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Abstract

The prediction of structure dependent molecular properties, such as collision cross sections as 

measured using ion mobility spectrometry, are crucially dependent on the selection of the correct 

population of molecular conformers. Here, we report an in-depth evaluation of multiple 

conformation selection techniques, including simple averaging, Boltzmann weighting, lowest 

energy selection, low energy threshold reductions, and similarity reduction. Generating 50,000 

conformers each for 18 molecules, we used the In Silico Chemical Library Engine (ISiCLE) to 

calculate the collision cross sections for the entire dataset. First, we employed Monte Carlo 

simulations to understand the variability between conformer structures as generated using 

simulated annealing. Then we employed Monte Carlo simulations to the aforementioned 

conformer selection techniques applied on the simulated molecular property—the ion mobility 

collision cross section. Based on our analyses, we found Boltzmann weighting to be a good 

tradeoff between precision and theoretical accuracy. Combining multiple techniques revealed that 

energy thresholds and root-mean-squared deviation-based similarity reductions can save 

considerable computational expense while maintaining property prediction accuracy. Molecular 

dynamic conformer generation tools like AMBER can continue to generate new lowest energy 

conformers even after tens of thousands of generations, decreasing precision between runs. This 

reduced precision can be ameliorated and theoretical accuracy increased by running density 

functional theory geometry optimization on carefully selected conformers.
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INTRODUCTION

The identification and quantification of small molecules – metabolomics – has a broad range 

of applications, from forensics1–3 to human health and disease3–5, soil microbiology6–9 and 

materials science.10,11 The current gold standard methods for identifying small molecules in 

complex samples rely on comparing experimental data (i.e., observed “features”) to libraries 

derived from pure chemicals analyzed using the same experimental platform. Such reference 

materials are limited in availability and can be costly to acquire en masse, especially at high 

purity, and can require significant time to process and analyze. The vast majority of 

molecules in the universe are yet undiscovered, and even of those that are known, most are 

not readily available for purchase.12–15 It has therefore become crucial to develop 

computational methods for building reliable libraries of predicted molecular properties that 

are validated against empirical experiments in order to reduce reliance on authentic 

reference materials. Many groups have developed methods for predicting chemical 

properties measured in several identification platforms16–32 as elaborated in the Supporting 

Information.

Chemical properties and molecular behavior are a consequence of inter- and intra-molecular 

forces, as governed primarily by the electron distribution surrounding the constituent nuclei. 

Therefore, the conformer, or specific 3D structure of a molecule that otherwise has the same 

atoms and bonds (see SI for further definition), has significant impact on the outcome of 

chemical interactions. Many chemical properties (e.g. CCS and NMR chemical shifts) are 

highly sensitive to the underlying conformational populations, and consequently, nearly all 

of the computational approaches listed above require the initial step of generating 

conformers. Suitable conformer(s) must be chosen for accurate in silico molecular 

simulations or the results of chemical property predictions may be open to significant error.

To date, there has not been a clear study that has evaluated tradeoffs between various 

conformer sampling techniques—including analysis of the appropriate number to be used or 

the best method of selection. In this study, we explore several methods for conformer 

selection to assess the impact these approaches have on the prediction of the molecular 

property collision cross section (CCS), as measured using ion mobility spectrometry (IMS). 
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In IMS, a sample of molecule(s) is ionized (e.g., via electrospray ionization) and then 

propelled by an electric field through a drift region populated by a neutral buffer gas 

(commonly nitrogen or helium). The momentum transfer and chemical interactions between 

the molecular ions (adducts) and the buffer gas result in changing the net drift velocity of ion 

packets, leading to the separation of molecular adducts, including adducts for isomers33 and 

isotopologues.34 The measured arrival time of the ions at the end of the drift region can be 

used to calculate the CCS. As CCS is a property of both the ion and the buffer gas, different 

buffer gases will yield different CCS values for the same ion.

During an IMS separation, a single molecular adduct is not associated with a single spike in 

arrival time, but rather a distribution of arrival times as seen in Fig. 1a. This distribution is 

due to ion packet diffusion and multiple, interconverting conformers existing simultaneously 

within each packet. Commonly, the arrival time associated with the peak apex of the arrival 

time distribution is used to calculate a single experimental CCS for each molecular adduct. 

In silico predictions of CCS that are based on molecular structure (as opposed to 3D 

structure-naïve approaches20,31) therefore ideally choose a conformer or group of 

conformers that will result in CCS that are as close as possible to the experimental values 

represented by the arrival time peak maxima. The more accurate the predicted CCS, the 

more useful they will be for identification libraries and for reducing molecular identification 

false positive rates.

In this study, we used Monte Carlo, energy cutoff, and similarity downselection methods, as 

well as a variety of averaging methods, to explore how varying the number and type of 

conformers considered in a modified ISiCLE pipeline relate to final CCS predictions. We 

used a benchmark set of molecules with experimentally determined CCS, spanning various 

size and molecular flexibility, to compare the different methods and to correlate structure 

variability with chemical properties.

Similar to current literature methods, we found Boltzmann weighting yielded the best result 

among evaluated averaging techniques. We also found the conformers generated from MD 

simulations using AMBER insufficiently covered the low energy region of conformational 

space, leading to lower precision between simulations. DFT geometry optimization helps 

resolve this sparsity issue, which may also be present with other conformer generation tools. 

While this study focuses on the effect of conformer selection on CCS, we believe the results 

and the methods of evaluation can be generalized to other molecular modeling applications.

METHODS:

Conformer Generation and Processing

To test sampling methods on large sets of conformers, a modified ISiCLE pipeline was used 

to generate ~50,000 conformers for each adduct in a benchmark molecule set (see Fig. 2 and 

Table S1 for set details). Specifically, the generalized amber force field (GAFF) and the 

AmberTools1735 simulated annealing MD tool, Sander, was used with simulated 

temperatures of 300 K to 600 K for 1000 annealing cycles, from which 50 conformers were 

randomly selected out of each cycle at the 300 K level. After conformer generation, CCS 

values for each conformer were calculated using MOBCAL-SHM,21 a shared-memory 
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version of MOBCAL written in C and optimized for HPC resources, yielding 135× speed up 

over the original MOBCAL. Finally, DFT energies were calculated for each conformer using 

NWChem19 (v 6.8), with B3LYP exchange-correlation and 6–31G* basis set, via ISiCLE. 

B3LYP and 6–31G* were chosen for their purport and prevalence in recent literature. For 

hardware requirements and for parameters for all relevant tools, please see the SI.

For three molecular adducts (mandelonitrile [M+H]+, creatinine [M+Na]+, and sucrose [M

−H]−), 25k–50k of their conformers were additionally geometry optimized using DFT in 

NWChem, with CCS subsequently calculated by MOBCAL-SHM to enable comparison of 

conformer selection techniques on quantum chemistry optimized structures.

To briefly compare simulated annealing against other conformer generation methods, 50k 

conformers were generated for one molecular adduct, mandelonitrile [M+H]+ using RDKit 

(v 2019.03.1, rdkit.org), and the lowest energy conformer was generated for each adduct in 

the set using the Conformer-Rotamer Ensemble Sampling Tool (CREST, v 2.7.1)36 with the 

GFN2-xTB method.

Conformer Geometry Variability

Custom Python scripts (available for download on GitHub at https://github.com/pnnl/

conformer_selection and provided in the SI) were created for performing Monte Carlo (MC) 

simulations in order to understand the root-mean-square deviation (RMSD) variability 

between conformer geometries as produced by simulated annealing. RMSD were calculated 

using the OpenBabel (v 2.4.1) OBAlign function37,38 to align the conformers and calculate 

RMSD between corresponding heavy atoms (i.e. non-hydrogen atoms). The goal using MC 

was to simulate random draws from the true population of conformers for a range of sample 

sizes, where at each sample size, or step, conformers were randomly sampled and their 

RMSD averaged. Each MC simulation step was run for 10,000 iterations (see Fig. S1 for 

justification) to produce a simulation average -- analogous to the most probable result when 

choosing a sample of that size -- and a standard deviation. Because simulated annealing 

works in cycles, we investigated two approaches when sampling: (1) The full 50k conformer 

set treated as a single pool (with a bias to sample across cycles) and (2) each cycle sampled 

as a group. This allowed for assessing possible correlations between adjacent cycles (Fig. 

S2). Details describing how sampling was applied to allow direct comparison between the 

two approaches is given in the SI.

Using Pearson product-moment correlation coefficient, three characteristics of the complete 

MC simulations, namely RMSD convergence point, final converged average RMSD value, 

and maximum standard deviation from the average RMSD, were correlated against 71 

molecular properties calculated using ChemAxon’s tool cxcalc39 (v 17.17.0), as well as 

against experimental CCS. The converged value is the final MC result when sampling the 

full population, and the convergence point is the sample size when the maximum standard 

deviation is within 0.01% of the converged value, as shown in Fig. 4a. We note the 

molecular property calculations were done on the parent (non-adduct) molecules and the 

MC convergence was measured on the ionized (adduct) molecules.
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Conformer Selection and CCS Averaging Methods

Our goal was to sample from the full 50,000 conformer population of each adduct in order to 

simulate a situation in which a researcher had only generated the sampled conformers. The 

foundation for this decision was a hypothesis that the full 50,000 conformer population 

would represent the vast majority of the possible conformational space for the adducts in our 

molecule set. MC methods were used to simulate the result of CCS calculations after 

conformers were chosen from increasingly large conformer populations using a variety of 

selection techniques (described in more detail below): (1) simple average, (2) Boltzmann 

weighted average, (3) lowest energy, and (4) averaging below an energy threshold. These 

were chosen based on their prevalence in the literature.40–45

In addition to these methods, a fifth technique, which preemptively down-selects from the 

full sample to the m most similar and n most dissimilar set of conformers, builds off of an 

approach introduced by Colby et al.,21 which provides a more computationally efficient 

method of sampling while maintaining high precision. This method and the previous four 

methods were used in tandem to analyze every possible combination of the methods for a set 

of parameters, as described in Results and Discussion, Section 5.

A schematic of the following selection techniques is shown in Fig. 3.

1. Simple average (SA)—The simple average CCS is the arithmetic mean of all CCS 

values for a sample of conformers. Because the samples are randomly drawn from the full 

population, this simulates random conformer selection.

2. Boltzmann Weighted (BW) average—BW weights each conformer according to 

its Boltzmann probability distribution given by the equation,

pi = e−
Ei
kT

∑i = 1e−
Ei
kT

where pi is the probability or weight of the ith conformer, Ei is the energy, k is the 

Boltzmann constant, and T is temperature. Conformers that are lower in energy will have a 

higher weight when the CCS is averaged. This aims to reflect their time-averaged existence 

as a thermodynamic property and is heavily biased toward low energies. BW is currently 

considered the gold standard of conformer averaging used for CCS, NMR chemical shift 

calculations41, as well as for other chemical properties.

3. Lowest Energy (LE)—Only the conformer with the single lowest energy is selected.

4. Energy Threshold (ET)—Only conformers with energy under the threshold are 

selected, and their CCS are simple averaged. Here, we apply 5, 2, 1, and 0.5 kcal/mol 
thresholds.

5. Similarity downselection (SDS)—The goal of SDS is to sample conformational 

space with fewer conformers while still being representative of the larger population, thus 
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saving on computational expense. SDS uses RMSD-based similarity metrics and a heuristic 

selection algorithm freely available at https://github.com/pnnl/sds. SDS is described in more 

detail in the SI.

MC simulation was run on BW, LE, SA, and ET (in combination with SA) at 1,000 

iterations for each MC step. As with the RMSD analysis, the across- versus within-cycle 

approaches are also assessed here. MC analysis was done separately using AMBER 

potential energies and DFT energies.

RESULTS AND DISCUSSION

Our goal for this work was to evaluate many of the methods found in recent literature for 

sampling molecular conformations, especially with consideration for those methods that 

have been used for CCS calculations. Toward this end, we performed Monte Carlo analysis 

and various sampling techniques to assess conformational coverage (using RMSD) as well 

as the impact on CCS as a function of conformer sampling methods. This was done with a 

validation set of protonated, deprotonated, and sodiated adducts ([M+H]+, [M−H]+, [M+Na]
+) of various chemical classes spanning about 100–700 Da.

Convergence of RMSD as a function of Monte Carlo sampled conformers

MC simulations were run for 1,000 or 10,000 iterations (for CCS or RMSD analysis 

respectively) per data point (e.g. per number of conformers sampled) for each molecule in 

the validation set to ensure convergence. Fig. 4 demonstrates an example MC convergence 

plot of the variability between conformer geometries as defined by average RMSD. The 

convergence plots of all molecules are almost indistinguishable when viewed separately (see 

Fig. S3). We note three characteristics of these plots distinct to each molecule: the final 

converged RMSD average at full population (which we refer to as the “converged value”), 

the maximum standard deviation, and the “convergence point”, which we have defined as the 

sample size when the standard deviation reaches 0.01% of the final converged RMSD 

average.

As expected, a large converged value (a measure of the degree of variability between 

conformers for a molecule) is positively correlated with molecular mass (r2: 0.67; p-value: < 

1e-4), but also with properties such as chain atom/bond count (r2: 0.91 / 0.93; p-value: < 

1e-9 / < 1e-9), and rotatable bond count (r2: 0.90; p-value: < 1e-08), and negatively 

correlated with the second acidic pKa site (r2: 0.66; p-value: 1.3e-4). The converged value 

was also negatively correlated with having high ring counts; however, our data was 

insufficient for assessing statistical significance for these properties, and we would need to 

perform a study with a larger molecule set to verify this (Fig. S5). Note the positively 

correlated properties also correlate with molecular mass, reflecting how larger molecules 

typically have higher degrees of freedom than smaller molecules. A volcano plot showing 

the statistical significance and the magnitude of correlation for several other properties (Fig. 

S6) also revealed other properties such as the 3D Van der Waals surface area (r2: 0.81; p-

value: < 1e-6), and water accessible surface area (r2: 0.80; p-value: < 1e-6) were highly 

correlated and significant. Also interesting are the convergence point results, because while a 

molecule may have a high converged value (high average pairwise RMSD of the entire 
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50,000 population), it could have a relatively small convergence point. In some cases, this 

may be because the variability of conformer space is sampled in relatively few conformers 

despite the large RMSD between those conformers. More correlations between MC 

convergence characteristics and molecular properties as a heatmap of Pearson r correlations 

for 71 properties are found in Fig. S5.

The Monte Carlo Sampling Methods section in the SI discusses additional details that 

consider convergence for within versus across simulated annealing cycles for molecular 

dynamics, revealing, as expected, that sampling across cycles resulted in better 

conformational space coverage. Interestingly, sampling within versus across cycles had little 

effect on the MC convergence of calculated CCS except to lower the precision of simple 

averaging methods when sampling within cycles, as seen in Fig. S4.

Effect of conformer sampling on calculated CCS—Ultimately, the desire is to assess 

the appropriate conformer sampling method producing stable and accurate chemical 

property predictions. In this manuscript, our application focused on CCS values. Table S2 

provides a summary of CCS calculated by each conformer sampling technique when all 50k 

conformers are sampled. The table also includes values from the best combination of these 

methods, ISiCLE,21 CREST,36 and experimental values. Table S3 shows the mean absolute 

percent error relative to ISiCLE.

1. SA, BW, and LE selection techniques on AMBER generated conformers—
Fig. S7 demonstrates convergence plots of the BW, LE, and SA sampling techniques. 

Consistently for all molecules, LE had the widest standard deviation. Both LE and BW had 

averages that sometimes skewed dramatically and had much higher standard deviations than 

the simple average. This happens whenever the conformer generation randomly produces a 

small population of one or more conformers with energies significantly lower than the rest. 

Because LE and BW are heavily biased toward lower energies, their selection was affected 

by the increasing probability of the MC simulation “generating” lower energies as the 

sample size increased. A non-linear dependency between CCS and energy means the 

average CCS will keep changing as sample size increases to include more conformers with 

lower energies, and two samples of the same size may have widely different outcomes 

leading to high standard deviation. Therefore, the results of selection techniques dependent 

on energy are essentially functions of the CCS versus energy landscape. More specifically, 

they are functions of the low energy region, which is sparsely populated by AMBER. This 

sparsity leads to lower precision for low-energy dependent selection techniques. Thus, in 

order to understand how the selection techniques will behave, it is crucial to first understand 

how the conformer generation and optimization techniques shape the CCS (or other 

calculated value) versus energy landscape. Conformer generators like AMBER can produce 

significantly lower energy conformers even after thousands of generations (see Table S5), 

reducing precision for BW and LE between simulations.

We note although the standard deviations of BW and LE seem wide relative to SA, it is 

misleading to think SA is the better option. SA may give the best precision in a 

computational model, but its choice does not reflect the underlying physics. For this reason, 

BW is recommended as it has better precision than LE and is still reflective of known 
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physics. BW is supported in the literature as the current gold standard approach, even for 

other properties such as NMR chemical shift calculations.41,42,46 In IMS in particular, a 

molecule does not exist as a single conformer, but rather interconverts between low-energy-

barrier conformations rapidly during flight at room temperature. The final arrival time 

captured is then a weighted average of these conformers according to their duration of 

existence. It is reasonable to assume BW is more accurate because this is what is intended to 

be captured with Boltzmann’s energy and temperature-dependent probability equation. At 

this time, however, we cannot directly say anything about the accuracy of the techniques 

with high confidence. Other underlying conditions, such as the ionization site location or 

tautomer form, can significantly influence conformer formation, changing the CCS versus 

energy landscape, and thus altering the predicted CCS. Unique tautomers, for instance, can 

have CCS differences significantly larger than the CCS differences of the conformers for a 

single tautomer, with CCS of individual conformation populations of two unique tautomers 

possibly not even overlapping. To achieve optimal accuracy, a wholistic approach needs to 

be taken, optimizing all aspects that could significantly change conformation 

simultaneously. Regardless, Table S3 and Table S4 have been provided as comparisons of 

the various selection techniques to the method implemented in ISiCLE (DFT geometry 

optimized conformers) and experimental values, respectively. Both tables suggest BW and 

LE have lower mean absolute percent errors, and therefore better accuracy, than SA.

1.a SA, BW, and LE selection techniques on RDKit generated and DFT geometry 
optimized conformers: A molecule’s CCS vs energy space is shaped differently by 

different conformer generation and optimization methods, which can lead to significantly 

varied final calculated properties, even when using the same conformer selection techniques. 

Fig. 6 compares the same selection techniques (SA, BW, and LE) as discussed above, but 

applied to RDKit generated conformers and DFT geometry optimized conformers (starting 

from AMBER generated structures). This is shown for 50k mandelonitrile [M+H]+ 

conformers. Like AMBER, RDKit sparsely captured the low energy region of conformer 

space, leading to lower precision for LE. In this example, BW had a precision more 

comparable to SA’s high precision, but this is likely an anomaly due to a split conformer 

population, since the low energy region is still sparsely populated. We note the RDKit 

conformers were generated using distance geometry and were not optimized using RDKit’s 

universal force field (UFF) optimization tool. See Fig. S8 for a discussion on how this may 

affect CCS.

DFT geometry optimization, on the other hand, significantly lowers the energy of all 

conformers and clusters them into “bars” where the energies are very close but the range of 

CCS remains wide (e.g. ~0.05 kcal/mol versus ~4 Å2 for the example shown in Fig. 6). It 

appears that small changes, even the rotation of a methyl group on a rotamer, can lead to 

strikingly different CCS (e.g. one rotation by ~39 deg on creatinine’s methyl group yielded a 

difference of ~1.1 Å2, or ~0.95%). DFT geometry optimized conformers for creatinine [M

+Na]+ and sucrose [M−H]− are plotted in Fig. S9, showing similar results. DFT optimization 

densely populates the low energy region of CCS versus energy space, allowing BW and LE 

to have better precision. For example, the max standard deviation of BW for mandelonitrile 

dropped from σ 0.99 Å2 to σ 0.08 Å2, suggesting a few DFT geometry-optimized 
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conformers are more effective than a large series of MD-based structures for small rigid 

molecules. How far this translates to larger, more flexible molecules is yet unknown. For 

sucrose, BW and LE had significant increases in precision, but the standard deviation of BW 

did not drop to 1% of the converged value until 650 conformers were randomly sampled, 

whereas mandelonitrile and creatinine were below 1% at the first sample size (50 

conformers).

2. Averaging the CCS of conformers under energy thresholds—Performing 

simple averages of all conformers under energy thresholds has historically been used as an 

alternative to choosing only the lowest energy conformer or performing Boltzmann 

weighting. Fig. S10 compares convergence plots for 5, 2, 1, and 0.5 kcal/mol energy 

thresholds for all molecules in our set. At certain thresholds, ET mimics the other selection 

techniques. This is no surprise because SA is the same as a threshold so large it encompasses 

every conformer, and LE is the same as a threshold so small it captures only one conformer. 

Thus, ET is bound by SA and LE methods. ET suffers from the same undersampling of the 

low energy region of CCS vs energy space that BW and LE do; as many as 1,051 or as few 

as 1 conformer were found for 5 kcal/mol threshold depending on the molecule, as shown in 

Fig. S11. The sparsity of the low energy region further complicates how to recommend 

which energy threshold is best, but there is a general trend that higher thresholds give higher 

precision between simulations at the expense of theoretical accuracy, and lower thresholds 

sacrifice precision when using MD conformers.

After selecting the conformers under an energy threshold, more than just SA can be applied, 

such as BW or SDS, as described in Section 5 below.

3. RMSD based Similarity Downselection—In our previous work, we found 

choosing the two most dissimilar conformers and the single most similar conformer from 

simulated annealing cycles (based on RMSD), yielded final CCS results within 99% of the 

result obtained from using all conformers from each cycle.21 Building on this idea, we 

wanted to test how incrementally adding increasingly dissimilar conformers would impact 

the final property prediction. The idea behind SDS is to cover conformational space with 

fewer structures, thus maintaining accuracy while saving on computational expense. Ermanis 

et al. recently employed an RMSD-based similarity downselection method to exclude 

structures that were already very similar to each other and found using the 25 most 

dissimilar conformers was sufficient to minimize computational costs for NMR structure 

elucidation on small, rigid molecules.47 We use SDS in an evaluation of different technique 

combinations as described below in Section 5.

4. Using MD vs DFT energy on MD structures—Conformers not at energy minima 

or in strict transition states are not well defined by quantum mechanical methods, and so 

calculating DFT energies on MD structures that have not been optimized by DFT are 

thought to be untrustworthy. However, we found DFT energy on MD-generated structures, 

before DFT geometry optimization, has better correlation to the CCS and energy of 

conformers after DFT geometry optimization (Fig. 6). Whereas MD energies have almost no 

correlation, DFT energies cluster the MD structure space in a way that can be mapped to the 

DFT geometry optimized space. If one can predict which cluster will map to the lowest 
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energy DFT geometry optimized “bar,” one can then select those structures to perform full 

DFT geometry optimization (assuming the goal is to get the lowest energy conformers at a 

given temperature). Since both MD and DFT energy calculations (on MD structures) run 

orders of magnitude faster than full DFT geometry optimization (Fig. S12 and Table S6), 

predicting beforehand which conformers to geometry optimize would result in considerable 

speed up. For molecules like creatinine, a low DFT energy threshold would suffice to secure 

conformers from this cluster. For sucrose, the cluster mapping to the lowest energy DFT 

geometry optimized “bar” was located closer to the middle of the MD “cloud,” making it 

unclear how to successfully select those conformers without hindsight. Even so, there 

remains a general trend that higher energy clusters mapped to higher energy geometry-

optimized “bars” and lower energies to lower geometry-optimized “bars” when using DFT 

energies.

Similarly, Kanal et al.48 found poor correlation between energies of commonly used 

classical force fields and DFT and semiempirical methods. They likewise found DFT 

energies calculated on MMFF94 geometry optimized conformers had better correlation to 

DFT geometry optimized energies than MMFF94 energies. Different methods for 

calculating geometry and energies optimize different potential energy surfaces. Dependent 

on the application, selecting different levels of theory will change cost versus accuracy 

tradeoffs. While using DFT energies on non-DFT-optimized structures is not best practice in 

general, we feel our findings not only validate the use of DFT energies on MD structures for 

energy-based conformer space reduction methods such as energy thresholds, but also are 

better than using MD energies, especially with the goal of performing DFT geometry 

optimization on the structures afterwards. Analyses using MD energies, which showed 

similar trends between conformer selection techniques, were also done and can be found in 

the SI. Additionally, Fig S13 plots CCS vs energy space for all molecules, using AMBER 

energies, DFT energies, and DFT geometry optimized structures.

6. Exploring the best combinations of space-reduction and selection 
techniques—We ran a method-combinations search to find an optimal combination of the 

selection techniques for accuracy, precision, and computational expense when using non-

DFT-optimized AMBER generated conformers. We explored over 1,700 combinations using 

many different energy thresholds (both DFT and MD energies, alternatively or in 

combination), RMSD-based downselection (SDS), and conformer selection method 

combinations, including how many conformers were initially generated. The BW value of 

DFT geometry optimized conformers in the same manner as described in Colby et al. 

(2019)21 was used to define the baseline in which to assess each combination. For sucrose, 

creatinine, and mandelonitrile, where we had 25k–50k DFT geometry optimized structures, 

all of their optimized conformers were used for the baseline. Of the conformer 

downselection techniques (ET, SDS, random), SDS and ET appeared to give lower MAPE 

than random methods. The best method combination, AMBER for 10 cycles (50 conformers 

generated per cycle), using a 10 kcal/mol AMBER energy threshold followed by SDS to 

choose the 1 most similar and 10 most dissimilar, and then selecting the lowest energy 

conformer by DFT energy, resulted in 1.2% (σ: 0.9%) MAPE and is estimated to take 200 (σ 
157) minutes.
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Please refer to the SI for an extended limitation of this study.

CONCLUSION

Using Monte Carlo analysis, we have shown the relative precision and behavior of various 

conformer selection techniques on AMBER generated conformers. Of the averaging or 

consolidation techniques--Boltzmann weighting (BW), lowest energy (LE), simple average 

(SA)--BW had better precision than LE, and is physics-based, unlike SA, and is therefore 

expected to be more accurate. Example analysis on RDKit and DFT geometry optimized 

conformers confirms this trend, and also demonstrates the need for more efficient conformer 

generation tools that more thoroughly target the low energy region of conformer space. MD-

based conformer generation tools like AMBER sparsely populate the low energy region of 

conformer space, leading to lower precision between simulations for energy-based selection 

methods, such as BW, LE, and ET. Applying robust structure optimization methods like 

DFT geometry optimization can help ameliorate this problem, greatly increasing the 

precision and expected accuracy of e.g. BW, but this comes at the cost of greater 

computational expense. For this reason, we have hopes for tools like CREST36 and 

BOKEI49 which use mixtures of methods (e.g. MTD, genetic z-matrix crossing, and semi-

empirical methods) to specifically target low energy conformer space. A preliminary test of 

CREST showed it consistently generated conformers with lower (DFT) energies than 

AMBER for all molecules, half of the examples having energies as low as the DFT geometry 

optimized conformers. Subsequent research rigorously testing CREST against other methods 

is needed.

For single field experimental CCS methods, an interlaboratory study demonstrated an 

average uncertainty of 0.54%,50 yet a recent study reported measured CCS uncertainty 

estimates of 4.7–9.1%.51 For building in silico chemical libraries, we hope to achieve <1% 

MAE to meet future improvements of experimental platforms. The best method combination 

found had a MAPE greater than 1%. This further suggests the precursory conformer 

generation step was insufficient for our purposes. A more thorough analysis with a larger 

molecule set and tighter parameters would be needed to confirm this.

Many of our conclusions have been assumed in the literature, but here we have provided 

evidence for them. Already, researchers have been gravitating toward improved 

conformational sampling methods (e.g. those emerging from Prof. Stefan Grimme’s group), 

showing a shift away from older, less relevant methods. In summary, we recommend 

Boltzmann weighting conformers as generated and optimized by tools that sufficiently 

populate the low energy region of conformer space (e.g. CREST and DFT geometry 

optimization). Doing so is expected to increase accuracy and precision while minimizing 

computational expense.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Example conformer-influenced empirical arrival time and in silico CCS distributions.
(a) Di-CQA isomers were shown by Zheng et al. to have overlapping distributions in 

DTIMS.33 Distributions in IMS are believed to be largely due to diffusion and conformers. 

Reprinted (adapted) with permission from Zheng et al. Copyright (2017) American 

Chemical Society. (b) CCS vs energy landscapes for 50k AMBER generated conformers for 

creatinine [M+Na]+, sucrose [M+Na]+, and PE 16:1/16:1 [M−H]− respectively. Highlighted 

are the most similar (dashed) and two most dissimilar (solid) conformers chosen 

heuristically with a structural RMSD metric.

Nielson et al. Page 15

Anal Chem. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Ranges (thin line) and standard deviations (thick box) of CCS for a set of 18 small 

molecules.

Nielson et al. Page 16

Anal Chem. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Diagram of conformer selection and downselection methods.
Simple average (SA), lowest energy (LE), Boltzmann weighting (BW), energy threshold 

(ET), and similarity downselection (SDS). SA shows 50 randomly selected conformers, LE 

shows the single lowest energy conformer, BW is shaded based on real weighted values, ET 

is a 5 kcal/mol threshold, and SDS shows the one most similar and 49 most dissimilar 

conformers.
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Fig. 4. Example Monte Carlo simulation results on pairwise conformer RMSD.
(a) Example Monte Carlo convergence plot on RMSD between conformers for creatinine [M

+Na]+. Convergence point is the sample size (number of conformers) when standard 

deviation reaches 0.01% of the converged value. (b–d) Convergence point correlations with 

exact molecular weight, acidic pKa 2nd site (apKa 2), and experimentally measured CCS.
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Fig. 5. MC simulation convergence plots of CCS using three sampling techniques (SA, BW, LE) 
for conformers generated in AMBER, RDKit, and the AMBER conformers after a DFT 
geometry optimization for mandelonitrile [M+H]+.
Interestingly, RDKit sampled a part of the CCS vs energy landscape that AMBER under 

sampled, and DFT geometry optimization collapsed the AMBER landscape into a single 

“bar” cluster where structures had similar energy, but subtle distinctions (e.g. rotamers) led 

to significantly different CCS. Under all three generation/optimization techniques, LE had 

the least precision. For all three molecules tested under DFT geometry optimization, BW 

precision improved dramatically. For this example, BW and SA happened to have the same 

effect after DFT geometry optimization (their convergence plots exactly overlap). This was 

not the case for the other two molecules tested.
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Fig. 6. Demonstrations of clustering between DFT geometry optimized and non-optimized 
AMBER CCS vs energy space.
Specific clusters of conformers from DFT geometry optimized space (bottom) are chosen 

and highlighted in red. They are compared with the corresponding source conformers before 

optimization, using DFT energy (middle) and MD energy (top). DFT energy on MD 

structures has better correlation with the DFT geometry optimized structures than MD 

energy. DFT energy clearly predicts the fate of the conformers after DFT geometry 

optimization, whereas this is not evident with MD energy.
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