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A B S T R A C T   

COVID-19 infection caused by SARS-CoV-2 pathogen has been a catastrophic pandemic outbreak all over the 
world, with exponential increasing of confirmed cases and, unfortunately, deaths. In this work we propose an AI- 
powered pipeline, based on the deep-learning paradigm, for automated COVID-19 detection and lesion cate
gorization from CT scans. We first propose a new segmentation module aimed at automatically identifying lung 
parenchyma and lobes. Next, we combine the segmentation network with classification networks for COVID-19 
identification and lesion categorization. We compare the model's classification results with those obtained by 
three expert radiologists on a dataset of 166 CT scans. Results showed a sensitivity of 90.3% and a specificity of 
93.5% for COVID-19 detection, at least on par with those yielded by the expert radiologists, and an average 
lesion categorization accuracy of about 84%. Moreover, a significant role is played by prior lung and lobe 
segmentation, that allowed us to enhance classification performance by over 6 percent points. The interpretation 
of the trained AI models reveals that the most significant areas for supporting the decision on COVID-19 iden
tification are consistent with the lesions clinically associated to the virus, i.e., crazy paving, consolidation and 
ground glass. This means that the artificial models are able to discriminate a positive patient from a negative one 
(both controls and patients with interstitial pneumonia tested negative to COVID) by evaluating the presence of 
those lesions into CT scans. Finally, the AI models are integrated into a user-friendly GUI to support AI 
explainability for radiologists, which is publicly available at http://perceivelab.com/covid-ai. The whole AI 
system is unique since, to the best of our knowledge, it is the first AI-based software, publicly available, that 
attempts to explain to radiologists what information is used by AI methods for making decisions and that pro
actively involves them in the decision loop to further improve the COVID-19 understanding.   

1. Introduction 

At the end of 2019 in Wuhan (China) several cases of an atypical 
pneumonia, particularly resistant to the traditional pharmacological 
treatments, were observed. In early 2020, the COVID-19 virus [1] has 
been identified as the responsible pathogen for the unusual pneumonia. 
From that time, COVID-19 has spread all around the world hitting, to 

date about 155 million of people (with about 3.5 M deaths), stressing 
significantly healthcare systems in several countries. Since the begin
ning, it has been noted that 20% of infected subjects appear to progress 
to severe disease, including pneumonia and respiratory failure and in 
around 2% of cases death [2]. Currently, the standard diagnosis of 
COVID-19 is de facto based on a biomolecular test through Real-Time 
Polymerase Chain Reaction (RT-PCR) test [3,4]. However, although 
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widely used, this biomolecular method is time-consuming requiring up 
to several hours for being processed. 

Recent studies have outlined the effectiveness of radiology imaging 
through chest X-ray and mainly Computed Tomography (CT) given the 
pulmonary involvement in subjects affected by the infection [5,6]. 
Given the extension of the infection and the number of cases that daily 
emerge worldwide and that call for fast, robust and medically sustain
able diagnosis, CT scan appears to be suitable for a robust-scale 
screening, given the higher resolution w.r.t. X-Ray. In this scenario, 
artificial intelligence may play a fundamental role to make the whole 
diagnosis process automatic, reducing, at the same time, the efforts 
required by radiologists for visual inspection [7]. 

In this paper, thus, we present an AI-based system to achieve both 
COVID19 identification and lesion categorization (ground glass, crazy 
paving and consolidation) that are instrumental to evaluate lung dam
ages and the prognosis assessment. Our method relies only on radio
logical image data avoiding the use of additional clinical data in order to 
create AI models that are useful for large-scale and fast screening with 
all the subsequent benefits for a favorable outcome. More specifically, 
we propose an innovative automated pipeline consisting of 1) lung/lobe 
segmentation, 2) COVID-19 identification and interpretation and 3) 
lesion categorization. We tested the AI-empowered software pipeline on 
multiple CT scans, both publicly released and collected at the Spallan
zani Institute in Italy, and showed that: 1) our segmentation networks is 
able to effectively extract lung parenchyma and lobes from CT scans, 
outperforming state of the art models; 2) the COVID-19 identification 
module yields better accuracy (as well as specificity and sensitivity) than 
expert radiologists. Furthermore, when attempting to interpret the de
cisions made by the proposed AI model, we found that it learned auto
matically, and without any supervision, the CT scan features 
corresponding to the three most common lesions spotted in the COVID- 
19 pneumonia, i.e., consolidation, ground glass and crazy paving, 
demonstrating its reliability in supporting the diagnosis by using only 
radiological images. Finally, we integrate the tested AI models into a 
user-friendly GUI to support further AI explainability for radiologists, 
which is publicly available at http://perceivelab.com/covid-ai. The GUI 
processes entire CT scans and reports if the patient is likely to be affected 
by COVID-19, showing, at the same time, the scan slices that supported 
the decision. 

To sum up, the main contributions of this paper are the following:  

• We propose a novel lung-lobe segmentation network outperforming 
state-of-the-art models;  

• We employ the segmentation network to drive a classification 
network that first identifies CT scans of COVID-19 patients, and, 
afterwards, automatically categorizes specific lesions;  

• We then provide interpretation of the decisions made by the 
employed models and discover that, indeed, the proposed approach 
focuses on specific COVID-19 lesions for distinguishing whether a CT 
scan is related to positive patients or not;  

• We finally integrate the whole AI pipeline into a web platform to ease 
use for radiologists, supporting them in their investigation on 
COVID-19 disease. To the best of our knowledge, this is the first 
publicly available platform that offers COVID-19 diagnosis services 
based on CT scans with explainability capabilities. The free avail
ability to the general public for such an important task, while the 
pandemic is still in full effect, is, in our opinion, an invaluable aid to 
the medical community. 

2. Related work 

The COVID-19 epidemic caught the scientific community flat-footed 
and in response a high volume of research has been dedicated at all 
possible levels. In particular, since the beginning of the epidemic, AI 
models have been employed for disease spread monitoring [8,9,10], for 
disease progression [11] and prognosis [12], for predicting mental 

health ailments inflicted upon healthcare workers [13] and for drug 
repurposing [14,15] and discovery [16]. 

However, the lion's share in employing AI models for the fight 
against COVID-19 belongs to the processing of X-rays and CT scans with 
the purpose of detecting the presence of COVID-19 or not. In fact, recent 
scientific literature has demonstrated the high discriminative and pre
dictive capability of deep learning methods in the analysis of COVID-19 
related radiological images [17,18]. The key radiological techniques for 
COVID-19 induced pneumonia diagnosis and progression estimation are 
based on the analysis of CT and X-ray images of the chest, on which deep 
learning methodologies have been widely used with good results for 
segmentation, predictive analysis, and discrimination of patterns 
[19,20,21]. If, on one hand, X-Ray represents a cheaper and most 
effective solution for large scale screening of COVID-19 disease, on the 
other hand, its low resolution has led AI models to show lower accuracy 
compared to those obtained with CT data. 

For the above reasons, CT scan has become the gold standard for 
investigation on lung diseases. In particular, deep learning, mainly in the 
form of Deep Convolutional Neural Networks (DCNN), has been largely 
applied to lung disease analysis from CT scans images, for evaluating 
progression in response to specific treatment (for instance immuno
therapy, chemotherapy, radiotherapy) [22,23], but also for interstitial 
lung pattern analysis [24,25] and on segmentation and discrimination of 
lung pleural tissues and lymph-nodes [26,27]. This latter aspect is 
particularly relevant for COVID-19 features and makes artificial intel
ligence an extremely powerful tool for supporting early diagnosis of 
COVID-19 and disease progression quantification. As a consequence, 
several recent works have reported using AI models for automated 
categorization of CT scans [21] and also on COVID-19 [28,29,30] but 
without being able to distinguish between the various types of COVID- 
19 lesions. 

3. Explainable AI for COVID-19 data understanding 

The proposed AI system aims at 1) extracting lung and lobes from 
chest CT data, 2) categorizing CT scans as either COVID-19 positive or 
COVID-19 negative; 3) identifying and localizing typical COVID-19 lung 
lesions (consolidation, crazy paving and ground glass); and 4) explain
ing eventually what CT slices it based its own decisions. 

3.1. AI model for lung segmentation 

Our lung-lobe segmentation model is based on the Tiramisu network 
[31], a fully-convolutional DenseNet [32] in a U-Net architecture [33]. 
The model consists in two data paths: the downsampling one, that aims 
at extracting features and the upsampling one that aims at generating 
the output images (masks). Skip connections (i.e., connections starting 
from a preceding layer in the network's pipeline to another one found 
later bypassing intermediate layers) aim at propagating high-resolution 
details by sharing feature maps between the two paths. 

In this work, our segmentation model follows the Tiramisu archi
tecture, but with two main differences:  

• Instead of processing each single scan individually, convolutional 
LSTMs [34] are employed at the network's bottleneck layer to exploit 
the spatial axial correlation of consecutive scan slices.  

• In the downsampling and upsampling paths, we add residual 
squeeze-and excitation layers [35], in order to emphasize relevant 
features and improve the representational power of the model. 

Before discussing the properties and advantages of the above modi
fications, we first introduce the overall architecture, shown in Fig. 1. 

The input to the model is a sequence of 3 consecutive slices – suitably 
resized to 224 × 224 – of a CT scan, which are processed individually 
and combined through a convolutional LSTM layer. Each slice is initially 
processed with a standard convolutional layer to expand the feature 
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dimensions. The resulting feature maps then go through the down
sampling path of the model (the encoder) consisting of five sequences of 
dense blocks, residual squeeze and-excitation layers and transition- 
down layers based on max-pooling. In the encoder, the feature maps 
at the output of each residual squeeze-and-excitation layer are concat
enated with the input features of the preceding dense block, in order to 
encourage feature reuse and improve their generalizability. At the end of 
the downsampling path, the bottleneck of the model consists of a dense 
block followed by a convolutional LSTM. The following upsampling path 
is symmetric to the downsampling one, but it features: 1) skip connec
tions from the downsampling path for concatenating feature maps at the 
corresponding layers of the upsampling path; 2) transition-up layers 
implemented through transposed convolutions. Finally, a convolutional 
layer provides a 6-channel segmentation map, representing, respec
tively, the log-likelihoods of the lobes (5 channels, one for each lobe) 
and non-lung (1 channel) pixels. 

In the following, we review the novel characteristics of the proposed 
architecture. 

3.1.1. Residual squeeze-and-excitation layers 
Explicitly modeling interdependencies between feature channels has 

demonstrated to enhance performance of deep architectures; squeeze- 
and-excitation layers [35] instead aim to select in-formative features 
and to suppress the less useful ones. In particular, a set of input features 
of size C × H × W is squeezed through average-pooling to a C × 1 × 1 
vector, representing global feature statistics. The “excitation” operator is 
a fully-connected non-linear layer that translates the squeezed vector 
into channel-specific weights that are applied to the corresponding input 
feature maps. 

3.1.2. Convolutional LSTM 
We adopt a recurrent architecture to process the output of the 

bottleneck layer, in order to exploit the spatial axial correlation between 
subsequent slices and enhance the final segmentation by integrating 3D 
information in the model. Convolutional LSTMs [34] are commonly 
used to capture spatio-temporal correlations in visual data (for example, 
in videos), by extending traditional LSTMs using convolutions in both 
the input-to-state and the state-to-state transitions. Employing recurrent 
convolutional layers allows the model to take into account the context of 
the currently-processed slice, while keeping the sequentiality and 
without the need to process the entire set of slices in a single step 
through channel-wise concatenation, which increases feature sizes and 

loses information on axial distance. 
Fig. 2 shows an example of automated lung and lobe segmentation 

from a CT scan by employing the proposed segmentation network. The 
proposed segmentation network is first executed on the whole CT scan 
for segmenting only lung (and lobes); the segmented CT scan is then 
passed to the downstream classification modules for COVID-19 identi
fication and lesion categorization. 

3.2. Automated COVID-19 diagnosis: CT classification 

After parenchyma lung segmentation (through the segmentation 
model presented in Section 3.1) a deep classification model analyzes 
slice by slice each segmented CT scan, and decides whether a single slice 
contains evidence of the COVID-19 disease. Note that slice-based 
COVID-19 classification is only the initial step towards the final pre
diction, which takes into account all per-slice predictions, and assigns 
the “positive” label in presence of a certain number of slices (10% of the 
total) that the model has identified as COVID-19 positive. Hence, 
COVID-19 assessment is actually carried out per patient, by combining 
per-slice predictions. 

At this stage, the system does not carry out any identification and 
localization of COVID-19 lesions, but it just identifies all slices where 
patterns of interest may be found and according to them, makes a guess 
on the presence or not of COVID-19 induced infection. An overview of 
this model is shown in Fig. 3: first the segmentation network, described 
in the previous section, identifies lung areas from CT scan, then a deep 
classifier (a DenseNet model in the 201 configuration [32]) processes 
the segmented lung areas to identify if the slice shows signs of COVID-19 
virus. 

Once the COVID-19 identification model is trained, we attempt to 
understand what features it employs to discriminate between positive 
and negative cases. Thus, to interpret the decisions made by the trained 
model we compute class-discriminative localization maps that attempt 
to provide visual explanations of the most significant input features for 
each class. To accomplish this we employ GradCAM [36] combined to 
VarGrad [37]. More specifically, GradCAM is a technique to produce 
such interpretability maps by investigating output gradient with respect 
to feature map activations. More specifically, GradCAM generates class- 
discriminative localization map for any class c by first computing the 
gradient of the score for class c, sc, w.r.t feature activation maps Ak of a 
given convolutional layer. Such gradients are then global-average- 
pooled to obtain the activation importance weights w, i.e.: 

Fig. 1. The proposed segmentation architecture, consisting of a downsampling path (top) and an upsampling path (bottom), interconnected by skip connections and 
by the bottleneck layer. 

M. Pennisi et al.                                                                                                                                                                                                                                 



Artificial Intelligence In Medicine 118 (2021) 102114

4

wc
k =

∑

i

∑

j

ayc

aAk
ij

(1) 

Afterwards, the saliency map Sc, that provides an overview of the 
activation importance for the class c, is computed through a weighted 
combination of activation maps, i.e.: 

VarGrad is a technique used in combination to GradGAM and con
sists in performing multiple activation map estimates by adding, each 
time, Gaussian noise to the input data and then aggregating the esti
mates by computing the variance of the set. 

3.3. COVID-19 lesion identification and categorization 

An additional deep network activates only if the previous system 
identifies a COVID-19 positive CT scan. In that case, it works on the 
subset of slices identified as COVID-19 positives by the first AI system 
with the goal to localize and identify specific lesions (consolidation, 
crazy paving and ground glass). More specifically, the lesion identifi
cation system works on segmented lobes to seek COVID-19 specific 
patterns. The subsystem for lesion categorization employs the knowl
edge already learned by the COVID-19 detection module (shown in 
Fig. 3) and refines it for specific lesion categorization. An overview of 
the whole system is given in Fig. 4. 

3.4. A web-based interface for explaining AI decisions to radiologists 

In order to explain to radiologists, the decisions made by a “black- 
box” AI system, we integrated the inference pipeline for COVID-19 
detection into a web-based application. The application was designed 

to streamline the whole inference process with just a few clicks and 
visualize the results with a variable grade of detail (Fig. 5). If the radi
ologists desire to see which CT slices were classified as positive or 
negative, they can click on “Show slices” where a detailed list of slices 
and their categorization is showed (Fig. 6). 

Because the models may not achieve perfect accuracy, a single slice 
inspection screen is provided, where radiologists can inspect more 
closely the result of the classification. It also features a restricted set of 
image manipulation tools (move, contrast, zoom) for aiding the user to 
make a correct diagnosis (Fig. 7). 

The AI-empowered web system also integrates a relevance feedback 
mechanism where radiologists can correct the predicted outputs, and the 
AI module exploits such a feedback to improve its future assessments. 
Indeed, both at the CT scan level and at the CT slice level, radiologists 
can correct models' prediction. The AI methods will then use the correct 
labels to enhance their future assessments. 

4. Results and discussion 

4.1. Dataset and annotations 

4.1.1. Data 
Our dataset contains overall 166 CT scans: 72 of COVID-19 positive 

patients (positivity confirmed both by a molecular — reverse tran
scriptase–polymerase chain reaction for SARS-coronavirus RNA from 
nasopharyngeal aspirates — and an IgG or IgM antibody test) and 94 of 

Fig. 2. Example of lung and lobes segmentation.  

Fig. 3. Overview of the COVID-19 detection approach for CT scan classification as either COVID-19 positive or negative.  
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Fig. 4. Overview of COVID-19 lesion categorization approach. 

Sc = ReLU

(
∑

k
wc

kAk (2)    

Fig. 5. The main page of the AI-empowered web GUI for explainable AI. The user is presented with a list of the CT scan classifications reporting the 
models' prediction. 
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COVID-19 negative subjects (35 patients with interstitial pneumonia but 
tested negative to COVID19 and 59 controls). 

CT scans were performed on a multi-detector row helical CT system 
scanner2using 120 kV pp., 250 mA, pitch of 1.375, gantry rotation time 
of 0,6 s and time of scan 5,7 s. The non-contrast scans were recon
structed with slice thicknesses of 0.625 mm and spacing of 0.625 mm 
with high-resolution lung algorithm. The images obtained on lung 

(window width, 1000–1500H; level, − 700H) and mediastinal (window 
width, 350H; level, 35–40H) settings were reviewed on a picture 
archiving and communication system workstation.3 For training the 
lung/lobe segmentation model we adopted a combination of the LIDC 
[38], LTRC4 and [39] datasets, for a total of 300 CT scans. 

Fig. 6. The summarized classification result showing the CT slices that the neural network classified as positive or negative.  

Fig. 7. The slice inspection screen. In this screen the user can inspect each single slice and the AI models' decisions.  

2 Bright Speed, General Electric Medical Systems, Milwaukee, WI 

3 Impax ver. 6.6.0.145, AGFA Gevaert SpA, Mortsel, Belgium  
4 https://ltrcpublic.com/ 
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4.1.2. Annotations 
We perform both COVID-19 identification and lesion categorization, 

thus the annotations are different according to the task. For COVID19 
identification, ground truth consists of the results of the molecular and 
an IgG/IgM antibody test. Among the set of 166 CT scans, we used 95 
scans (36 positives and 59 negatives) for training, 9 scans for validation 
(5 positives and 4 negatives) and 62 scans (31 positives and 31 nega
tives) for test. To compare the AI performance to the human one, the test 
set of 62 CT scans was provided to three expert radiologists for blind 
evaluation. 

For lesion categorization, instead, CT scans of positive patients were 
also annotated by three expert radiologists (through consensus) who 
selected a subset of slices and annotated them with the type (Consoli
dation, Ground Glass and Crazy Paving) and the location (left/right/ 
central and posterior/anterior) of the lesion. In total, about 2400 slices 
were annotated with COVID-19 lesions and about 3000 slices of negative 
patients with no lesion. Table 1 provides an overview of all the CT scans 
and lesion annotations in our dataset. As for lung segmentation, anno
tations on lung/lobe areas were done manually by the same three expert 
radiologists who carried out lesion categorization. 

4.2. Training procedure 

4.2.1. COVID-19 identification model 
The COVID-19 detection network is a DenseNet201, which was used 

pretrained on the ImageNet dataset [40]. The original classification 
layers in DenseNet201 were replaced by a 2-output linear layer for the 
COVID-19 positive/negative classification. Given the class imbalance in 
the training set, we used the weighted binary cross-entropy (defined in 
Eq. (3)) as training loss and RT-PCR virology test as training/test labels. 
The weighted binary cross-entropy loss for a sample classified as x with 
target label y is then calculated as: 

WBCE = − w [y logx+(1 − y) log(1 − x) ] (3)  

where w is defined as the ratio of the number negative samples to the 
total number of samples if the label is positive and vice versa. This way 
the loss results higher when misclassifying a sample that belongs to the 
less frequent class. It is important to highlight that splitting refers to the 
entire CT scan and not to the single slices: we made sure that full CT 
scans were not assigned in different splits to avoid any bias in the per
formance analysis. This is to avoid the deep models overfit the data by 
learning spurious information from each CT scan, thus invalidating the 
training procedure, thus enforcing robustness to the whole approach. 
Moreover, for the COVID-19 detection task, we operate at the CT level 
by processing and categorizing each single slice. To make a decision for 
the whole scan, we perform voting: if 10% of total slices is marked as 
positive then the whole exam is considered as a COVID-19 positive, 
otherwise as COVID-19 negative. The choice of the voting threshold was 
selected according to the best operating point in the ROC curve. 

4.2.2. COVID-19 lesion categorization model 
The lesion categorization deep network is also a DenseNet201 model 

where classification layers were replaced by a 4-output linear layer 
(ground glass, consolidation, crazy paving, negative). The lesion categori
zation model processes lobe segments (extracted by our segmentation 
model) with the goal to identify specific lesions. Our dataset contains 
2488 annotated slices; in each slice multiple lesion annotations with 

relative location (in lobes) are available. Thus, after segmenting lobes 
from these images we obtained 5264 lobe images. We did the same on 
CT slices of negative patients (among the 2950 available as shown in 
Table 1) and selected 5264 lobe images without lesions. Thus, in total, 
the entire set consisted of 10,528 images. We also discarded the images 
for which lobe segmentation produced small regions indicating a failure 
in the segmentation process. We used a fixed test split consisting of 195 
images with consolidation, 354 with crazy paving, 314 with ground 
glass and 800 images with no lesion. The remaining images were split 
into training and validation sets with the ratio 80/20. Given the class 
imbalance in the training set, we employed weighted cross-entropy as 
training loss. The weighted cross-entropy loss for a sample classified as x 
with target label y is calculated as: 

WCE = − w
∑c

ylog(x) (4)  

where C is the set of all classes. The weight w for each class c is defined 
as: 

wc =
N − Nc

N
(5)  

where N is the total number of samples and Nc is the number of samples 
that have label c. 

Since the model is the same as the COVID identification network, i.e., 
DenseNet201, we started from the network trained on the COVID- 
identification task and fine-tune it on the categorization task to limit 
overfitting given the small scale of our dataset. 

For both the detection network and the lesion categorization 
network, we used the following hyperparameters: batch-size = 12, 
learning rate = 1e-04, ADAM back-propagation optimizer with beta 
values 0.9 and 0.999, eps = 1e-08 and weight decay = 0 and the back- 
propagation method was used to update the models' parameters during 
training. Detection and categorization networks were trained for 20 
epochs. In both cases, performance are reported at the highest validation 
accuracy. 

4.2.3. Lung/lobe segmentation model 
For lung/lobe segmentation, input images were normalized to zero 

mean and unitary standard deviation, with statistics computed on the 
employed dataset. In all the experiments for our segmentation model, 
input size was set to 224 × 224, initial learning rate to 0.0001, weight 
decay to 0.0001 and batch size to 2, with RMSProp as optimizer. When 
CLSTMs were employed, recurrent states were initialized to zero and the 
size of the input sequences to the C-LSTM layers was set to 3. Each 
training was carried out for 50 epochs. All experiments have been 
executed using the HPC4AI infrastructure [41]. 

4.3. Performance evaluation 

In this section report the performance of the proposed model for 
lung/lobe segmentation, COVID-19 identification and lesion 
categorization. 

4.3.1. Lobe segmentation 
Our segmentation model is based on the Tiramisu model [31] with 

the introduction of squeeze-and-excitation blocks and of a convolutional 
LSTM (either unidirectional or bidirectional) after the bottleneck layer. 
In order to understand the contribution of each module, we first per
formed ablation studies by testing the segmentation performance of our 
model using different architecture configurations:  

• Baseline: the vanilla Tiramisu model described in [31];  
• Res-SE: residual squeeze-and-Excitation module are integrated in each 

dense block of the Tiramisu architecture; 

Table 1 
CT Dataset for training and testing the deep models.   

CT scans Annotated slices   

Ground glass Crazy paving Consolidation Total 

Positives  72 1035 757 598  2390 
Negatives  94 – – –  2988  
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• C-LSTM: a unidirectional convolutional LSTM is added after the 
bottleneck layer of the Tiramisu architecture;  

• Res-SE + C-LSTM: variant of the Tiramisu architecture that includes 
both residual squeeze-and-Excitation at each dense layer and a uni
directional convolutional LSTM after the bottleneck layer. 

We also compared the performance against the U-Net architecture 
proposed in [39] that is largely adopted for lung/lobe segmentation. 

All architectures were trained for 50 epochs by splitting the 
employed lung datasets into a training, validation and test splits using 
the 70/10/20 rule. Results in terms of Dice score coefficient (DSC) are 
given in Table 2. It has to noted that unlike [39], we computed DSC on 
all frames, not only on the lung slices. The highest performance is ob
tained with the Res-SE + C-LSTM configuration, i.e., when adding 
squeeze-and-excitation and the unidirectional C-LSTM at the bottleneck 
layer of the Tiramisu architecture. This results in an accuracy 
improvement of over 4 percent points over the baseline. In particular, 
adding squeeze-and-excitation leads to a 2 percent point improvement 
over the baseline. Segmentation results are computed using data 
augmentation obtained by applying random affine transformations 
(rotation, translation, scaling and shearing) to input images. The seg
mentation network is then applied to our COVID-19 dataset for prior 
segmentation without any additional fine-tuning to demonstrate also its 
generalization capabilities. 

4.3.2. COVID-19 diagnosis 
We here report the results for COVID-19 diagnosis, i.e., classification 

between positive and negative cases. In this analysis, we compare model 
results to those yielded by three experts with different degree of 
expertise:  

• Radiologist 1: a physician expert in thoracic radiology (~30 years of 
experience) with over 30,000 examined CT scans;  

• Radiologist 2: a physician expert in thoracic radiology (~10 years of 
experience) with over 9000 examined CT scans;  

• Radiologist 3: a resident student in thoracic radiology (~3 years of 
experience) with about 2000 examined CT scans. 

It should be noted that the gold standard employed in the evaluation 
is provided by molecular and antibody tests, hence radiologists' assess
ments are not the reference for performance comparison. 

We also assess the role of prior segmentation on the performance. 
This means that in the pipelines showed in Figs. 3 and 4 we removed the 
segmentation modules and performed classification using the whole CT 
slices using also information outside the lung areas. Results for COVID- 
19 detection are measured in terms of sensitivity, specificity and AUC, 
and are given in Tables 3, 4 and 5. Note that the AUC is a reliable metric 
in our scenario, since we explicitly defined the test set to be balanced 
among classes. More recent techniques [42] may be suitable when this 
assumption does not hold, as is often the case for new or rare diseases. 

Our results show that the AI model with lung segmentation achieves 
higher performance than expert radiologists. However, given the rela
tively small scale of our dataset, statistical analysis carried out with the 
Chi-squared test does not show any significant difference between AI 
models and radiologists. Furthermore, performing lung segmentation 

improves by about 6 percent points both the sensitivity and the speci
ficity, demonstrating its effectiveness. 

In addition, we also measure how the sensitivity of the COVID-19 
identification changes w.r.t. the level of disease severity. In particular, 
we categorize the 31 positive cases into three classes according to the 
percentage of the affected lung area: low severity (11 cases), medium 
severity (11 cases), high severity (9 cases). Results are reported in 
Table 6 that shows how our AI-based method seems to be yielding better 
assessment than the domain experts, especially at the beginning of the 
disease (low severity). This is important as an earlier disease detection 
may lead to a more favorable outcome. In case of high severity, two out 
of three radiologists showed difficulties in correctly identifying the 
COVID-19, mainly because when the affected lung area is significant, the 
typical COVID patterns are less visible. However, even in this case, our 
deep learning model was able to discriminate robustly COVID cases. 

As a backbone model for COVID-19 identification, we employ 

Table 2 
Ablation studies of our segmentation network in terms of dice score. Best results 
are shown in bold. Note: we did not compute confidence intervals on these 
scores as they are obtained from a very large set of CT voxels.  

Model Lung segmentation Lobe segmentation 

Baseline Tiramisu [31] 89.41 ± 0.45 77.97 ± 0.31 
Baseline + Res-SE 91.78 ± 0.52 80.12 ± 0.28 
Baseline + C-LSTM 91.49 ± 0.57 79.47 ± 0.38 
Baseline + Res-SE + C-LSTM 94.01 ± 0.52 83.05 ± 0.27  

Table 3 
Sensitivity (in percentage together with 95% confidence interval) comparison 
between manual readings of expert radiologists and the AI model for COVID-19 
detection without lung segmentation and AI model with segmentation.   

Sensitivity C.I. (95%) 

Radiologist 1  83.9 [71.8–91.9] 
Radiologist 2  87.1 [75.6–94.3] 
Radiologist 3  80.6 [68.2–89.5] 
AI Model without lung segmentation  83.9 [71.8–91.9] 
AI Model with lung segmentation  90.3 [79.5–96.5]  

Table 4 
Specificity (in percentage together with 95% confidence interval) comparison 
between manual readings of expert radiologists and the AI model for COVID-19 
detection without lung segmentation and AI model with segmentation.   

Specificity C.I. (95%) 

Radiologist 1  87.1 [75.6–94.3] 
Radiologist 2  87.1 [75.6–94.3] 
Radiologist 3  90.3 [79.5–96.5] 
AI Model without lung segmentation  87.1 [75.6–94.3] 
AI Model with lung segmentation  93.5 [83.5–98.5]  

Table 5 
AUC (together with 95% confidence interval) comparison between manual 
readings of expert radiologists and the AI model for COVID-19 detection without 
lung segmentation and AI model with segmentation.   

AUC C.I. (95%) 

Radiologist 1  0.83 [0.72–0.93] 
Radiologist 2  0.87 [0.78–0.96] 
Radiologist 3  0.80 [0.69–0.91] 
AI Model without lung segmentation  0.94 [0.87–1.00] 
AI Model with lung segmentation  0.95 [0.89–1.00]  

Table 6 
Sensitivity (in percentage) changes w.r.t. disease severity. From the 31 test CTs 
for positive patients: 11 are with low severity, 11 with medium severity, and 9 
with high severity. Values in parentheses indicate 95% confidence intervals (CI).   

Low severity Medium severity High severity 

Radiologist 1 72.7 
(50.6–88.5) 

100.0 
(90.9–70.6) 

77.8 (54.7–92.6) 

Radiologist 2 72.7 
(50.6–88.5) 

90.9 
(70.6–100.0) 

100.0 
(81.5–100.0) 

Radiologist 3 63.6 
(42.3–81.3) 

100 (90.9–70.6) 77.8 (54.7–92.6) 

Modelwo 

segmentation 
72.7 
(50.6–88.5) 

90.9 
(70.6–100.0) 

88.9 (67.0–99.2) 

Modelw 

segmentation 
81.8 
(59.6–94.9) 

90.9 
(70.6–100.0) 

100.0 
(81.5–100.0)  
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DenseNet201 since it yields the best performance when compared to 
other state of the art models, as shown in Table 7. In all tested cases, we 
use upstream segmentation through the model described in Section 3.1. 
Voting threshold was set to 10% on all cases. 

In order to enhance trust in the devised AI models, we analyzed what 
features these methods employ for making the COVID-19 diagnosis de
cision. This is done by investigating which artificial neurons fire the 
most, and then projecting this information to the input images. To 
accomplish this we combined GradCAM [36] with VarGrad [37]5 and, 
Fig. 8 shows some examples of the saliency maps generated by inter
preting the proposed AI COVID-19 classification network. It is inter
esting to note that the most significant activation areas correspond to the 
three most common lesion types, i.e., ground glass, consolidation and 
crazy paving. This is remarkable as the model has indeed learned the 
COVID-19 peculiar patterns without any information on the type of le
sions (to this end, we recall that for COVID-19 identification we only 
provide, at training times, the labels “positive” or “negative”, while no 
information on the type of lesions is given). 

4.3.3. COVID-19 lesion categorization 
For COVID-19 lesion categorization we used mean (and per-class) 

classification accuracy over all lesion types and per lesion that are 
provided, respectively, in Table 8. Note that no comparison with radi
ologists is carried out in this case, since ground-truth labels on lesion 
types are provided by radiologists themselves, hence they are the 
reference used to evaluate model accuracy. 

Mean lesion categorization accuracy reaches, when operating at the 
lobe level, about 84% of performance. The lowest performance is ob
tained on ground glass, because ground glass opacities are specific CT 
findings that can appear also in normal patients with respiratory artifact. 
Operating at the level of single lobes yields a performance enhancement 
of over 21 percent points, and, also in this case, radiologists did not have 
to perform any lobe segmentation annotation, reducing significantly 
their efforts to build AI models. The most significant improvement when 
using lobe segmentation w.r.t. no segmentation is obtained on the Crazy 
Paving class, i.e., 98.3% against 57.1%. 

4.4. Discussion 

Although COVID-19 diagnosis from CT scans may seem an easy task 
for experienced radiologists, our results show that this is not always the 
case: in this scenario, the approach we propose has demonstrated its 
capability to carry out the same task with an accuracy that is at least on 
par with, or even higher than, human experts, thus showing the po
tential impact that these techniques may have in supporting physicians 
in decision making. Artificial intelligence, in particular, is able to 
accurately identify not only if a CT scan belongs to a positive patient, but 
also the type of lung lesions, in particular the smaller and less defined 
ones (as those highlighted in Fig. 8). As shown, the combination of 
segmentation and classification techniques provides a significant 
improvement in the sensitivity and specificity of the proposed method. 

Of course, although the results presented in this work are very 
promising in the direction of establishing a clinical practice that is 
supported by artificial intelligence models, there is still room for 
improvement. One of the limitations of our work is represented by the 
relatively low number of samples available for the experiments. In order 
to mitigate the impact of this issue, we carried out confidence level 
analysis to demonstrate the statistical significance of our results. 
Moreover, the employed dataset consists of images taken by the same CT 
scanner, not tested in multiple scanning settings. This could affect the 
generalization of the method on images taken by other CT scanner 
models; however, this issue can be tackled by domain adaptation tech
niques for the medical imaging domain, which is an active research topic 
[43,44,45]. 

Finally, one of the key features of our approach is the integration of 
explainability functionalities that may help physicians in understanding 
the reasons underlying a model's decision, increasing in turn, the trust 
that experts have in AI–enabled methods. Future developments in this 
regard should explore, in addition to model explainability, also caus
ability features in order to evaluate the quality of the explanations pro
vided [46,47]. 

5. Conclusions 

In this work we have presented an AI-based pipeline for automated 
lung segmentation, COVID-19 detection and COVID-19 lesion categori
zation from CT scans. Results showed a sensitivity of 90.3% and a 
specificity of 93.5% for COVID-19 detection and average lesion cate
gorization accuracy of about 84%. Results also show that a significant 
role is played by prior lung and lobe segmentation, that allowed us to 
enhance diagnosis performance of about 6 percent points. 

The AI models are then integrated into a user-friendly GUI to support 
AI explainability for radiologists, which is publicly available at http://pe 
rceivelab. com/covid-ai. To the best of our knowledge, this is the first AI- 
based software, publicly available, that attempts to explain radiologists 
what information is used by AI methods for making decisions and that 
proactively involves in the loop to further improve the COVID-19 
understanding. 

The results obtained both for COVID-19 identification and lesion 
categorization pave the way to further improvements, driven towards 
the implementation of an advanced COVID-19 CT/RX diagnostic pipe
line, that is interpretable, robust and able to provide not only disease 
identification and differential diagnosis, but also the risk of disease 
progression. 

Regulation and informed consent 

All data and methods were carried out in accordance to the General 
Data Protection Regulation 2016/679. The experimental protocols were 
approved by the Ethics Committee of the National Institute for Infectious 
Diseases Lazzaro Spallanzani in Rome. All patients enrolled in the study 
were over 18 at the time of their participation in the experiment and 
signed informed consent. 

Table 7 
COVID-19 classification accuracy (in percentage) by several state of the art 
models. Values in parentheses indicate 95% confidence intervals (CI).  

Model Variant Sensitivity (CI) Specificity (CI) Accuracy (CI) 

AlexNet – 71.0 
(57.9–81.6) 

90.3 
(79.5–96.5) 

80.7 
(68.3–89.5) 

ResNet 18 71.0 
(57.9–81.6) 

93.5 
(83.5–98.5) 

82.3 
(70.1–90.7) 

34 80.7 
(68.3–89.5) 

90.3 
(79.5–96.5) 

85.5 
(73.7–93.1) 

50 83.9 
(71.9–91.9) 

90.3 
(79.5–96.5) 

87.1 
(75.6–94.3) 

101 77.4 
(64.7–89.9) 

87.1 
(75.6–94.3) 

82.3 
(70.1–90.7) 

152 77.4 
(64.7–89.9) 

90.3 
(79.5–96.5) 

83.9 
(71.9–91.9) 

DenseNet 121 77.4 
(64.7–89.9) 

93.5 
(83.5–98.5) 

85.5 
(73.7–93.1) 

169 67.9 
(83.5–98.5) 

93.5 
(83.5–98.5) 

81.4 
(68.7–90.2) 

201 90.3 
(79.5–96.5) 

93.5 
(83.5–98.5) 

91.9 
(81.5–97.5) 

SqueezeNet – 66.7 
(54.5–78.9) 

93.5 
(83.5–98.5) 

81.4 
(68.7–90.2) 

ResNeXt – 77.4 
(64.7–86.9) 

90.3 
(79.5–96.5) 

83.9 
(71.9–91.9)  

5 https://captum.ai/ 
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[13] Cosíc K, Popovíc S, Sarlija Ḿ, Keseďzíc I, Jovanovic T. Artificial in-̌ telligence in 
prediction of mental health disorders induced by the covid-19 pandemic among 
health care workers. Croat Med J 2020;61(3):279. 

[14] Mohanty S, Rashid MHA, Mridul M, Mohanty C, Swayamsiddha S. Application of 
artificial intelligence in covid-19 drug repurposing. Diabetes Metab Syndr Clin Res 
Rev 2020;14(5):1027–31. 

[15] Ke Y-Y, Peng T-T, Yeh T-K, Huang W-Z, Chang S-E, Wu S-H, et al. Artificial 
intelligence approach fighting covid-19 with repurposing drugs. Biom J 2020;43 
(4):355–62. 

[16] P. Richardson, I. Griffin, C. Tucker, D. Smith, O. Oechsle, A. Phelan, J. Stebbing, 
Baricitinib as potential treatment for 2019-ncov acute respiratory disease Lancet 
(London, England) 395 (10223) (2020) e30. 

[17] Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for 
pulmonary disease and coronavirus covid-19 detection from x-rays. Comput 
Methods Prog Biomed 2020;196:105608. 

[18] Huang L, Han R, Ai T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest ct 
assessment of covid-19: deep-learning approach. Radiology 2020;2(2):e200075. 

[19] Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, 
Ledesma-Carbayo MJ, et al. Pulmonary artery– vein classification in ct images 
using deep learning. IEEE Trans Med Imaging 2018;37(11):2428–40. 

[20] Navab N, Hornegger J, Wells WM, Frangi A. Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, 
Munich, Germany, October 5–9, 2015, Proceedings, Part IIIVol. 9351. Springer; 
2015. 

[21] Mei X, Lee H-C, Diao K-Y, Huang M, Lin B, Liu C, et al. Artificial 
intelligence–enabled rapid diagnosis of patients with covid-19. Nat Med 2020:1–5. 

[22] Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, et al. Pulmonary 
nodule detection in ct images: false positive reduction using multi-view 
convolutional networks. IEEE Trans Med Imaging 2016;35(5):1160–9. 

[23] Cha KH, Hadjiiski L, Chan H-P, Weizer AZ, Alva A, Cohan RH, et al. Bladder cancer 
treatment response assessment in ct using radiomics with deep-learning. Sci Rep 
2017;7(1):1–12. 
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