [22].

To improve the performance of driver-gene prediction, we employ a three-step process to 

integrate both transcriptomics and proteomics datasets in GRN-construction. First, a network 

skeleton is built by differential expression analysis using the transcriptomics dataset. 

Specifically, the skeleton gene sets are selected based on a given criterion, such as | log2 

Fold Change |>u, p-value<v, where u represents the fold change of gene expression and v 
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represents the statistical significance of differential expression. Second, the known 

corresponding protein-protein interactions in the STRING database (http://string-db.org) are 

used to establish the gene-gene network for the selected genes. For example, suppose p 
skeleton genes are selected in the first step, then a network skeleton with p nodes is 

described by an adjacency matrix Ai,j, such that Ai,j > 0, i, j=1, …, p, if protein i and protein 

j are functionally associated. Finally, the absolute value of the spearman correlation 

coefficient (scc) of expression is adopted to estimate the strength of connections between 

adjacent genes, and edges Ai,j, for which scc(i, j) < 0.1 are discarded (see Supplementary 

Text 1 and Supplementary Figure 1 for more explanation of parameter selection). Following 

this procedure, we construct a pair of GRNs based on a specific transcriptomics dataset (e.g. 

cancer and control samples) and a generic proteomics dataset, described as 

Ai, j
1 , i, j = 1, …, l, Ai, j

2 , i, j = 1, …, r, in which l ≠ r and l, r ≤ p.

To effectively study the new differential network method in this study, we use both 

previously existing networks for bulk RNA-seq datasets and the networks specifically 

constructed for single-cell RNA-seq datasets.

2.2 Estimating differential network flow to prioritize genes

DNF is built upon the ideas of network flow and information theory. The novelty of DNF 

lies in quantifying node-to-node information entropy according to the network flow in a 

gene regulatory network, and in characterizing each node as a distribution of network flow, 

which is equal to the distribution of information entropy. The distribution differences of one 

gene in different networks represents its essentiality in the biological process responsible for 

the network’s evolution. Genes are ordered by the magnitude of this difference to establish a 

ranking. Given two networks constructed as described in 2.1. DNF produces this ranking in 

four steps:

2.2.1 Calculate signal matrix using gene-gene interaction strengths—We 

consider two weighted networks as two biological states, abstracted as Ai, j
1 . d Ai, j

2 , and we 

suppose that there are k common genes between the two matrices.

Since scc(i, j) is a random variable, we can probabilistically estimate the strength of a bi-

directional signal zi, j from gene i to gene j as the product of scc(i, j) and its information 

content [20]. Through the transformation from edge weight to the expectation of 

information, zi,j is described as the sub-item of entropy. The network labels are suppressed 

in the following equations for notational convenience,

zi, j = Ai, jlog 1
Ai, j

(1)

We assume that changes in the biological state of the system can only change the weight of 

the edges (as calculated in 2.1) of a given network skeleton. Thus, by assigning a cost, 

capacity and normalized flow to each edge, we can probabilistically measure the global and 

local change between network flow solutions for any treatment applied to the underlying 

system.
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2.2.2 Quantify gene-to-gene entropy according to the network flow—Rank-

based metrics like degree centrality usually only reflects linear contributions of all nodes. 

The optimal flow, however, takes into account potentially nonlinear contributions, allowing 

more sensitive detection of changes in network structures, such as the strongest and most 

stable connections among a group of nodes (even if they are not neighbors) in a gene 

regulatory network. In this approach, the maximum flow describes the strongest regulatory 

relationship between nodes, and the minimum cost is similar to the concept of entropy that 

describes the most stable regulatory relationship between nodes.

The optimal flow model is based on the theory of the shortest path between any two nodes. 

In the flow model, each edge is given the capacity ci,j that represents the bandwidth of that 

edge, the flow fi,j through the edge, and the fixed signal zi,j of flow through the edge. 

Suppose any two nodes in a network, source node s and sink node t, s ≠ t, the network flow 

Fs,t from s to t can be measured as follows,

Fs, t = Min ∑i, jfi, jZi, j
s.t. Max ∑i, jfi, j ,

fi, j ≤ ci, j,
∑
w

fs, w = ∑
w

fw, t, w is any node
(2)

Where the network flow from s to t meet the requirements of minimum signal in multiple 

maximum flow strategies. The first restriction means that the optimal flow must meet the 

requirement of maximum flow; The second restriction means that the amount of flow 

through any edge of network cannot exceed its capacity; The third restriction means that the 

flow flows only from the node s to the node t. Since the network is undirected, Fs,t = Ft,s.

In DNF, the capacity of each edge is set as ci,j = 1, and we obey the rule that the flow fi,j on 

each edge of each shortest path is computed only once, in other words, there is a unique 

sequence of nodes between the source and the sink. Because the sum zi,j, for all Ai,j > 0, is 

the Shannon entropy of scc(i, j), the information flow Fs,t is like the concept of entropy that 

is weighted by the signal of flow. In particular, the information flow Fs,t is equivalent to 

entropy when it is calculated in a two-node network. The optimal flow solution therefore 

defines a globally unique path as well as a unique set of local edge signals for every pair-

wise gene interaction.

2.2.3 Characterize each node as a distribution of network flow—DNF assumes 

that each gene’s potency of signal propagation is relatively stable, while the strength of 

signals propagating to different genes is variable in different conditions, contributing to 

changes in the correlation between gene expression levels. Thus, the signal propagation of a 

gene under a specific state can be abstracted as a distribution. DNF aims to track the 

distribution-level differences of each gene under two biological states.

To facilitate the probabilistic notion of network difference, we require that ∑tFs,t = 1. This is 

enforced by normalizing Fs,t as,
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Fs, t = Fs, t
∑tFs, t

(3)

Therefore, the flow from any node i to the other nodes in the network can be characterized 

as a probability distribution ℱi,

ℱi = Fi, 1, ……, Fi, k (4)

because we measure network difference via a symmetric divergence score, we also require 

that the support of i be equal for the two networks of interest. Therefore, only the k common 

nodes between two networks are considered.

2.2.4 Measure distribution differences of network flow for each gene in two 
networks—In order to quantify the difference of distribution-level of signal propagation 

between two biological states, we adopt the sum of the reciprocal Kullback-Leibler 

divergence (KLD) to estimate the distance between two node-wise flow distributions ℱi
m, m 

in{1, 2}. Therefore, the differential score Di, corresponding to the distance of common node 

i between two networks, is characterized as follows,

Di = ∑ ℱi
1logℱi

1

ℱi
2 + ℱi

2logℱi
2

ℱi
1 = ∑

j = 1

k
Fi, j

1 logFi, j
1

Fi, j
2 + Fi, j

2 logFi, j
2

Fi, j
1 (5)

where ℱi
1, ℱi

2 represents distribution-level information flow of common node i in two 

biological conditions.

3 Datasets

3.1 Simulation datasets

To compare the accuracy of our methods and other state-of-the-art methods without bias in 

identifying the significant rewiring nodes between two networks, we generate simulated 

dynamic networks as previously described [12]. In our simulated data, 100 pairs of 

networks, each containing 100 nodes whose degree distribution follows a power-law 

distribution were generated. For each pair of networks, a random selection of 10 nodes was 

disturbed, reflecting critical regulation of the network from one state to another. The edges 

of each disturbed node were perturbed with fixed percentage λ=0.1, and the perturbed edges 

were randomly selected based on a previously published method [12].

3.2 Four TCGA datasets

To compare the performance of DNF against other state-of-the-art methods in identifying 

rewired driver genes in cancer networks for bulk RNA-seq datasets, four kinds of cancer 

RNA-seq datasets were used in this study, which were downloaded through TCGAbiolinks 

[23]: breast invasive carcinoma (BRCA), prostate adeno-carcinoma (PRAD), liver 

hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). The downloaded 

TCGA datasets were in read-count format, and were quality controlled and normalized by 
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the ‘DEseq’ package [24]. For each method, network construction of above four datasets 

was done as previously reported in [7].

3.3 Three single-cell RNA-seq datasets

Three single-cell RNA-seq datasets of mice are analyzed in this study, including neural stem 

cell differentiation (PRJNA324289) [25], neural progenitor cell differentiation (GSE76381) 

[26] and hematopoietic stem cell differentiation (GSE59114) [27]. Notably, network 

construction of three single-cell RNA-seq datasets followed the protocol introduced in 

section 2.1, rather than the protocol used for the bulk-sequencing datasets [7]. The datasets 

were downloaded in raw read counts format, their differential gene expression analyzed by 

‘edgeR’ package [28], and subsequently transformed into counts-per-million (CPM) format 

by ‘DEseq’ package. Network construction was based on the transformed transcriptomics 

datasets and generic proteomics datasets.

4 Results

4.1 Comparison with four existing methods using simulation datasets

DNF is compared against four state-of-the-art differential network analysis methods on each 

simulated network pair. For the comparison, we include results from DiffRank [13], DEC 

[7], DCloc [14] and DiffNet [15]. In addition, a random selection method is also compared 

with these differential network analysis methods. The accuracy of each method is evaluated 

through the average hit number of the top 10 scored nodes intersecting with the 10 disturbed 

nodes.

As shown in Figure 1, methods that rely on capturing local topological features (DiffNet and 

DCloc) do not perform as well as methods that rely on capturing global topological features 

(DEC) and mixed topological features (DiffRank). This is because all perturbed nodes 

present subtle topological differences (local or global, linear or non-linear). DNF has the 

potential of capturing comprehensive topological differences from local to global feature 

domains. Therefore, DNF outperforms the other four state-of-the-art methods in mean 

accuracy of identifying perturbed nodes between different networks. Furthermore, all 

differential network analysis methods outperform the random selection method, 

underscoring the necessity of differential network analysis.

4.2 DNF reveals rewiring driver genes in cancer networks more consistent with the 
known cancer gene list for four different TCGA datasets

4.2.1 Assessment criteria—In order to assess ranking and identification accuracy in 

the TCGA data, 138 known cancer genes [29] and 723 genes from the Cancer Gene Census 

(CGC) [30] were adopted as two reference sets. For each method, the overlap between the 

top 20 ranked markers and the reference defines the score for the method (see 

Supplementary Text 2 and Supplementary Figure 2 for more explanation of parameter 

selection).

In addition, we tested whether dosage of each method’s top 20 genes can predict the 

treatment outcome of TCGA patients at various endpoints. Survival analysis aims to identify 
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the candidate cancer biomarker genes and prognosis genes by applying a log-rank test to the 

end-point event for high and low dose populations which we established by standard 

univariate clustering based on expression of each predicted marker. TCGA survival analysis 

was conducted through RTCGA [31], the number of significantly (p-value < 0.05) survival-

related genes was regarded as another evaluation criteria of performance of each differential 

network method.

4.2.2 Comparison with other methods in four TCGA datasets—DNF was 

compared with other methods on four TCGA datasets (BRCA, PRAD, LIHC and LUAD) to 

compare the effectiveness of each method in detecting known cancer genes. In our study of 

detecting 138 known cancer genes (Supplementary Table 1), the set of differential nodes 

identified by DNF reflects more known cancer genes in BRCA, PRAD and LIHC. In LUAD, 

the graphical hamming distance-based method, DiffNet, outperforms any other methods. 

While systematically analyzing these detected genes by each method (Supplementary Table 

2), we found that DNF has the largest number of uniquely detected genes, and that the 

average number of genes detected by both DNF and one of the four other methods is also the 

largest. This is because the optimal flow considers both linear and nonlinear contributions of 

all nodes, allowing more sensitive detection of changes in network structure. Suggesting that 

DNF is potentially a more sensitive method of identifying topological differences between 

gene regulatory networks. In our study of detecting 723 genes in the CGC (Table 1), DNF 

shows similar performance compared to the analysis using 138 known cancer genes. In 

addition, the methods that rely on a single topological feature (DCloc, DEC and DiffNet) do 

not perform as well as the methods that are capable of capturing mixed topological features 

(DiffRank and DNF). Overall, DNF is more sensitive than other tested methods in detecting 

known driver genes of these four cancers.

From another perspective, the differential genes between cancer and control samples may 

include many survival-related genes, whose expression level may significantly impact 

survival time of patients. Additional experiments were performed on the top 20 scored genes 

by each method. For each gene, each sample was divided into high and low expression 

groups by its median expression. Then, the log-rank test was performed between gene 

expression and survival time of the two groups. The genes whose median expression divided 

the patient samples into two groups for which the log-rank test rejected the null hypothesis 

of “no difference” with p-value < 0.05 were regarded as survival-related genes in each 

cancer. As shown in Figure 2, many of the top 20 scored genes by different methods are 

statistically related to survival in each of the four cancer datasets.

Overall, DNF outperforms other state-of-the-art methods, being tied with DiffRank and 

DCloc for PRAD and BRCA, respectively, and recovering more survival-related genes than 

other methods for LUAD. In addition, DNF is able to uncover some survival-related genes 

that other methods fail to detect. Several notable genes were detected only by DNF (see 

Supplementary Figure 3), including APEX1 in BRCA, FOXP3 in BRCA, FOSL1 in LUAD 

and GATA1 in PRAD. In particular, APEX1 [32] and FOSL1 [33] are newly identified 

targets in cancer treatment, and GATA1 is one of 138 known cancer-related genes mentioned 

above. Hence, DNF shows promise in the detection of new and established cancer driver-

genes and survival-related genes.
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4.3 DNF identifies differentiation regulators for three single-cell RNA-seq datasets

4.3.1 Assessment criteria—The Gene Ontology is a curated database of annotated 

markers which has successfully guided exploratory analysis in many previous studies [34]. 

In order to rank predictions of the tested methods, we utilize the GO0045595 (regulation of 

cell differentiation) gene list as a reference list for differentiation processes. The 

GO0045595 gene list contains 1888 genes that are related to the process in which relatively 

unspecialized cells (stem cells) acquire specialized structural and functional features. The 

full list of these genes can be found in the Gene Ontology Resource [35]. The performance 

of each method in this study was evaluated by the number of intersections of top 20 ranked 

genes by each method and the gene list of GO0045595.

4.3.2 Comparison with other methods—DNF was applied to three single-cell RNA-

seq datasets, which cover three differentiation processes: neural stem cells to neural 

progenitor cells (PRJNA324289), neural progenitor cells to radial glial cells (GSE76381), 

and hematopoietic stem cells to hematopoietic progenitor cells (GSE59114). For the network 

construction of each dataset, the network skeleton was established through the online 

database of protein-protein intersection (https://string-db.org/). Because the online database 

does not support input of more than 2000 proteins, the skeleton genes were limited to 2000 

to ensure compatibility with the online database. For PRJNA324289, | log2 Fold Change |

>0.5, p-value<0.05 was used, giving 1039 skeleton genes. For GSE76381 and GSE59114, | 

log2 Fold Change >1, p-value<0.05 was used, giving 452 skeleton genes and 647 skeleton 

genes respectively.

DNF was compared to the other four state-of-the-art methods regarding the number of 

detected differentiation-related genes. As shown in Table 2, DNF finds the most cell-

differentiation related genes in total and presents consistently higher detection rates in each 

dataset. In addition, the performance of DNF in detecting network rewiring genes is robust 

to different network skeletons, while other methods are more sensitive to prior network 

structure. These results, in combination with the results of section 4.2, suggest that DNF is 

more reliable in detecting and predicting driver genes in both cancer and development across 

bulk RNA-seq and single-cell RNA-seq datasets.

We also focused on the topological features of identified genes by each method. Two basic 

metrics that measure the importance of nodes in networks were adopted. The first metric is 

degree centrality, a local topology feature, which captures the important nodes by higher 

numbers of connections between nodes. The second is closeness centrality, a global 

topology feature, which captures the important nodes in network by higher average distance 

among other nodes. Therefore, the differential degree and closeness centrality between two 

networks capture the local and global topology differences of nodes. To explore the 

changing tendency and associated confidence intervals of the local and global topology, we 

used loess regression to connect the nodes detected by each method. As shown in Figure 3, 

the topological features of identified genes by each method vary a lot. Importantly, the DNF 

approach presents the greatest change of degree and highest confidence (the area covered by 

color), which implies that DNF is able to capture both local and global network topological 

differences.
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4.4 Predict driver genes for neural stem cell differentiation using temporal single-cell 
RNA-seq datasets

Stem cells are multipotent, having the ability to replenish differentiated cell populations. 

Identifying the driver genes of differentiation will shed light on new biological questions 

[36]. However, the molecular mechanisms of stem cell differentiation are still poorly 

understood [37]. Differentiation is thought to require one or more discrete transitions from 

one intermediate state to another, each of which is determined by a set of genes that interact 

in a complex network, instead of a single perturbed gene [38]. Therefore, we combined 

changing network topology and functional relevance of gene sets to identify the underlying 

molecular mechanisms.

4.4.1 A temporal single-cell RNA-seq dataset—A temporal single-cell RNA-seq 

dataset of neural stem cell differentiation (PRJNA324289) [25] partially used in section 4.3 

was further analyzed in this section. It contains two continuous differentiation processes, the 

one is from neural stem cells (NSC) to neural progenitor cells (NPC), the another is from 

neural progenitor cells to astrocytes (Ast). The functional relevance of selected genes in each 

processes was confirmed by gene-set-enrichment using the GO web-based tool (the Gene 

Ontology Consortium [39]).

4.4.2 Prediction of driver genes—DNF was applied to order the essentiality of genes 

in both the process of NSC_NPC and NPC_Ast, and the top 100 scored genes (Formula 5) in 

each process were analyzed by gene ontology enrichment analysis. The enrichment analysis 

(see Supplementary figure 4) shows that NSC_NPC is significantly enriched in terms 

relating to cell differentiation and regulation (e.g. glial cell differentiation (GO:0010001) 

with p-value=9.85e-3, regulation of neuron differentiation (GO:0045664) with p-
value=2.56e-3, central nervous system development (GO:0007417) with p-value=4.53e-6), 

while NPC_Ast is significantly enriched in the enrichment terms relating to cellular and 

metabolic process (e.g. cellular component biogenesis (GO:0044085) with p-value=2.1e-6, 

cellular process (GO:0009987) with p-value=1.01e-6, metabolic process (GO:0008152) with 

p-value=3.03e-4). This implies that the driver genes regulating the continuous differentiation 

processes mainly occur in NSC_NPC differentiation. Therefore, genes significantly related 

to enrichment terms of differentiation in NSC_NPC are considered candidate genes, among 

which three enrichment terms are highlighted, including glial cell differentiation 

(GO:0010001), astrocyte differentiation (GO:0048708) and regulation of neuron 

differentiation (GO:0045664). We then examined the first order neighbors of these genes 

among the top 20 genes identified by DNF. We observed that the network topology of NSC 

is almost unconnected, while the network topology of NPC is densely connected (see 

Supplementary Figure 5). After combining above three networks in NPC (Figure 4A), we 

found that the shortest path between any two nodes in the combined network is lower than 

six, which makes it a small-world network. Among these genes, Sox2 [40] and Egfr [41] are 

driver genes of neural stem/progenitor cell differentiation, Src and Cdh2 play important roles 

in cell development and growth [42], and Hdac5 [43] and Stat3 [44] are essential for axon 

regeneration. Each of these genes is depicted in a color-coded plot (Fig 4A) where red, green 

and yellow represent inclusion in one of the three separate GO terms, while blue represents 

inclusion in the DNF top 20 genes. App is the only gene which is present in all three GO 

Xie et al. Page 10

Neurocomputing. Author manuscript; available in PMC 2021 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lists in addition to the DNF top 20, and has long been considered a key driver of 

neurodegenerative disease [45]. Interestingly, App has never been implicated in neuronal 

differentiation. App and the other two driver genes (Sox2 and Egfr) are all differentially 

expressed consistently (Figure 4B). Therefore, App could be another potential driver gene 

regulating the neural stem cell differentiation.

5 Discussion

To assess the performance of DNF in identification and prediction of drivers, we compared 

its performance with that of four other state-of-the-art methods in simulated, clinical, and 

experimental datasets. In the simulation study, DNF shows almost best performance in 

detecting perturbated nodes between two networks. Among bulk RNA-seq datasets from 

human cancer patients, DNF detects more known cancer genes and survival-related genes, 

demonstrating superior prediction of cancer biomarkers and prognosis genes. For the murine 

single-cell RNA-seq datasets, DNF detects more differentiation-related genes than other 

methods. The topological features of these genes’ network representation shows that DNF is 

able to capture multiple features of network topology from both local and global domains.

By integrating DNF and biological function enrichment analysis, App is predicted as a 

driver gene of neural stem cell differentiation. This finding provides compelling motivation 

for future therapeutic research. The underlying cause of many neurodegenerative diseases is 

not well understood [46]. It is possible that de-regulation of App and other differentiation 

factors could lead to the depletion of multipotent neuronal stem cells through unchecked 

differentiation. Next-generation treatments for neurodegenerative disease may be able to 

utilize somatic cell reprogramming to activate multipotency among a population of 

differentiated cells [47]. It is possible that targeting genes such as App (whose function may 

be reversable) to facilitate reprogramming, may have the added benefit of counteracting the 

pathological deregulation of these genes.

Differential network methods provide novel insights into the complex mechanisms of life 

processes, and contribute to the identification of rewiring drivers for gene regulatory 

networks. We have developed a new differential network analysis approach based on 

information flow to identify key regulators between two networks under different biological 

conditions. The novelty of DNF lies in its potential to capture comprehensive topological 

differences from local to global feature domains, by quantifying the node-to-node 

information flow in a network. Each node in the network is a distribution-level 

representation of information flow, while differences between the distribution of nodes in 

different biological conditions imply the change of multiple features of network structure. 

Thus, the key driving genes that are not necessarily identifiable as single-scale features or 

linear combinations of other features are detected by DNF. In summary, DNF is a stable and 

general method for quantifying the essentiality of genes across different networks. To 

compare networks of limited overlapping nodes, one can potentially first use a network 

alignment method (e.g. HGA method [48]) to construct the most similar mapping between 

the two networks, and then directly apply DNF based on this mapping. Although DNF in 

this study was applied to undirected networks, it could, in principle be applied to directed 

networks, with modification to the edge potentials of the underlying network skeleton.
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Figure 1. 
Comparison of different methods in detecting perturbed nodes using simulated datasets. 

DNF (the red bar) is compared with 5 methods (the blue bars), including 4 state-of-the-art 

differential network analysis methods and the random selection method. Results are 

averaged by 100 pairs of simulation networks.
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Figure 2. 
Comparison of different methods in uncovering statistically survival-related genes for four 

TCGA datasets. The height of bars corresponds to the number of statistically (p-value<0.05) 

survival-related genes uncovered by each method (top ranked 20 genes) for each TCGA 

dataset.
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Figure 3. 
The fitted scatter plot of the local (degree centrality) and global (closeness centrality) 

differential network topology of detected nodes by different methods for three single-cell 

RNA-seq datasets. Nodes in the plot are fitted by the local polynomial regression, and the 

color of area represents the confidence area of 95%, this confidence area describes the 

statistical confidence of tendency in topological differences
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Figure 4. 
Network topology and gene expression analysis to identify driver genes in neural stem cell 

differentiation. (A) The combined network topology of three gene ontology enrichment 

terms and their first-order neighbors in the top 20 nodes scored by DNF. The size of nodes 

represents the degree of genes in the network. The red represents the term of GO:0045664, 

the yellow represents the term of GO:0010001, the green represents the term of 

GO:0048708, and the blue represents the top 20 nodes score by DNF. (B) The average gene 

expression of temporal single-cell RNA-seq datasets. The gene expression of three cell types 

is standardized into read-counts-per-million (CPM) format.
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Table 1.

Comparison of different methods in detecting known rewiring driver genes (723 genes in the Cancer Gene 

Census) in cancer networks for four TCGA datasets (numbers in table corresponding to the number of cancer 

driver genes in top 20 genes detected by different methods in each dataset)

BRCA PRAD LIHC LUAD Total

DEC 6 6 10 7 29

DCloc 5 7 9 7 28

DiffRank 8 10 9 9 36

DiffNet 8 6 8 8 30

DNF 7 11 9 10 37
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Table 2.

Comparison of different methods in detecting differentiation-related genes in three single-cell RNA-seq 

datasets. (numbers in table corresponding to the number of cancer driver genes in top 20 genes detected by 

different methods in each dataset)

GSE59114 GSE76381 PRJNA324289 Total

DEC 3 6 1 10

DCloc 2 7 1 10

DiffNet 7 7 2 14

DiffRank 5 5 7 17

DNF 6 8 7 21
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